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Neural systems include interactions that occur across many scales. Two divergent

methods for characterizing such interactions have drawn on the physical analysis of

critical phenomena and themathematical study of information. Inferring criticality in neural

systems has traditionally rested on fitting power laws to the property distributions of

“neural avalanches” (contiguous bursts of activity), but the fractal nature of avalanche

shapes has recently emerged as another signature of criticality. On the other hand, neural

complexity, an information theoretic measure, has been used to capture the interplay

between the functional localization of brain regions and their integration for higher

cognitive functions. Unfortunately, treatments of all three methods—power-law fitting,

avalanche shape collapse, and neural complexity—have suffered from shortcomings.

Empirical data often contain biases that introduce deviations from true power law in the

tail and head of the distribution, but deviations in the tail have often been unconsidered;

avalanche shape collapse has required manual parameter tuning; and the estimation of

neural complexity has relied on small data sets or statistical assumptions for the sake of

computational efficiency. In this paper we present technical advancements in the analysis

of criticality and complexity in neural systems. We use maximum-likelihood estimation to

automatically fit power laws with left and right cutoffs, present the first automated shape

collapse algorithm, and describe new techniques to account for large numbers of neural

variables and small data sets in the calculation of neural complexity. In order to facilitate

future research in criticality and complexity, we have made the software utilized in this

analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality)

Toolbox.
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1. INTRODUCTION

Many recent studies have focused on evaluating self-organized
criticality as a possible mechanism to explain neurological events
(Beggs and Plenz, 2003, 2004). In general, these analyses seek
to explain complex neurological data in terms of a relatively
simple underlying system balanced at a critical point—a state
between order and disorder. Many recent studies have produced
evidence that suggests neural systems are poised at or near a
critical point (Beggs and Plenz, 2003; Petermann et al., 2006;
Mazzoni et al., 2007; Gireesh and Plenz, 2008; Pasquale et al.,
2008; Hahn et al., 2010; Friedman et al., 2012; Priesemann et al.,
2013, 2014; Williams-Garcia et al., 2014; Shew et al., 2015).
Additional studies (see Beggs, 2008; Chialvo, 2010; Beggs and
Timme, 2012 for reviews) have found important implications
for the brain if it is indeed operating at or near a critical
point, such as optimal communication (Beggs and Plenz, 2003;
Bertschinger and Natschlager, 2004; Rämö et al., 2007; Tanaka
et al., 2009; Shew et al., 2011), information storage (Socolar and
Kauffman, 2003; Kauffman et al., 2004; Haldeman and Beggs,
2005), computational power (Bertschinger and Natschlager,
2004), dynamic range (Kinouchi and Copelli, 2006; Shew et al.,
2009), and phase sychrony (Yang et al., 2012).

Research into criticality in neural systems has primarily
focused on the analysis of contiguous sequences of neural activity,
otherwise known as “neural avalanches” (Beggs and Plenz, 2003,
2004). In particular, a great deal of interest has concentrated
on determining the existence of power laws in distributions of
avalanche properties (see Beggs and Plenz, 2003; Priesemann
et al., 2009; Shew et al., 2009; Klaus et al., 2011; Alstott et al., 2014;
Ribeiro et al., 2014 as examples, Clauset et al., 2009; Touboul and
Destexhe, 2010; Dehghani et al., 2012; Touboul and Destexhe,
2015 for critiques, and Beggs and Timme, 2012 for a review).
However, recent research has expanded the number of analysis
techniques (Beggs and Timme, 2012) to include shape collapse
(Friedman et al., 2012; Priesemann et al., 2013), susceptibility
(Williams-Garcia et al., 2014), and tuning through the critical
point (Shew et al., 2009, 2011).

Research independent of neural criticality has attempted
to develop methods to quantify the strength and nature
of interactions between neurons across spatiotemporal scales
(Tononi and Edelman, 1998; Tononi, 2004, 2008). One such
information theoretic measure that captures the degree to
which disjoint network components (e.g., individual neurons
or groups thereof) coordinate their activity is referred to as
“neural complexity” (Tononi et al., 1994). Neural complexity
and similar measures have been suggested as diagnostic tools
for various operational states of neural systems, including even
consciousness (Tononi and Edelman, 1998; Tononi, 2004, 2008;
Balduzzi and Tononi, 2008; Seth et al., 2011; Oizumi et al., 2014).

In this paper we present several significant improvements to
criticality and complexity analyses. These improvements include:
(1) We developed an automated maximum likelihood estimation
(MLE) fitting routine for doubly truncated, discrete power-
law distributions. This method allowed us to address sampling
and finite-size effects in measuring power laws (Burroughs and
Tebbens, 2001; Yu et al., 2014), as well as critiques of searching

for power laws in neural data (Clauset et al., 2009; Touboul and
Destexhe, 2010; Dehghani et al., 2012) by exclusively fitting the
central part of the distribution. (2) We developed an automated
method for performing andmeasuring avalanche shape collapses.
This represents a significant improvement in methodology over
previous manual shape collapses analyses (Friedman et al., 2012).
(3) We developed automated methods to account for state
sub-sampling in neural complexity calculations, thus improving
the accuracy of these calculations in large systems of neural
sources. (4) We made the software necessary to perform these
analyses freely available in the MATLABNNC (Neural Criticality
and Complexity) Toolbox (see Supplementary Material, Timme,
2016).

The NCC Toolbox includes functions to carry out the
operations discussed below, several programs for generating
model data to test the software, as well as demo scripts to
help new users explore the functionality of the programs. Other
than the Statistics and Machine Learning Toolbox for MATLAB,
the software is stand-alone and requires no additional libraries
or functions. Given differences between individual analyses,
the specific parameters discussed below can all be adjusted
by the user either directly via explicit variables or via data
preprocessing (e.g., applying initial data cuts). Importantly,
though all of the analyses herein are discussed in terms of neural
avalanches, most of the software and analysis methodologies
can easily be applied to other types of data. For instance,
the power-law fitting software can be applied to any type
of probability distribution sample data. To aid the user in
understanding the functionality of the software, throughout the
paper we will present example code and information about data
formats.

2. BACKGROUND, METHODS, AND
MODELS

2.1. Neural Avalanches
Neural avalanches are defined as sequences of time bins during
which at least one neuron is active (Figure 1; Beggs and Plenz,
2003, 2004). Figure 1A contains an example segment of spiking
data from a cortical branching model (see Section 2.3). The data
clearly contain bursts of activity through the network. Figure 1B
shows the spiking activity of several neurons that participated
in a single avalanche. This avalanche had duration 6 because it
involved six contiguous time bins with activity and it was size 13
because there were a total of 13 neuron activations during the
avalanche. The shape or profile of the avalanche is then simply
the number of active neurons at each time bin (Figure 1C).

2.2. Critical Exponents and Theoretical
Rationale for Power Laws
The study of critical phenomena in statistical mechanics provides
concepts and notation that can be readily applied to neural
avalanches (Sethna et al., 2001; Friedman et al., 2012). If a neural
network operates near a critical point, then the size distribution
(fs(S)), duration distribution (fd(T)), and average size given
duration data (〈S〉(T)) of its avalanches can be fit to a power law
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Identify Contiguous Sequences of Activity

FIGURE 1 | Neural avalanches. (A) A segment of the spike raster for all neurons in an example cortical branching model (see Section 2.3). (B) Example neuronal

avalanche. Adjacent periods of activity were identified as avalanches. This avalanche corresponds to the red vertical line in (A). This avalanche was duration 6 (6 time

bins long) and size 13 (13 total neuron activations). (C) Avalanche profile for the example avalanche shown in (B).

