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Extracellular ATP acts on the P2X family of ligand-gated ion channels and several

members of the P2Y family of G protein-coupled receptors to mediate intercellular

communication among many cell types including bone-forming osteoblasts. It is known

that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In

the current study, we investigated complex interactions within the P2 receptor network

using mathematical modeling. To characterize individual P2 receptors, we extracted data

from published studies of overexpressed human and rodent (rat and mouse) receptors

and fit their dependencies on ATP concentration using the Hill equation. Next, we

examined responses induced by an ensemble of endogenously expressed P2 receptors.

Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with

varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic

free calcium ([Ca2+]i) were monitored by confocal microscopy. Dependence of the

calcium response on ATP concentration exhibited a complex pattern that was not

explained by the simple addition of individual receptor responses. Fitting the experimental

data with a combination of Hill equations from individual receptors revealed that P2Y1

and P2X7 mediated the rise in [Ca2+]i at very low and high ATP concentrations,

respectively. Interestingly, to describe responses at intermediate ATP concentrations, we

had to assume that a receptor with a K1/2 in that range (e.g. P2Y4 or P2X5) exerts an

inhibitory effect. This study provides new insights into the interactions among individual

P2 receptors in producing an ensemble response to extracellular ATP.
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INTRODUCTION

Extracellular nucleotides, signaling via P2 receptors, participate in a wide range of biological
processes, including neurotransmission, exocrine and endocrine secretion, immune responses,
inflammation, pain, and platelet aggregation (Burnstock and Knight, 2004; Orriss et al., 2012).
Among the nucleotides, adenosine 5′-triphosphate (ATP) is found in prokaryotes, plants
and animals, where it is important for both intracellular and extracellular cell functions.
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Intracellular ATP is primarily utilized to drive energy-dependent
processes, such as active transport (Ataullakhanov and Vitvitsky,
2002). Extracellular ATP has been clearly established to play a
role in several biological processes, including the regulation of
epithelial cell responses (Schafer et al., 2003), neurotransmission
and secretion (Burnstock, 2007), the activation of platelets at sites
of vascular injury (Pederson et al., 1999), and bone homeostasis
(Weidema et al., 1997; Bowler et al., 2001; Grol et al., 2009; Orriss
et al., 2010). The release of ATP can be triggered by various
mechanical stimuli, such as shear stress, tension, and hydrostatic
pressure (Lazarowski, 2012). Once released into the extracellular
milieu, ATP acts on target cells and initiates intracellular
signaling through P2 receptors, which are subdivided into the
P2X family of ligand-gated ion channels and the P2Y family of
G protein-coupled receptors (North, 2002; von Kugelgen, 2006;
Orriss et al., 2012). Release of ATP in response to mechanical
stimulation, coupled with the presence of multiple P2 receptors
on bone cells, has led to the proposal that purinergic signaling
plays a key role in skeletal mechanotransduction (Dixon and
Sims, 2000).

Currently, seven P2X receptors (P2X1-7) and eight P2Y
receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14) have been
cloned and confirmed in mammals (Gallagher, 2004; Burnstock,
2007). ATP is the sole agonist for the functional homo- or
heterotrimeric channels formed by P2X subunits. Upon binding
of ATP, these channels change configuration, allowing the entry
of Ca2+ in addition to the movement of monovalent cations
such as Na+ and K+ (Coddou et al., 2011b). Among P2X
receptors, homomeric P2X6 channels were found to be silent as
no currents were evoked by ATP when P2X6 was expressed alone
(North, 2002; Coddou et al., 2011b).Most G protein-coupled P2Y
receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y13) are linked to
activation of phospholipase C, generation of inositol phosphates
and release of Ca2+ from intracellular stores (Kennedy et al.,
2000; Marteau et al., 2003; White et al., 2003). Depending on
the subtype, P2Y receptors can be activated physiologically by
ATP, ADP, UTP, UDP, and/or UDP-glucose; however, in the
present study, only ATP signaling was addressed. Of the eight
P2Y receptors, only P2Y6 and P2Y14 are not activated in the
presence of ATP.