(Equations 1–3).

fs(S) ∝ S−τ (1)

fd(T) ∝ T−α (2)

〈S〉(T) ∝ T1/σνz (3)

In Equations (1–3), S is the size of an avalanche and T is the
duration of an avalanche. The power-law exponents τ , α, and
1/σνz are critical exponents of the system. They are model
independent and identical for all systems in the same universality
class (Sethna et al., 2001; Friedman et al., 2012).

2.3. Models
We employed several types of models to demonstrate our analysis
improvements and the software functionality. First, we generated
model data from various distributions in order to test the power-
law fitting algorithm. Second, we used cortical branching models
to produce neural avalanches to which the whole suite of analysis
software could be applied. Third, we used a simplified version of
the cortical branching model to provide intuitive examples that
clarify the meaning of neural complexity.

We drew sample data from four types of distributions: power
law, doubly truncated power law, exponential, and log normal.
We generated 100 sample distributions from each model. Each
sample was created by randomly assigning 105 counts to the
allowed discrete states (integers from 1 to 100) based on the
normalized probability mass function (PMF) for that model.
The unnormalized probability mass functions for the power-law
(PL), doubly truncated power-law (TPL), exponential (E), and
log-normal (LN) distributions are given by Equations (4–7).

pPL(x) = x−τ (4)

pTPL(x) =











e−λx x−τ
min

e−λxmin
1 ≤ x < xmin

x−τ xmin ≤ x ≤ xmax

e−λx x−τ
max

e−λxmax
xmax < x ≤ 100

(5)

pE(x) = e−λx (6)

pLN(x) =
e−(log(x)−µ)2/(2σ 2)

x
(7)

For all distribution models, τ = 2.5, σ = 2, λ = 0.125, µ = 0.3,
xmin = 10, and xmax = 75. Each distribution was normalized to
the range of discrete values considered (1 to 100) via Equation (8).

pnorm(x) =
p(x)

∑100
i= 1 p(i)

(8)

In addition to the distribution models, we used a cortical
branching model to produce neural avalanches that we then
analyzed using the entire software package (Haldeman and
Beggs, 2005;Williams-Garcia et al., 2014). The cortical branching
model contained 100 neurons arranged in a square lattice with
periodic boundary conditions (i.e., a torus). The model utilized
a spontaneous firing probability to randomly create activity in
the network. At each time step, each neuron had a pspont =

10−4 likelihood to spike spontaneously. Activity in the networks
propagated via interactions between a neuron and its four nearest
neighbors. If a given neuron spiked at time t, there was a ptrans
likelihood that it would cause one of its neighbors to spike
at time t + 1. For demonstration purposes in this analysis,
we used ptrans = 0.26. We chose a value of ptrans ∼ 1/4
to produce sustained periods of activity because each neuron
had four neighbors. The model was run for 3 ∗ 105 time steps
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and produced 2794 avalanches. In this model, we know the
appropriate time scale at which the data should be analyzed
(one time bin equals one time step). However, in analyses of
biological data, the optimal bin size is not known and the bin size
can dramatically affect the criticality analysis. Specifically, larger
bins tend to group temporally proximal avalanches together,
while smaller bins tend to fragment or completely destroy
small avalanches. Therefore, special attention should be paid
to bin size when working with biological data. One possible
solution is to use the average interspike interval (for neuron
spiking data) as an estimate of the time scale for the system,
though other methods may be more appropriate given the
situation.

While the full cortical branching model was capable of
generating neural avalanches, we used a simplified model to
generate spiking activity with varying degrees of complexity.
This simplified model consisted of 12 neurons arranged in
a feedforward chain (i.e., neuron 1 could influence neuron
2, but not vice versa). All interactions in the network were
instantaneous and the neurons had no refractory period. The
spiking state of neuron 1 alternated at each time step. The spiking
state of the ith neuron (call it ai) was coupled to the spiking
state of the (i + 1)th neuron (call it ai+1) using a parameter c
such that p(ai+1 = ai) = 0.5(1 + c) and p(ai+1 6= ai) =

0.5(1 − c). Therefore, the system produced totally random data
for c = 0 and totally ordered data for c = 1. In this analysis,
we utilized values of c = 0, 0.8, 1 to probe different levels of
complexity.

2.4. Software
The NCC MATLAB toolbox (see Supplementary Material,
Timme, 2016) contains an example neural avalanche data set
generated by the cortical branching model (sample_data.mat,
see Section 2.3) that was analyzed to produce all figures that
utilize cortical branching data throughout the paper. These data
are stored in a novel data format referred to as asdf2 (Another
Spiking Data Format version 2), which utilizes Matlab structures.
The fields of the structure are described in Table 1. Data in the
asdf2 format can easily be rebinned to large bin sizes using the
function rebin:

» asdf2 = rebin(asdf2,4); % Rebin from 1 ms bins

to 4 ms bins

Furthermore, data in the asdf2 format can be converted to raster
format using the function asdf2toraster and the inverse
operation can be performed using rastertoasdf2:

» raster = asdf2toraster(asdf2);

» asdf2 = rastertoasdf2(raster, binSize, expSys,

dataType, dataID);

A spike raster is a double array in which each row corresponds
to a channel (e.g., neuron) and each column to a time bin.
For a given channel and bin, the presence or absence of a
spike is indicated by a one or zero, respectively. The raster

TABLE 1 | asdf2 data format fields.

Field Class Value

binsize double Size of the time bins in milliseconds

nbins double Number of time bins in the recording

nchannels double Number of recorded channels (e.g., electrodes or neurons)

expsys string Type of experimental system

datatype string Data type (e.g., “spikes” or “LFP”)

dataID string Experiment specific identifier

raster cell array Spike or event times for each channel as a double vector

data format is primarily used in the complexity analysis (see
Section 5.4).

Data in the asdf2 format can easily be converted to avalanches
using the function avprops:

» Av = avprops(asdf2);

The Av variable is a structure with three fields. Av.duration is
a double vector that records the duration of each avalanche.
Av.size is a double vector that records the size of each avalanche.
Av.shape is a cell array that contains the avalanche shape (number
of active sites during each time step of the avalanche). Note
that Av.duration(i), Av.size(i), and Av.shape{i} all refer to the
same avalanche and that the avalanches are ordered in time.
The function avprops is also capable of calculating a simple
branching ratio estimate (Haldeman and Beggs, 2005) and the
fingerprint of the avalanches (i.e., the shape with information
about which channels were active during a given time bin).

Several functions are included in the toolbox to generate
model data as described in Section 2.3. The function gendata
can be used to generate random discrete data over a defined
interval following power-law, truncated power-law, exponential,
log normal, or exponentially-modified power-law distributions.
In addition, gendata can generate random continuous data for
power-law or exponential distributions.

» % 10000 samples from a power-law distribution:

p(x) α x−2.5

» x = gendata(10000, {’powerlaw’, 2.5});

» % 1000 samples from an exponential

distribution: p(x) α e−0.125x

» x = gendata(1000, {’exponential’, 0.125});

Data from these distributions can be generated with variable
numbers of samples, model parameters, and maximum
or minimum values. While gendata produces data with
random fluctuations, the function pldist can be used to
produce perfectly power-law discrete data with various types of
truncation and slopes, primarily for software testing purposes:

» x = pldist(1000);

Cortical-branching-model data can be generated with the
function cbmodel:
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» % A 100 node network with a transmission

probability of 0.26

» asdf2 = cbmodel(0.26);

Data from the cortical branching model can be generated using
variable numbers of neurons, spontaneous activity probabilities,
and recording lengths.

3. POWER-LAW FITTING

3.1. Background
Power-law or power-law-like distributed data have been observed
in a wide range of contexts, including neuroscience phenomena
such as neural network degree (Bonifazi et al., 2009; Lorimer
et al., 2015) and neural avalanche size (Beggs and Plenz, 2003),
as well as phenomena outside of neuroscience such as terrorist
attack deaths and solar flare intensity (Clauset et al., 2009).
Therefore, the subject of power-law fitting in general (Burroughs
and Tebbens, 2001; Goldstein et al., 2004; Perline, 2005; White
et al., 2008; Clauset et al., 2009; Priesemann et al., 2009; Holden
and Rajaraman, 2012; Deluca and Corral, 2013) and power-law
fitting in analyses of neural criticality in particular (Priesemann
et al., 2009; Touboul and Destexhe, 2010; Klaus et al., 2011;
Dehghani et al., 2012; Alstott et al., 2014; Ribeiro et al., 2014;
Yu et al., 2014; Touboul and Destexhe, 2015) have received a
great deal of attention in the literature. Fitting power laws has
proven to be a difficult task, though recent studies have greatly
improved power-law fitting methodology (Goldstein et al., 2004;
White et al., 2008; Clauset et al., 2009; Priesemann et al., 2009;
Deluca and Corral, 2013; Alstott et al., 2014). Unfortunately, one
outstanding issue in the literature is accurately fitting doubly
truncated, discrete power-law distributions (i.e., distributions
with a minimum and a maximum cutoff; see Deluca and Corral,
2013 for a treatment of continuous distributions and (Clauset
et al., 2009) for a treatment of distributions with a minimum
cutoff). This issue is significant because the vast majority of real
potentially power-law data are doubly truncated. The maximum
cutoff is typically caused by finite size effects. In other words,
there are often practical limits to the largest data that can be
measured (e.g., a limit to the maximum number of neurons that
can be recorded simultaneously or even the maximum number of
neurons in the brain). Previous methods do not incorporate these
realities of experimental data and instead apply power-law fits
with only minimum cutoffs (e.g., Clauset et al., 2009) or require
the user to manually set the maximum cutoff (e.g., Alstott et al.,
2014; Yu et al., 2014).

Onemight assume that neglecting the existence of amaximum
cutoff would simply produce noise in the tail of the distribution
that would be incorporated by the fitting procedure, however
the consequences are in fact more severe. Previous power-law
fitting methods (see Clauset et al., 2009 for the method and
Dehghani et al., 2012 for an example in neural systems) rely
heavily on cumulative distribution functions (CDFs) for fitting
and plotting in addition to probability density functions (PDFs).
This is not problematic for power-law distributions with only
a minimum cutoff because those distributions produce power-
law CDFs. Indeed, plotting CDFs can be beneficial in terms of

avoiding bias associated with binning and noise. However, doubly
truncated power-laws distributions do not produce power-law
CDFs (Burroughs and Tebbens, 2001; Yu et al., 2014). Rather,
the CDFs of doubly truncated power laws appear bent. So, using
the previousmethodology with doubly truncated power laws (i.e.,
nearly all real data) will produce inaccurate results and CDF plots
that are obviously not power law (Burroughs and Tebbens, 2001;
Dehghani et al., 2012; Yu et al., 2014; see Figure 4 below for an
example). This is the case even when the data are truly power law,
but simply possess a maximum cutoff in addition to a minimum
cutoff. The methodology we introduce herein addresses these
concerns for discrete power-law data.

3.2. Improvements
Similar to Yu et al. (2014), we extended previously used MLE
techniques to doubly truncated, discrete power laws (Clauset
et al., 2009; Deluca and Corral, 2013). Before describing how we
applied the power-law fitting algorithm to the data, we will first
describe the power-law fitting itself.

For a truncated, discrete power law, the probability mass
function is given by Equation (9).

f (x) = A(α, xmin, xmax)

(

1

x

)α

(9)

In Equation (9), A is a normalization constant, {x ∈ Z : xmin ≤

x ≤ xmax}, {α ∈ R : α > 1}, xmin is the minimum x-value,
and xmax is the maximum value. The value of A can be found
by normalizing the probability mass function (Equation 10).

A(α, xmin, xmax) =
1

∑xmax
x= xmin

(

1
x

)α (10)

The likelihood function L(α) for all N of the individual xi
measurements is given by Equation (11).

L(α) =

N
∏

i= 1

f (xi) = A(α, xmin, xmax)
N

N
∏

i= 1

(

1

xi

)α

(11)

Then, the log-likelihood is given by Equation (12) (including
division by N).

l(α) =
1

N
log(L(α))

=
1

N

(

N log(A(α, xmin, xmax))+

N
∑

i= 1

log

((

1

xi

)α)
)

= − log

(

xmax
∑

x= xmin

(

1

x

)α
)

−
α

N

N
∑

i= 1

log(xi) (12)

Note that the first expression on the last row of Equation (12) is
monotonically increasing in α, while the second term is linearly
decreasing in α. Therefore, there will be a unique maximum
value for l(α). We used a lattice search algorithm to estimate the
power-law exponent αfit that maximized l(α).

The lattice search functioned by first calculating l(α) for the
interval 1 ≤ αfit ≤ 5 at increments of 0.1. It then selected the
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value of αfit that produced the largest value of l(α) (call this αfit,1).
It then calculated l(α) over the interval αfit,1 − 0.1 ≤ αfit ≤

αfit,1 + 0.1 at increments of 0.01. If αfit,1 was equal to 1 or 5,
the bound for the new iteration was set as αfit,1. The algorithm
then selected the value of αfit that produced the largest value of
l(α) (call this αfit,2). The algorithm continued until a precision

of 10−3 was reached (See Section 3.4 for an example test of this
search process in comparison to methods supplied by Clauset
et al., 2009).

We will now discuss the details of how we applied this
fitting tool to the neural avalanche data, though we wish to
emphasize that these same analysis methods could be applied to
any type of power-law data. In neural avalanche analyses, we will
be interested in fitting the distributions of avalanche sizes and
durations (see Section 2.1). Prior to fitting the distributions, we
applied cuts to the data. For a given type of distribution (size
or duration), we removed avalanches with sizes or durations less
than 4 as well as data for which less than 20 avalanches of that size
or duration were observed. These cuts were imposed in order to
consider similar portions of the data in the power-law fit analysis
as we considered in the shape collapse analyses (see Section 4.2).
Note that because the fitting method can account for doubly
truncated data, removing data from the left and right portion of
the distribution via these cuts does not bias the fitting as would be
the case with methods that do not account for double truncation.

Following the application of cuts to a given distribution, we
used the MLE fitting algorithm discussed above to estimate the
truncated power law that best fit the distribution. While this
algorithm always produced the best fit in the MLE sense, it was
not always the case that this fit was acceptable. Therefore, we used
the following algorithm to quantify acceptable fits (Clauset et al.,
2009; Deluca and Corral, 2013) (Figure 2). We used a power-law
model to produce data sets (NPLM = 500 model data sets) over
the fit range and compared the KS-statistics between (1) the real
data and the fit against (2) the model data and the fit. If the real
data produced a KS-statistic that was less than the KS-statistic
found for at least 20% of the power-lawmodels (i.e., p ≥ pthresh =
0.2), we accepted the data as being fit by the truncated power

law because the fluctuations of the real data from the power law
were similar in the KS sense to random fluctuations in a perfect
power-law model. However, if the converse was true, we rejected
the truncated power-law hypothesis. Note that this method is
not able to prove the data were generated by a truncated power
law, rather it is only able to reject the truncated power-law
hypothesis (see Section 3.3). In order to decrease computation
time in computing the acceptance criterion, we terminatedmodel
generation if the likelihood of success (p ≥ pthresh) fell below
0.1% as determined by a binomial CDF under the assumption
the likelihood of success (i.e., finding a model data set with KS-
statistic larger than for the real data) was at the minimum value
(i.e., p = pthresh).