Bone forming osteoblasts express at least seven different P2
receptor subtypes (P2X2, P2X5, P2X7, P2Y1, P2Y2, P2Y4, and
P2Y6; Orriss et al., 2012). Certain differences in expression
in rodent and human tissues can be noted. For instance,
the P2Y2 receptor was shown to be strongly expressed on
human osteoblasts, whereas P2Y1 receptors were predominant
on rat osteoblasts (Gallagher and Buckley, 2002). The functional
responses of individual receptors have been studied extensively
in vitro using heterologous expression techniques to focus
on a specific receptor while excluding contributions of others
(references in Tables 1, 2). However, less is known about the
interactions among endogenously expressed P2 receptors, which
determine the overall response to ATP physiologically and
pathologically.

The goal of this study was to use previously published
ATP dose-dependence data for individual P2 receptors to
gain insight into how these receptors might interact when

expressed together in an endogenous network of P2 receptors
present in the osteoblastic cell line MC3T3-E1. To do this,
we first summarized published data on the ATP concentration
dependency of individual P2 receptors. We then performed
detailed analysis of the dependence of calcium responses in
osteoblastic cells on extracellular ATP concentration. Finally, we
modeled the potential contribution of individual receptors to
ATP responses in osteoblastic cells endogenously expressing an
ensemble of P2 receptor subtypes.

MATERIALS AND METHODS

Cells and Cell Culture
The MC3T3-E1 osteoblast-like cell line, a non-transformed
clonal cell line originally established from newborn mouse
calvaria (Sudo et al., 1983), was from the American Type Culture
Collection (Rockville, MD, USA). Subclone 4 of MC3T3-E1 cells
was selected because these cells exhibit properties of osteoblasts,
including elevation of cyclic AMP in response to parathyroid
hormone. expression of transcripts for Runx2, bone sialoprotein,
and osteocalcin, and formation of mineralized nodules (Wang
et al., 1999). Importantly, MC3T3-E1 cells endogenously express
multiple subtypes of P2X and P2Y receptors (Gartland et al.,
2012; Grol et al., 2013; Xing et al., 2014). Functionally,
extracellular nucleotides acting through P2 receptors onMC3T3-
E1 cells have been reported to stimulate: cell proliferation
(Shimegi, 1996); prostaglandin release (Genetos et al., 2005); cell
metabolism (Grol et al., 2012); Ca2+-NFATc1 signaling (Grol
et al., 2013); and the Wnt/β-catenin signaling pathway (Grol
et al., 2016). Thus, the MC3T3-E1 cell line is an excellent system
for examining interactions among endogenously expressed P2
receptors in a physiologically relevant cell type. MC3T3-E1 cells
were maintained at 37◦C and 5% CO2 in α-minimum essential
medium, supplemented with 10% fetal bovine serum and
1% antibiotic solution (10,000U/mL penicillin, 10,000µg/mL
streptomycin, and 25µg/mL amphotericin B). All cell culture
reagents were from Life Technologies Inc. (Burlington, ON,
Canada).

Fluorescence Measurement of Cytosolic
Free Calcium Concentration ([Ca2+]i)
[Ca2+]i measurements used in the present study were
unpublished single-cell data from our previous work (Grol
et al., 2013). Briefly, MC3T3-E1 cells were plated at a density of
1.5 × 104 cells/cm2 on 35-mm glass-bottomed dishes (MatTek
Corporation, Ashland, MA, USA) in culture medium. After 2
days, cells were placed in serum-free medium and incubated
overnight. On the day of the experiment, cells were loaded with
the Ca2+-sensitive dye fluo-4 by incubation with fluo-4-AM
(2µg/mL) and 0.1% Pluronic F-127 (Molecular Probes, Life
Technologies) for 30–45min at 37◦C and 5% CO2. Medium was
then replaced with HEPES-buffered, bicarbonate-free α-MEM
supplemented with 1% antibiotic solution, and cells were
observed by live-cell confocal microscopy (model LSM 510; Carl
Zeiss Inc., Jena, Germany) at ∼28◦C using a Plan-Apochromat
40 × objective (1.2 NA; Carl Zeiss Inc.) with 488 nm Ar+ ion
laser excitation. Images were captured at 500–550 emission
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TABLE 1 | P2X Receptors: data sources and fitting parameters.