If the truncated power-law hypothesis was rejected, we
searched for successively smaller ranges of the distributions
that could be fit by the truncated power law using the same
methodology discussed above. We defined the ranges in a
logarithmic sense using range = log(sizemax)/log(sizemin) for
size distributions and range = log(durmax)/log(durmin) for
duration distributions. Once a range was found over which
the truncated power-law hypothesis was accepted, we ceased
the search. Because the algorithm searched through successively
smaller fit ranges, the fit ranges reported by the analysis represent
the largest segment of the data that was fit by a truncated
power law.

In order to demonstrate how the fitting algorithm handles
different types of data, we applied the MLE truncated power-
law fitting method to four types of discrete model distributions
(see Section 2.3, Figure 3): power law, truncated power law,
exponential, and log normal.

An example power-law model is shown in Figure 3A. The
fitting algorithm typically fit the whole range of the distribution
(0–100; Figure 3B). The fitting algorithm produced exponents
very near the exponent from the distribution used to create the
models (Figure 3C).

An example truncated power-law model is shown in
Figure 3D. The fitting algorithm automatically detected fit ranges
very close to the true range of the power-law segment of the data,

A B

FIGURE 2 | Power-law fit search algorithm. (A) A MLE fit is performed on the avalanches after minimum size or duration cuts and occurrence cuts are applied.

(B) If the p < pthresh in (A), progressively smaller ranges of avalanche sizes or durations are fit until p ≥ pthresh. The data for this explanatory diagram was taken from

the cortical branching model.
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FIGURE 3 | Model distribution power-law fit results. (A, D, G, J) Example model distributions. Note that the truncated power-law search algorithm finds

power-law segments of all four models. (B, E, H, K) Histograms of minimum and maximum power-law fit regions. Note that the fit method finds the power-law

segment of the truncated power-law model, though it does tend to overestimate the fit range. (C,F) Histogram of fit exponents for the power-law and truncated

power-law models. The fit finds the power-law exponent with very small error, but it tends to slightly underestimate the truncated power-law exponent (I,L) KS-statistic

comparison between power-law fits and the real model. Note that for these fits, a large proportion of the data sets are better fit by a truncated power-law distribution

than the non-power-law distribution that was used to generate the model data.

though the algorithm did tend to slightly overfit near the end
of the distribution (Figure 3E). Due to the slight overfitting at
the end of the distribution and the downward curve in the data

following the power-law segment, the fitting algorithm found
power-law exponents very close to the real values, though with
a slight downward bias (Figure 3F).
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An example exponential model is shown in Figure 3G. The
fitting algorithm tended to identify short segments in the tail
of the distribution as being power-law (Figure 3H). The fitting
of small segments of non-power-law data using a power-law
function was caused by the proximity in a KS-statistic sense
between the fit and the model data (Figure 3I).

An example log-normal model is shown in Figure 3J.
Similarly to the exponential models, the log-normal models
tended to be fit as power law in segments of the tail due to the
proximity between the model data and the power-law fit in a
KS-statistic sense (Figures 3K,L).

In order to demonstrate the advantages of the fitting
techniques introduced herein, we compared the performance of
the new fitting techniques on a simple data set to the performance
of a previous method that does not include double truncation
(Clauset et al., 2009; Figure 4). We generated continuous power-
law distributed data (τ = 1.5 and N = 50, 000) and artificially
truncated the data at 104. When plotted as PDFs (Figure 4A),
both methods produced fits that qualitatively match the data
and yielded fit exponents near the true value. However, the
previous methodology produced a p = 0 (indicating the
power-law hypothesis was rejected) and the new methodology
produced a p = 0.978 (indicating the power-law hypothesis was
accepted). These results can be explained by examining the CDFs
(Figure 4B). The CDF of the fit data appears bent because of
the truncation (Burroughs and Tebbens, 2001; Yu et al., 2014)
and only the CDF from the new method fit takes this distortion
into account. Because the p-value calculation relies on the CDF,
accounting for this type of truncation is vital for an accurate
measurement of the p-value. This problem could be further
compounded if only the CDF were plotted (e.g., Dehghani et al.,

2012) because then even the qualitative agreement between the fit
and the PDF would be missed.

In addition to fitting the size and duration distributions
with truncated power laws, we also wished to fit the values of
the average avalanche sizes given duration for each data set
(Figure 5). These data are also hypothesized to follow a power
law (see Section 2.2). However, unlike the size and duration
distributions, the average size given duration plots show power
laws with positive exponents. This is expected since long duration
avalanches, while less likely than short duration avalanches, are
more likely to have a larger size than short duration avalanches.
Because the average size given duration data is not a probability
distribution, we were unable to fit it using an MLE approach.
Instead, we used a simple weighted least squares fitting algorithm
via the standard Matlab function lscov. We logarithmically
scaled the durations and average sizes, and we used the number
of avalanches of a given duration as the weight. We only fit size
given duration data for avalanches that fell in the duration range
fit by a truncated power law using the methods discussed above.

3.3. Discussion
The subject of power-law fitting in analyses of neural criticality
has been controversial in the literature (Priesemann et al., 2009;
Touboul and Destexhe, 2010; Klaus et al., 2011; Dehghani et al.,
2012; Alstott et al., 2014; Ribeiro et al., 2014; Yu et al., 2014;
Touboul and Destexhe, 2015). As we have noted previously, the
existence of a power law does not prove a system is critical (Beggs
and Timme, 2012). Other phenomena can generate power laws
and experimental concerns can obscure power laws (e.g., limits
to data gathering Stumpf et al., 2005). That having been said,
the frequent appearance of power laws in neurological data is

A B

FIGURE 4 | Clauset et. al. power-law fit method comparison. (A) Probability density functions for truncated simple model data, a fit using the methods

introduced herein, and a fit using previous methods (Clauset et al., 2009). Both methods produce fits that qualitatively match the data and that have exponents near

the true value of τ = 1.5. However, the previous methods produce a low p-value (reject power-law hypothesis) and the new methods produce a high p-value (accept

power-law hypothesis). (B) Complementary cumulative distribution functions for the fit data from (A). The CDF of the model data appears bent due to the truncation.

The new methods introduced herein are able to account for this distortion and still fit the data. The previous methods produce a low p-value because they assume the

CDF will still be a power law.
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FIGURE 5 | Size given duration fit. The average avalanche size as a

function of avalanche duration follows a power law with a positive slope.

Because these data are not a probability distribution, an MLE approach to

fitting was not possible. We used a weight least squares fitting of the

logarithmically scaled durations and average sizes. We also preserved

minimum duration and occurrence cuts from the MLE fitting approach for size

and duration distributions. Note, using the average size given duration fit, we

found 1/σνz = 1.503. Using the shape collapse analysis, we found

1/σνz = 1.498 (Figure 6E). This represents a difference of 0.3%. The data for

this figure was taken from the cortical branching model.

noteworthy and requires explanation. One possible explanation
is that the underlying system is operating at or near a critical
point, thus making further analyses related to criticality (e.g.,
shape collapse analyses) necessary. The fact that other beneficial
qualities are associated with operating at a critical point (e.g.,
optimal information processing Beggs and Timme, 2012) makes
additional criticality studies all the more important.

Beyond those concerns which motivate our study of criticality
and our response to studies that are critical of the criticality
hypothesis, there are several technical concerns related to power-
law fitting that require comment. Recent studies have greatly
improved power-law fitting methodology (Goldstein et al., 2004;
White et al., 2008; Clauset et al., 2009; Priesemann et al., 2009;
Deluca and Corral, 2013; Alstott et al., 2014). In our analysis,
we continued these advances by introducing an automated
MLE technique to fit doubly truncated discrete power-law
distributions. This represents a significant advance in power-law
fitting because the vast majority of experimentally gathered data
is doubly truncated.

While our methodology represents an important advance
in power-law fitting, we wish to emphasize that it does not
address an important issue. As we showed above (Figure 3),
our methodology finds power-law portions of non-power-law
distributed data. In other words, our curve fitting routine allows
for data that diverges from power law at the top and bottom of
a distribution in order to account for finite size effects and other
common data analysis complications. However, it is not always
clear when this allowance is justified to correct for data gathering
limitations in truly power-law data or when this allowance will

result in simply fitting a small segment of non-power-law data as
being power law. Fundamentally, this error results from fact that
our power-law fitting algorithm is only able to reject a power-
law fit. It cannot confirm that a power-law function generated the
data, nor could any other fitting algorithm. When our algorithm
accepts a segment of a distribution as being generated by a power
law, the algorithm is making a statement that the deviation in the
data from the power-law fit is below a certain threshold. When
our algorithm does not accept a segment of a distribution as being
generated by a power law, the algorithm is rejecting the power-
law hypothesis, similar to how other statistical tests reject null
models when low p-values are found.

To account for this fit acceptance phenomena, it is vital to
compare the fit to some null or alternative model, so a statement
can be made as to whether the data are more or less power law
than a null or alternative model. Such models could be generated
by randomizing the original data or via some other known
distribution (e.g., exponential, log-normal, etc.; Clauset et al.,
2009; Alstott et al., 2014). The null or alternative model should be
selected with care for several reasons. First, if an alternativemodel
is chosen with several adjustable parameters, it is possible that the
alternative model will fit the data better than a power law simply
because of the additional freedom supplied by the adjustable
parameters. Methods exist to aid in comparisons between models
with different numbers of parameters (Akaike, 1998) and these
should be consulted when performing a comparison with an
alternative model. Furthermore, biases in the data gathering
methods (e.g., finite size effects) may bias certain regions of the
distribution in complex ways, which may hamper attempts to
create the appropriate null model. If randomized versions of
the original data are desired, several methods exist including
swapping and jittering to create randomized data (Rolston et al.,
2007).

In principle, it could be possible to utilize similar techniques
to those used above and elsewhere (Deluca and Corral, 2013) to
develop doubly truncated automated MLE fitting algorithms for
continuous and discrete data using alternative models. This may
be relatively easy for exponential models because, like power-
law models, they possess a single parameter. Other alternative
models such as log-normal models and exponentially modified
power-law models may be computationally more difficult to
apply because they possess two parameters. Furthermore, once
two or three parameters are included in the model, the
number of possible models increases quickly and the additional
freedom supplied by additional parameters must be taken
into consideration. Therefore, these logistical issues should be
considered prior to performing comparisons against numerous
alternative models.

In addition to various doubly truncated distributions,
methods have been introduced to utilize mixtures of multiple
types of distributions (so called “cocktail models”) to fit power-
law and power-law-like data (Holden and Rajaraman, 2012;
van Rooij et al., 2013; Ma et al., 2015). This type of mixture
model could allow the user to fit a larger proportion of the
data than would be the case by attempting to fit regions of
the distribution that are purely power-law, as was done here.
However, as discussed above, the extra freedom associated with
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additional free parameters must be accounted for when using
these methods.

A potential criticism of the p-value method for detecting a
power-laws that was utilized herein and elsewhere (Clauset et al.,
2009; Deluca and Corral, 2013; Alstott et al., 2014) is the role
played by the number of samples in the distribution. Simply put,
increasing the number of samples makes it harder to accept data
as being power-law (easier to reject the power-law hypothesis).
As the number of samples increases, small fluctuations away from
power law become larger in the KS-statistic value relative to noise.
Therefore, this p-value method does not lend itself to testing fit
ranges via bootstrap sub-sampling, for instance. One possible
method to address this sample size effect is to develop a different
method for comparing empirical distributions to the power-law
fits produced by MLE. Perhaps something like a weighted R2-
value could be developed. Then, R2-values for alternative or null
models could be compared to the R2 for the real data. However,
how to properly weight the data in the R2 calculation remains
unclear. Still, we believe this is a promising approach andwe hope
to pursue it in the future.

3.4. Software
The NCC MATLAB toolbox (see Supplementary Material,
Timme, 2016) contains numerous functions to perform power-
law fitting analyses. The functions in the toolbox can be
generally divided into three types: specialized functions, macros,
and demonstration scripts. We will discuss the functions
in the general order which the analysis is presented above
with demonstration scripts discussed with their corresponding
functions.

The doubly truncated MLE power-law fit of continuous
(methodology introduced by Deluca and Corral, 2013) or
discrete data with known minimum and maximum truncation
points is performed with the function plmle:

» x = gendata(10000, {’powerlaw’, 1.5}); %

Generate random data

» tau = plmle(x); % Perform the fit assuming no

truncation

The function plmle allows for variable double truncation,
variable search range for the exponent τ (including 0 <

τ ≤ 1), and for variable precision in the exponent solution
(thereby controlling the stop criterion for the lattice search). The
variable precision controls the stop criterion for the lattice search
algorithm discussed above.

In order to compare the functionality of existing tools and
the NCC Toolbox, we tested the performance of the plmle
function against the corresponding function (plfit) from
Clauset et al. (2009) in MATLAB. We generated 10 sets of 104

power-law distributed data points (τ = 2) using the randht
function from Clauset et al. (2009) and discretized them by
rounding. On average, plfit took 33.5 s to fit each untruncated
data set, whereas plmle took 0.1 s. Both functions performed
significantly better when continuous data was used. On average,
plfit took 0.013 s to fit each untruncated data set, whereas
plmle took 0.005 s. This test was performed on a Windows

laptop (64-bit) with a standard quadcore processor. We believe
this substantial difference in computation time is due to the
use of the lattice search algorithm in plmle. We were unable
to compare performance on doubly truncated power-law data
because plfit is unable to fit doubly truncated power-law data.

To aid with visualization of data, the function plplottool
can be used to calculate and plot histograms for continuous
or discrete data on log-log axes. It can also be used to plot
continuous or discrete doubly truncated power-law fits. It allows
the user to select the size of logarithmic bins for continuous data
or when binning discrete data. It also allows the user to control
numerous aspects of the appearance of the plot and it outputs
data in an easy format for plotting in other applications.

» x = gendata(10000, {’powerlaw’, 1.5}); %

Generate random data

» tau = plmle(x); % Perform the fit assuming no

truncation

» % Set fit parameters

» fitParams = struct; fitParams.tau = tau;

» plotdata = plplottool(x,’fitParams’,fitParams);

% Plot

Many aspects of the functionality of plplottool are
demonstrated in the script demoplotting:

» demoplotting

The p-value calculation used to determine if a segment of data is
fit by a power-law is carried out using the function pvcalc:

» x = gendata(10000, {’powerlaw’, 1.5}); %

Generate random data

» tau = plmle(x, ’xmin’, 10, ’xmax’, 50); %

Fit for one section of data

» p = pvcalc(x, tau, ’xmin’, 10, ’xmax’, 50); %

Perform p -value calculation

In pvcalc, the user can control the number of random data
sets that are generated, a threshold for what p-value to consider
acceptable, and a threshold to halt the computation should the
likelihood of finding meeting the p-value threshold be too low.
Furthermore, pvcalc can return the standard deviation of the
exponents from the power-law model fits used to calculate the
p-value. This standard deviation can be used as a measure of
the error of the exponent of the original fit (Deluca and Corral,
2013). Several features of pvcalc and its overall performance
are demonstrated in the script demotruncdist:

» demotruncdist

The function plparams carries out a search of the fit ranges to
find the largest range that can be fit by a power-law:

» % Generate random data with a power-law region

» x = gendata(100000, {’truncated_powerlaw’,

[1.5, 0.125, 10, 75]});
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» [tau, xmin, xmax] = plparams(x) % Find the

power-law region

» % Plot the results

» fitParams = struct;

» fitParams.tau = tau; fitParams.xmin = xmin;

fitParams.xmax = xmax;

» plplottool(x,’fitParams’,fitParams)

The plparams function allows the user to control the number
of power-law models to generate in calculating the p-value, the p-
value threshold for accepting a region as being fit by a power-law,
and the likelihood threshold to cease p-value calculation early to
save computation time.