P2 References Species Cell type Measurement method K1/2 (M) h R2

P2X1 Allsopp et al., 2011 Human Xenopus laevis

oocytes

Electrophysiology (1.3 ± 0.3) × 10−6 0.8 ± 0.2 0.97

Le et al., 1999 Rat Xenopus laevis

oocytes

Electrophysiology (8.2 ± 0.8) × 10−7 4.4 ± 0.9 0.99

P2X2 Roberts et al., 2008 Human Xenopus laevis

oocytes

Electrophysiology (1.2 ± 0.2) × 10−5 1.1 ± 0.2 0.99

Boue-Grabot et al., 2000 Rat Xenopus laevis

oocytes

Electrophysiology (8.2 ± 0.1) × 10−6 1.3 ± 0.3 0.99

P2X3 Garcia-Guzman et al., 1997b Human Xenopus laevis

oocytes

Electrophysiology (5.2 ± 0.6) × 10−7 1.1 ± 0.1 0.97

Lewis et al., 1995 Rat HEK293 Electrophysiology (3.4 ± 0.6) × 10−7 1.2 ± 0.2 0.99

P2X4 Garcia-Guzman et al., 1997a Human Xenopus laevis

oocytes

Electrophysiology (7.4 ± 0.4) × 10−6 1.4 ± 0.1 0.99

Garcia-Guzman et al., 1997a Rat HEK293 Electrophysiology (1.1 ± 0.1) × 10−5 1.3 ± 0.2 0.99

P2X5 Bo et al., 2003 Human HEK293 Electrophysiology (4.5 ± 0.1) × 10−6 1.5± 0.1 0.99

Garcia-Guzman et al., 1996 Rodent HEK293 Electrophysiology (7.8 ± 0.5) × 10−6 1.3 ± 0.1 0.99

P2X6 North, 2002 Human No currents were evoked by ATP when it was expressed in oocytes or HEK293 cells

Roberts et al., 2006 Rat Rodent P2X6 receptor failed to form functional homotrimeric channels

P2X7 Roger et al., 2010 Human HEK293 Electrophysiology (1.9 ± 0.3) × 10−3 2.0 ± 0.4 0.99

Surprenant et al., 1996 Rat HEK293 Electrophysiology (1.3 ± 0.3) × 10−4 2.2 ± 0.8 0.97

HEK293-Human Embryonic Kidney 293 cells.

TABLE 2 | P2Y Receptors: data sources and fitting parameters.

P2 References Species Cell type Measurement method K1/2 (M) h R2

P2Y1 Palmer et al., 1998 Human 1321N1 Cytosolic Ca2+ measurements (3.0 ± 0.3) × 10−7 0.9 ± 0.1 0.99

Vohringer et al., 2000 Rat HEK293 Cytosolic Ca2+ measurements (3 ± 1) × 10−7 0.5 ± 0.1 0.97

P2Y2 Nicholas et al., 1996 Human 1321N1 IP3 accumulation (2.0 ± 0.4) × 10−7 1.2 ± 0.3 0.98

Wildman et al., 2003 Rat Xenopus laevis oocytes Electrophysiology (2.9 ± 0.4) × 10−6 1.4 ± 0.2 0.99

P2Y4 Nicholas et al., 1996 Human 1321N1 IP3 accumulation (2.9 ± 0.2) × 10−5 1.3 ± 0.1 0.99

Wildman et al., 2003 Rat Xenopus laevis oocytes Electrophysiology (1.2 ± 0.2) × 10−6 1.0 ± 0.2 0.99

P2Y6 Nicholas et al., 1996 Human Human P2Y6 has not shown significant sensitivity to ATP

Lazarowski et al., 2001 Mouse Mouse P2Y6 has not shown significant sensitivity to ATP

P2Y11 Qi et al., 2001 Human 1321N1 IP3 accumulation (2.5 ± 0.1) × 10−6 1.1 ± 0.1 0.99

von Kugelgen, 2006 Rodent In rat and mouse, P2Y11 transcripts have not been found

P2Y12 von Kugelgen, 2006 Human Human P2Y12 receptor has not shown significant sensitivity to ATP

Ennion et al., 2004 Bovine Chromaffin cells Electrophysiology (3.7 ± 0.7) × 10−6 0.8 ± 0.1 0.99

P2Y13 Marteau et al., 2003 Human 1321N1 IP3 accumulation (5 ± 2) × 10−6 1.2 ± 0.4 0.97

Fumagalli et al., 2004 Rat Rat P2Y13 has not shown significant sensitivity to ATP

P2Y14 Chambers et al., 2000 Human Human P2Y14 has not shown significant sensitivity to ATP

von Kugelgen, 2006 Rodent Rat and mouse P2Y14 has not shown significant sensitivity to ATP

1321N1 human astrocytoma cells; HEK293 human embryonic kidney 293 cells; IP3 inositol 1,4,5-trisphosphate.
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every 500ms in time-lapse mode. Fluorescence intensity was
analyzed using LSM 510 software. Baseline fluorescence intensity
in different experiments varied between 23 ± 7 and 78 ± 43
FU. Within individual experiments basal fluorescence intensity
between different experimental conditions varied by 17 ±

8%. [Ca2+]i in individual cells was quantified as normalized
fluorescence intensity using the formula (F/Fo)−1, where F
was fluorescence intensity and Fo was the baseline fluorescence
observed prior to application of adenosine 5′-triphosphate
disodium salt (ATP, Sigma-Aldrich, St. Louis, MO, USA) to the
bath solution.

Data Analysis
Experimental data are presented as representative traces or
means ± standard deviation (SD) when the responses of
individual cells within a single experiment were analyzed or
standard error of the mean (SEM) when the results of a
number of independent experiments were analyzed. MATLAB
(The MathWorks Inc., Natick, MA, 2000) was used to extract
and analyze the calcium response data and to calculate the
average peak amplitude, duration and area under the curve
(Supplementary Matlab code 1). The outliers were identified
as points outside of mean ± 2 SD within the group of
cells exposed to the same ATP concentration within the same
experiment. Between 25% (for low ATP concentrations) and
10% (for high ATP concentrations) of cells were removed from
analysis as outliers. Data within an individual experiment was
normalized to maximum in each corresponding parameter to
account for biological and experimental variability. Comparative
analyses of outcomes using raw data and normalized data
demonstrated that only for the amplitude dose dependence was
statistical significance lost when raw data were used, due to
higher variability in this parameter. Differences were assessed
by ANOVA for multiple group comparisons, followed by Tukey
post-test, and accepted as statistically significant at p < 0.05. To
examine the contribution of individual receptors to the overall
calcium response, we used a linear combination approach, in
which the complex response was assumed to arise from the
sum of responses of individual receptors multiplied by the
respective coefficients. We defined the set of basic functions as
the concentration dependences of individual receptors obtained
from literature analysis, and assumed that a complex ATP-
dependence is a sum of basic functions executed with certain
weight (coefficients): f(x) = a1f1(x) + a2f2(x) + ...+ anfn(x),
where fi (i = 1, 2, . . . n) are the ATP concentration dependencies
of individual receptors and ai (i = 1, 2, . . . n) are coefficients that
roughly correspond to the efficiency of engagement of different
receptors as well as generally stimulatory (positive contribution)
or inhibitory (negative contribution) of individual functions
(receptors) to the overall response. The coefficients in the linear
combination function were then fitted numerically.

Fitting Methods
The data points of each receptor were extracted from indicated
published sources using software DataThief (B. Tummers,
DataThief III. 2006). These data were then fit to the Hill

equation using a non-linear least squares regression program in
MATLAB (Supplementary Matlab code 2). The Hill coefficient,
half maximum value and linear combination coefficients
(Supplementary Matlab code 3) were obtained from the
fitting, and are presented as best fit value ± 95% confidence
interval.