The fits of the avalanche size given duration data is performed
by the function sizegivdurwls:

» load sample_data.mat % Load the data

» Av = avprops(asdf2); % Find the avalanches

» % Perform the size given duration fit and plot

(see Figure 5)

» SNZ = sizegivdurwls(Av.size, Av.duration,

’durmin’, 4, ’durmax’, 22, ’plot’)

Note that the fit regions (minimum and maximum duration) are
set via minimum duration and minimum occurrence cuts that
can be controlled by the user. The function sizegivdurwls is
also capable of returning the error in the fit exponent via the use
of the standard Matlab function lscov for the least squares fitting
algorithm.

Any type of power-law analysis discussed above can be carried
out using the avpropvals function:

» load sample_data.mat % Load the data

» Av = avprops(asdf2); % Find the avalanches

» % Perform the avalanche size fit (see Figure 2

without cuts)

» [tau, xmin, xmax] = avpropvals(Av.size, ’size’,

’plot’);

» % Perform the average size given duration fit

» [SNZ, xmin, xmax] = avpropvals({Av.size,

Av.duration}, ’sizgivdur’);

All of the power-law fitting functionality discussed above is
demonstrated in the script demoempdata:

» demoempdata

Note that demoempdata also demonstrates shape collapse
analyses discussed below.

Finally, we include the function randomizeasdf2 to
produce randomized null model data sets for comparison to
results from real data:

» load sample_data.mat % Load the data

» % Jitter the spikes using a normal distribution

with std = 20 ms

» randasdf2 = randomizeasdf2(asdf2,’jitter’,

’stdtime’,20);

» Av = avprops(asdf2); randAv =

avprops(randasdf2);

» plplottool({Av.size; randAv.size});

The function randomizeasdf2 is capable of jittering,
swapping, Poisson randomizing, and wrapping asdf2 format
data. The user can control the standard deviation of the jittering
distribution.

4. SHAPE COLLAPSE

4.1. Background
If a neural system is in a critical state, in addition to
exhibiting power-law size and duration distributions, the mean
temporal profiles of avalanches should be identical across
scales (Friedman et al., 2012). In other words, the profiles
(Figures 1C, 6A) of long duration avalanches should have the
same scaled mean shape as short avalanches . This phenomenon
is also referred to as “shape collapse.” Specifically, the mean
number of spiking neurons (s) at time t in an avalanche of
duration T is related to the universal scaling function for the
avalanche temporal profile F via Equation (13) (Friedman et al.,
2012).

s(t,T) ∝ TγF(t/T) (13)

In Equation (13), γ is the scaling parameter that controls
how much larger in size long duration avalanches are than
short duration avalanches. Therefore, if the correct scaling
parameter γ is chosen and if the system is close to criticality,
when plotted on a scaled duration (i.e., t/T) avalanches of all
durations should produce the same mean profile when scaled via
s(t,T)T−γ.

Using Equations (3, 13, and 14), it can be shown (Friedman
et al., 2012) that 1/σνz (see Equation 3) is related to the shape
collapse scaling parameter γ via Equation (15).

〈S〉(T) =

∫ T

0
s(t,T)dt (14)

γ =
1

σνz
− 1 (15)

Therefore, it is possible to measure 1/σνz using both the shape
collapse and the average size given duration. The comparison
between these values - which should be identical if the system
is truly poised at a critical point - can be an important
check of the criticality hypothesis. Note, for instance, in the
sample model data set provided in the software toolbox, the
average size given duration analysis produced 1/σνz = 1.503
(Figure 5) and the shape collapse analysis produced 1/σνz =

1.498 (see below, Figure 6E). This small difference of 0.3%
is highly relevant for the criticality analysis in this model
system.

While the shape collapse analysis has been applied previously
to neural data (Friedman et al., 2012; Priesemann et al.,
2013), we improved upon the methodology of previous analyses
by automating the scaling parameter search process and
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A
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FIGURE 6 | Shape collapse calculation algorithm. (A) Raw avalanche shapes are found by averaging the profile of all avalanches with a given duration. Only

durations longer than three and with at least 20 examples were analyzed. In previous analyses (Friedman et al., 2012), (B) three avalanches are manually selected and

scaled to uniform length (colors correspond to unscaled avalanches in A), then (C) the scaling parameter is manually adjusted until the shapes line up (Note, the same

scaling is used in C,E). In the new method introduced herein, (D) all of the avalanches are scaled to a uniform length, each avalanche is linearly interpolated at 1000

points, and the variance is calculated (Standard deviation (blue fringe) shown instead of variance to make the error visible). (E) Then, the scaling parameter is found

that minimizes the variance and the avalanches are fit (yellow dashed line) using a quadratic polynomial. Note, using the shape collapse analysis, we found

1/σνz = 1.498. Using the average size given duration fit, we found 1/σνz = 1.503 (Figure 5). This represents a difference of 0.3%. The data for this explanatory figure

was taken from the cortical branching model.

by utilizing many more avalanche profiles. Previous shape
collapses were performed manually and only included ∼3
unique durations (Friedman et al., 2012) (Figure 6B). This
was especially problematic given that the definition of the
“good” shape collapse is very subjective and essentially relies
on the researcher’s opinion as to whether a few unique
durations can be scaled to line up on top of each other
(Figure 6C). Our shape collapse method quantified the quality
of the shape collapse and automatically found the scaling
parameter that produced the best possible collapse. Furthermore,
it quantified the shape of the resulting collapse. Therefore,
we did not assess if the data exhibited shape collapse, as has
been done previously in a qualitative sense (Friedman et al.,
2012), because developing a quantifiable method to determine
if a particular data set exhibits shape collapse has proven
difficult (though see Shaukat and Thivierge, 2016 for a recent
attempt to do so). Rather, we feel that it is more appropriate
to apply the shape collapse algorithm to the avalanches
and interpret the resulting scaling parameter and shape
parameters.

4.2. Improvements
Our shape collapse algorithm functioned as follows: We first
removed avalanches with durations less than 4 and avalanches
that occurred less than 20 times in a recording. We eliminated
short avalanches because mean profiles for avalanches with
durations less than 4 were only defined at 3 or fewer points,
making the shape of the avalanche difficult to interpret. We
eliminated avalanche durations with less than 20 occurrences
to reduce the error of the mean size values for each point in
the avalanche. Note that these were identical to the cuts applied
to the avalanches during the power-law fitting analysis (see
Section 3).

After applying cuts to the data, we calculated the average
avalanche profile for each unique duration (Figure 6A). We then
scaled all durations to length 1 (i.e., t/T; Figure 6D). Next,
we linearly interpolated each avalanche at 1000 points along
the scaled duration and we calculated the variance across the
avalanche profiles at the interpolated points. We then calculated
the shape collapse error as the mean variance divided by the
square span of the avalanche shapes, where the span equaled the
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maximum profile value minus the minimum profile value. We
then performed an automated lattice search of scaling parameter
values to find the scaling parameter that minimized the shape
collapse error (Figure 6E). The lattice search began by searching
the interval 1 ≤ γ ≤ 5 at increments of 0.1. The lattice
search proceeded to a precision of 10−3 via three steps (identical
methodology to the power-law MLE exponent lattice search ; see
Section 3.2).