RESULTS

Characteristics of Individual P2 Receptors
Using previously published data, we first explored the
dependence on ATP concentration of responses induced by
each P2 receptor. Within each of the studies, an individual
P2X (Table 1) or P2Y (Table 2) receptor cDNA sequence was
isolated and overexpressed in various cell-types and their
dependency on ATP concentration was measured. The data from
the concentration dependence curves obtained in each study
were extracted, normalized to the maximal response and fitted to
the Hill equation (Figure 1; Evans et al., 1995):

θ =
Lh

Kh
1/2 + Lh

,

where θ is the fraction of activated receptors; L represents ligand
concentration; K1/2 is the ligand concentration at half maximal
response, and h is the Hill coefficient, describing cooperativity
(Figure 1, Tables 1, 2).

The [ATP] dependence of rodent and human receptors
overlapped for P2X2-5 receptors. Rodent and human P2X1
and P2Y1 receptors demonstrated similar K1/2 but different
cooperativity h, which was higher for rodent P2X1 and P2Y1
receptors. P2Y2, P2Y4, and P2X7 exhibited a difference in K1/2

between human and rodent receptors. Rodent P2X7 and P2Y4
were more sensitive to [ATP], whereas P2Y2 was less sensitive
compared to their human counterparts (Figure 1, Tables 1, 2).
When plotted together, the concentration dependence curves
for both human (Figure 2A) and rodent (Figure 2B) receptors
covered a wide range of [ATP]; however, rodent receptors were
positioned in a lower concentration range from 10−9 to 10−3

M, which was shifted to the right by approximately an order of
magnitude for human receptors, 10−8 to 10−2 M. To assess the
contributions of individual P2 receptors to ATP-induced calcium
responses in osteoblasts, we plotted [ATP]-dependencies of the
known ATP-responsive P2 receptors expressed by osteoblastic
cells P2X2,5,7 and P2Y1,2,4 (Figure 2C).

Experimental Data for the Dependence of
Ca2+ Responses on ATP Concentration
We used the murine osteoblast-like cell line MC3T3-E1,
which endogenously expresses an ensemble of P2X and P2Y
receptors (Grol et al., 2013). Cells were loaded with the
calcium-sensitive fluorescent probe fluo-4 and ATP-induced
changes in [Ca2+]i were assessed. Extracellular ATP from
1 nM to 1mM induced transient elevation of [Ca2+]i with
distinctive patterns at different concentrations (Figure 3A).
We characterized these ATP-induced calcium responses by
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FIGURE 1 | [ATP] sensitivity of P2X and P2Y receptor families. The experimental data points for human and rodent P2 receptors denoted by dots were

re-plotted from papers indicated in Tables 1, 2. P2Y11 transcripts have not been found in rodents; therefore, only human P2Y11 was used. The experimental data for

[ATP] dependence of human and rodent P2Y12 and rodent P2Y13 were not found in the literature, therefore bovine P2Y12 and human P2Y13 were used. The data

were normalized to the maximal response. [ATP] dependence for each receptor was fit with the Hill equation with R2 > 0.95, and shown in pink for human, blue for

rodent, and green for bovine receptors.

determining: (i) the peak amplitude; (ii) the width at half
maximum, which reflects the duration of the calcium response;
and (iii) the area under the curve, which reflects the
amount of calcium released over time (Figure 3B). We
analyzed individual responses of 21–61 cells to 8–11 different
concentrations of ATP in 8 independent experiments (2607 cells
in total).

An ATP Sensitivity Threshold was
Generated by P2Y1 (with Potential
Involvement of P2Y4) at Low
Concentrations of ATP

We first examined the dose dependence of calcium responses
at very low ATP concentrations (10−9–10−7 M). In these
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FIGURE 2 | P2 receptors are activated by a wide range of ATP

concentrations. ATP concentration dependence obtained from the fitting of

published data (Tables 1, 2) to the Hill equation for P2X receptors (in red) and

P2Y receptors (in light purple) were plotted for human (A) and rodent (B)

receptors. (C) P2 receptors known to be expressed on osteoblasts.

experiments, application of vehicle commonly induced low-
level responses likely attributable to mechanical stimulation
of osteoblasts due to fluid shear. Therefore, we chose three
experiments in which the cell responses to vehicle were absent
or low and analyzed them separately for the responses to ATP
in the range of 10−9–10−7M (Figure 4). We found that the
average amplitude of calcium responses exhibited a trend to
increase at 10−9M [ATP] and was significantly higher than
in vehicle-treated cells at 10−8M [ATP] (Figure 4A). The
average duration of the calcium signal did not change at these
concentrations (Figure 4B). The average area under the curve
increased significantly at 10−9M [ATP] compared to vehicle

and increased further at 10−8 compared to 10−9M [ATP]
(Figure 4C). Interestingly, variation in the amplitude of the
calcium response (reflected by the size of the error bars) was
greater than in the amount of calcium released estimated as
the area under the curve. When we compared the amplitude
and duration of calcium responses in individual cells, we found
a significant negative correlation between these parameters
(Figure 4D), suggesting that amplitude and duration are not
independent parameters, but rather exhibit a complex non-
linear correlation represented by an exponential regression line.
The best fit for amplitude [K1/2 = (7 ± 9) × 10−10 M,
h = 1 ± 1, R2 = 0.87] and area [K1/2 = (5 ± 7) ×

10−10 M, h = 0.8 ± 0.5, R2 = 0.83] curves were similar
(Figure 4E).

Since P2Y1 is the most sensitive ATP receptor, we first
assumed that P2Y1 is the only receptor contributing to the
calcium response in the 10−9–10−7M range, and fit the area
curve with the Hill equation of P2Y1. However, the sensitivity
of P2Y1 observed in overexpression experiments (Table 2) was
not sufficient to describe the responses to ATP at 10−9–10−8M
observed in MC3T3-E1 cells with an endogenous ensemble of P2
receptors (Figure 4F, red curve). One strategy to obtain a better
fit was to shift the curve up, assuming a constant extraneous
contribution to the response (such as mechanical perturbation of
the cell induced by application of the test solution: Grol et al.,
2013). The best fit available had R2 = 0.36 and required a
non-specific contribution of β = 0.43 (Figure 4F, blue curve).
As another possibility, we considered simultaneous activation
of P2Y1 and P2Y4, modeled as a linear combination of these
receptors: θ(x) = ky1 × P2Y1+ ky4 × P2Y4. Interestingly, the
best resulting fit had an R2 = 0.94 (Figure 4G) and required the
contribution of P2Y4 to be inhibitory.

A Second Threshold was Generated by
P2X7 at High Concentrations of ATP
We next examined ATP concentration dependence over 10−9–
10−2M in eight independent experiments usingMC3T3-E1 cells.
When the concentration of ATP was increased, an increase in
the amplitude of the calcium response was observed (Figure 5A).
The duration of the calcium signal increased only when
[ATP] exceeded 10−4 M, a concentration at which P2X7 is
activated (Figure 5B). The concentration dependence for the
area under the curve (characterizing the amount of calcium
released during the response) revealed the presence of a second
threshold—a sharp increase in the area between 10−4 and
10−3M ATP (Figure 5C). Similar to the low ATP concentration
range, variability in the area under the curve was noticeably
smaller when compared to variability in duration or amplitude.
Though the negative correlation between duration and amplitude
observed at low ATP was still significant at 10−6–10−4M [ATP]
(Figure 5D), it was completely lost at 10−3–10−2M [ATP]
(Figure 5E). The best fits for the duration curve (R2 = 0.96,
Figure 5F) and the area curve (R2 = 0.97, Figure 5G) exhibited
similar K1/2 of (6.0 ± 0.6) × 10−4M and (4.6 ± 0.3) × 10−4 M,
respectively. The same cooperativity of h = 4 ± 1 and h = 4 ±

1 was also observed for both. Whereas the P2X7 fit obtained for
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FIGURE 3 | ATP-induced Ca2+ responses in osteoblastic cells. MC3T3-E1 cells were loaded with the Ca2+ sensitive dye fluo-4 and changes in [Ca2+]i in

response to bath application of ATP were monitored by confocal microscopy. [Ca2+]i in individual cells was normalized as (F/F0)−1, where F was fluorescence

intensity and F0 was the baseline fluorescence observed prior to addition of ATP. (A) Representative calcium responses from osteoblasts exposed to 100 nM, 100µM

or 1mM ATP at the time indicated by the arrow. (B) The schematics illustrate parameters used to analyse the calcium response curves. Peak amplitude was quantified

as the maximal rise in [Ca2+]i. Duration of the response was quantified as the width at the half maximum. The amount of calcium released was calculated as the area

under the curve by taking the integral of the curve.

the overexpressed receptor was similar to our study, we observed
both higher K1/2 and higher cooperativity in our experimental
data (Figure 5H).