Following the automated shape collapse, we fit the scaled
avalanches (using the 1000 linearly interpolated points) with a
quadratic polynomial using least squares fitting via the standard
Matlab function polyfit (ffit(t/T)) (Figure 6E). We then
calculated the absolute curvature of the fit (Equation 16) at each
interpolated point.

c(t/T) =
|f ′′
fit
(t/T)|

(1+ f ′
fit
(t/T)2)3/2

(16)

We found it useful to quote the average absolute curvature to
quantify the shape of the collapse. It is possible for avalanches
to be flat and still produce data collapses with meaningful scaling
parameters, but we wished to be able to quantify the flatness of
the shape collapses. Note that avalanches could produce non-
symmetric shapes or shapes better fit by a different function.
Though, in our experience with neural avalanches, quadratic fits
generally function well and lend themselves easily to a calculation
of the curvature. We suggest that other researchers consider
whether another function would be a more appropriate fit for
their system.

4.3. Discussion
Our shape collapse method represents a significant improvement
over existing shape collapse analysis methods because it is
automated, it takes many avalanches into account, and it is
quantitative. Still, we were unable to develop a method that could
determine when a given data set exhibited shape collapse or to
produce a quantifiable metric that could be used to judge the
quality of the fit. We attempted to quantify the quality of the
shape collapse itself by examining the shape collapse error values.
However, we found that the shape collapse error value itself was
not easy to compare between data sets, primarily due to the
normalization of the error by the span of the avalanches. The
span was a useful normalization factor within a data set because
it set a scale for the avalanches that was unbiased by the scaling
parameter. Other normalization metrics, such as the mean value
of the avalanches, were found to produce unsatisfactory shape
collapses due to biases with the scaling parameter. However,
the span value was extremely noisy across data sets because it
depended primarily on the highest and lowest sampled avalanche
duration that survived the occurrence cuts.

Recently, a new method was introduced to quantify the
quality of a shape collapse (Shaukat and Thivierge, 2016). This
method used filtering operations to smooth shapes, a time
rescaling, and an F-test to determine if the shapes reliably
overlapped under permutations. However, to the best of our
understanding, that method is unable to automatically perform
the shape collapse or measure the scaling parameter, which are

essential components of the shape collapse analysis. Furthermore,
the methods introduced in Shaukat and Thivierge (2016) are
significantly more complicated than the method discussed in
this paper. In the future, we hope to develop better methods to
quantify the quality of the shape collapse.

4.4. Software
The NCC MATLAB toolbox (see Supplementary Material,
Timme, 2016) contains functions to perform the shape collapse
analyses. First, avalanche profiles are found by averaging the
shapes of all avalanches with the same durations via the function
avgshapes:

» load sample_data.mat % Load the data

» Av = avprops(asdf2); % Find the avalanches

» avgProfiles = avgshapes(Av.shape, Av.duration,

’cutoffs’, 4, 20);

The avgshapes function allows the user to select from
numerous methods for limiting which duration avalanches are
considered, include a minimum duration cut (e.g., 4) and a
minimum occurrence cut (e.g., 20), as shown above.

Next, the shape collapse is performed by the function
avshapecollapse to yield a value for 1/σνz (see Figure 6E):

» [SNZsc, secondDrv, range, errors] =

avshapecollapse(avgProfiles, ’plot’);

When performing the shape collapse withavshapecollapse,
the user can vary the precision of the lattice search goal (i.e.,
the stop criterion), the bounds for the exponent search, and
the number of interpolation points along the average avalanche
profiles.

The error in the shape collapse exponent can be estimated
with the function avshapecollapsestd:

» sigmaSNZsc = avshapecollapsestd(avgProfiles);

The error estimate for the shape collapse exponent is
calculated by a bootstrap routine of sampling the avalanches,
performing the collapse, and calculating the standard deviation
of the resulting shape collapse exponents. The function
avshapecollapsestd allows for the same user controlled
parameters as avshapecollapse, as well as user control over
the number of samples of the average avalanche profiles and the
number of sampling trials to perform.

Finally, along with the power-law fitting routines discussed
above, the shape collapse routine is demonstrated in the script
demoempdata:

» demoempdata

5. COMPLEXITY

5.1. Background
Our calculation of complexity closely followed the original
description in Tononi et al. (1994), with a few slight alterations.
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Our primary contribution to the complexity calculation was
a system state sub-sampling bias correction algorithm not
previously described in the literature, to the best of our
knowledge. Before discussing this improvement, we will first
discuss the basic complexity calculation itself. We calculated the
complexity in a system of N spiking neurons (call this system X).
We were able to exploit the discrete nature of the neural variables
because we focused on the complexity of a system of neurons,
though a system of electrodes recording LFP times could also
be analyzed using these methods. Other studies have measured
neural complexity in systems with continuous variables and
require additional attention (Tononi et al., 1994; van Putten and
Stam, 2001; Burgess et al., 2003; van Cappellen vanWalsum et al.,
2003). The entropy of a system of N spiking neurons is given by
Equation (17) (Cover and Thomas, 2006).

H(X) = −
∑

i

p(xi) log(p(xi)) (17)

In Equation (17), xi is a joint state of all N neurons at a given
time bin and the base of the logarithm is 2 to yield information
results in units of bits. In our analysis, the probability of a
given joint state of neurons p(xi) was found by counting the
number of occurrences of a given state throughout a recording
and dividing by the total number of states. We assumed the
probability distributions p(xi) were stationary throughout the
recording.

By comparing the joint entropy of a group of neurons to the
sum of their individual entropies, it is possible to measure the
degree to which the activities of the neurons are coordinated.
This measure is referred to as the integration (the integration
has previously been referred to as the total correlationWatanabe,
1960; Tononi et al., 1994; Timme et al., 2014). When considering
a subset of neurons, we note the jth unique set of k neurons as
Xk
j . So, X

1
j would refer to the j

th neuron alone, but X3
j would refer

to the jth unique set of three neurons. Using this notation, the
integration of the jth set of k neurons is given by Equation (18).

I(Xk
j ) =





∑

j′∈k

H(X1
j′ )



−H(Xk
j ) (18)

Using the integration, the complexity is given by Equation (19)
(Tononi et al., 1994; van Putten and Stam, 2001).

CN(X) =
1

N

N
∑

k= 2

[(

k− 1

N − 1

)

I(X)− 〈I(Xk
j )〉j

]

(19)

In the data analysis, the average subset integration (〈I(Xk
j )〉j)

was calculated at each possible value of k from 2 to N. Given
the large number of permutations for most values of k for large
numbers ofN, it was often not possible to exhaustively sample all
permutations (i.e., all unique sets of k variables). If the number of
possible permutations was less than or equal to 100, all possible
permutations were exhaustively calculated and averaged. In all
other cases, 100 permutations were randomly chosen and the

integration for these subsets were averaged. These calculations
yielded subset average integration curves for all values of k.
The complexity is then the difference between the integration
curves across all subset sizes and the linear approximation for the
integration curve based on the integration for the whole system,
normalized by the total number of neurons (Equation 19).

The complexity as expressed in Equation (19) can be difficult
to interpret. Therefore, it is helpful to evaluate the complexity
in a simple system such as a small chain model (see Section
2.3, Figure 7). Complexity requires some degree of coordinated
variability across many scales in the system. In Figure 7, we show
three types of models: a random model, a complex model, and
an ordered model. The behaviors of the models are apparent
from a brief segment of representative spike rasters (Figure 7A).
The random data contain no interactions, while the ordered data
contain no variability. The complex data show some balance
between these states. When the integration curves are plotted
(Figure 7B), the random data produce zero integration, while the
ordered data produce high integration. However, the complex
data produce a non-linear integration curve, suggesting varying
interactions across scales and non-zero complexity.

The model used to generate example results for Figure 7

was small and well defined (i.e., the precise joint probability
distributions were defined). Conversely, neural data typically
include many more variables and the joint probability
distribution must be estimated from available observations.
Unfortunately, these two realities of neural data (many variables
and limited observations) could produce sub-sampling bias
in the following sense. The integration calculation (Equation
18) requires comparisons between entropies of individual
variables and joint entropies of large sets of variables. These two
calculations experience very different levels of state sub-sampling
bias, thus making state sub-sampling bias in the integration
calculation likely for data sets with many variables (see below
for a demonstration of this effect). Previous analyses have dealt
with this issue by making assumptions about the underlying
structure of the data (e.g., converting neural signals to Gaussian
distributions Tononi et al., 1994).We sought a different approach
to address possible state sub-sampling bias.

5.2. Improvements
To test for the effects of state sub-sampling, we also calculated
the integration curves for randomized data. These randomized
data were created by randomly placing a neuron’s spikes with
equal likelihood at all time points. This process essentially
converted each neuron into a random Poisson process with
firing rate matching the original data. Using data from the
cortical branching model, we found that the integration was
non-zero for large subset sizes (Figure 8A). This contradicted
expectations because in a totally random system, the integration
should be zero. This effect was caused by sub-sampling of the
joint distribution p(xi). We can better understand this effect
by examining the integration. In Equation (18), the individual
entropies H(X1

j′ ) are relatively well sampled because they depend

on only individual binary neurons. However, the joint entropy
H(Xk

j ) is poorly sampled for large k. For instance, for a subset
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A B C

FIGURE 7 | Neural complexity. (A) Short segments of example spike rasters for three types of chain model data [see Section 2.3, c = 0 (random), c = 0.8

(complex), c = 1 (ordered)]. (B) Integration curves with linear approximations for different subset sizes. Note that random data shows no integration, while ordered

data shows high integration. Complex data shows high integration that varies non-linearly with subset size. (C) Complexity values. Only the complex data shows

non-zero complexity.

of k = 50 neurons, the system can occupy 250 ≈ 1015 possible
states, which cannot be experimentally sampled from a biological
system. This poor sampling leads to an underestimation of
the number of states available to the system, and therefore an
underestimation of the joint entropy of the system (H(Xk

j )). In

an attempt to correct for this sub-sampling bias, we calculated a
corrected integration by subtracting the randomized integration
from the original integration (Figure 8B, Equation 20).

〈I(Xk
j )〉j,Cor = 〈I(Xk

j )〉j,Real − 〈I(Xk
j )〉j,Rand (20)

When we attempted to calculate the complexity using the
corrected integration (note that I(X) = I(XN

1 )), we found that
some data sets produced corrected integration curves that were
concave down (i.e., negative second derivative in k) for high k
values. In a fully sampled system, the integration curves should
be uniformly concave up, so this behavior was an indication of
sub-sampling bias even when using the corrected integration.

To correct for sub-sampling bias in the corrected integration,
we used an automated method to find the first point (call it kmax)
on the corrected integration curve that produced the largest slope
line when connected to the point (k = 1, I = 0). To perform this
search, we utilized the standardMatlab function findpeaks. In
some cases, kmax was found to equal N. In other cases all values
with k > kmax were removed from the integration curve. It was
assumed that the complexity calculation could only be accurately
sampled up to size k = kmax. Furthermore, we normalized the

complexity by dividing by kmax. This method resulted in a new
corrected version of the complexity (Figure 8, Equation 21).

CN,Cor(X) =

1

kmax

kmax
∑

k= 1

[(

k − 1

kmax − 1

)

〈I(X
kmax
j )〉j,Cor − 〈I(Xk

j )〉j,Cor

]

(21)

In addition to utilizing the corrected complexity in Equation (21),
we also found it useful to only included time bins where at least
one neuron fired in the calculations. In other words, we found
it useful to calculate the complexity of the avalanches. We found
that this controlled for biases associated with different numbers
of avalanches in a data set.

5.3. Discussion
We would like to note that because neural avalanches
incorporate information about interactions through time, while
the complexity calculation does not, they are not trivially related.
For instance, a neural avalanche is defined in part by the number
of consecutive time bins during which activity was present
in the network. Conversely, the complexity calculation only
incorporates the total number of times a given state occurs in a
time series, not the order or temporal relationships between the
states.

While we feel our state sub-sampling correction algorithm is
a significant improvement over previous methods that require
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A B

FIGURE 8 | Complexity calculation algorithm. (A) Integration curves were calculated for each subset size for both real and randomized data. Frequently, the

randomized data produced non-zero integration curves, indicating the presence of state sub-sampling bias. (B) To account for the sub-sampling bias, we calculated

the corrected integration by subtracting the randomized integration curve from the real integration curve. In cases where the corrected integration curve was not

uniformally concave up due to sub-sampling, we utilized an automated method to apply a cut and thereby limit the system size based on the available data. The

complexity (Equation 21) is represented by the area between the linear approximation and the corrected integration curve. The data for this explanatory figure was

taken from the cortical branching model.

assumptions about the underlying data (Tononi et al., 1994)
or simply ignoring state sub-sampling, we recognize that this
method could still suffer from sub-sampling bias. The subject
of sub-sampling in entropy calculations has been addressed
previously (e.g., Strong et al., 1998; Nemenman et al., 2004),
but, to the best of our knowledge, no universal solution exists
to the sub-sampling problem in entropy calculations. A possible
alternative method would be to only consider subsets of size
k such that the number of possible states that the subset
could occupy would be much less than the total number of
observations. In other words, set kmax such that 2kmax ≪ Ntime.
This method would have the effect of restricting the analysis
to the left portion of the integration curve prior to where the
randomized integration curve deviates substantially from zero
(see Figure 8). We feel this would be a useful method, but we
note that it would require the choice of a parameter to set the
ratio of possible system states to the number of observed states.
Furthermore, the sub-sampling bias will probably be dependent
upon which neurons are selected for the subset, with some
low entropy sets not exhibiting sub-sampling bias, while other
high entropy sets exhibiting sub-sampling bias at smaller subset
sizes. The method we introduced automatically detects the point
where sub-sampling bias significantly impacts the integration
calculation in a parameter free fashion. In the future, we look
forward to developing improved methods for addressing state
sub-sampling in the complexity calculation.

5.4. Software
The NCC MATLAB toolbox (see Supplementary Material,
Timme, 2016) contains functions to perform the complexity
analyses. In general, the complexity analyses utilize raster
formatted data (see Section 2.4). Once the data is represented
as a raster, the complexity can be calculated with the function
complexity:

» load sample_data.mat; raster =

asdf2toraster(asdf2);

» % Perform the complexity analysis without the

sub-sampling correction

» Cn = complexity(raster, 100); % Use 100 samples

of j for each size k
» % Perform the complexity analysis with the

sub-sampling correction

» Cn = complexity(raster, 100, ’subsampcorrect’);

The full functionality of the complexity software is demonstrated
in the script democomplexity (see Figure 8):

» democomplexity

The simple chain model and the related complexity calculation
example shown in Figure 7 can be generated using the script
complexityexamples:

» complexityexamples

6. MAIN FINDINGS

In this work, we have described several advances in analyses
of power laws, neural criticality, and neural complexity. First,
we improved upon previous power-law fitting methods by
developing an automated method to find power-law regions
in probability distributions. This is especially relevant given
the possibility for biases on either end of a purported power-
law distribution. Second, we developed an automated method
for performing avalanche shape collapse. This is an important
contribution because it increases repeatability in shape collapse
analyses. Third, we developed new tools for measuring neural
complexity that account for state sub-sampling (i.e., short
recording lengths in comparison to the possible number of states
the system could occupy). Given the importance of quantifying
complex behavior and the reality of data gathering limitations,
these advances are noteworthy. Finally, all of the analyses
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described in this article can be carried out using the freely
available NCCMATLAB software toolbox.
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