Complex Dependence of Amplitude on
Concentration in the Intermediate Range
of [ATP]
During the analysis, we noticed that the ATP concentration
dependence for amplitude of calcium responses averaged for
8 independent experiments was described by a continuously
increasing curve (Figure 5A). However, such a curve was not
representative of any of the 8 individual experiments, leading
us to conclude that, under this circumstance, average cannot
be used as a measure of central tendency for the underlying
ATP concentration dependence. In fact, within each individual
experiment the [ATP]-dependence of amplitude averaged for 11–
55 distinct cells exhibited significant non-linearity (3 examples
are given in Figures 6A–C). Specifically, we observed that the
amplitude decreased with increasing [ATP] and then increased
again, resulting in peaks in the intermediate range of [ATP].

In one out of eight independent experiments, there was only
one peak (Figure 6A); whereas, in the 7 others, there were at
least 2 such peaks (Figures 6B,C). Since the position of these
peaks within the ATP concentration dependence curves varied,
we analyzed each experiment for the ATP concentrations at
which we observed (a) the initial low response, (b) the first
peak, (c) the lowest value between the peaks, (d) the second
peak, and (e) the lowest value after the second peak, as well
as the relative amplitudes at each point (Figure 6D). We found
that such analyses revealed 2 distinct peaks in amplitude for
the calcium response—a lower peak at 180 ± 140 nM ATP
and a higher peak at 1.6 ± 1.2mM ATP. We removed the
highest [ATP] point from the concentration-dependence due
to potential non-specific effects of 10mM ATP (Grol et al.,
2013). The resulting relationship was modeled with a linear
combination of published [ATP] dependencies for P2Y1, P2Y4,
and P2X7: θ(x) = ky1 × P2Y1+ ky4× P2Y4+ kx7 × P2X7.
An excellent fit (R2 = 0.99) was given by the following linear
combination of constants: ky1 = 1.8 ± 0.4; ky4 = −1.4 ±

0.4; kx7 = 0.6 ± 0.2 (note that the contribution from P2Y4
was again inhibitory; Figure 6E). This curve could also be
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FIGURE 4 | Ca2+ responses induced by low [ATP]. Changes in [Ca2+]i induced by bath application of vehicle (0) or 10−9–10−7 M ATP to MC3T3-E1 cells loaded

with fluo-4 were analyzed. (A) [ATP] dependence of average peak amplitude. (B) [ATP] dependence of average response duration. (C) [ATP] dependence of average

area under the curve. For (A–C), data are means ± SEM, normalized to the maximal amplitude (A), duration (B) or area under the curve (C) (maximal response = 1)

within an experiment, n = 3 independent experiments, 17–35 cells per condition in each experiment. The differences were analyzed by ANOVA (P-value given on the

top of the graph) followed by Tukey post-test, *p < 0.05; **p < 0.01 compared to vehicle (0). (D) The correlation between the amplitude and duration of Ca2+

responses was examined in 563 individual cells exposed to 10−9–10−7 M ATP. (E) Similar best fit for [ATP] dependence for amplitude (white circles) and area (black

circles) of Ca2+ responses. (F) The [ATP] dependence for the area was fit with the Hill equation of P2Y1 based on published data yielding no acceptable fit (red curve).

The Hill equation of P2Y1 offset by a constant β is shown as the blue curve (ky1 = 1 ± 2, β = 0.4 ± 0.6, R2 = 0.36). (G) The [ATP] dependence for the area under

Ca2+ responses was fit with the linear combination of P2Y1 and P2Y4 functions (ky1 = 7 ± 1, ky4 = −25 ± 8, R2 = 0.94).

successfully described by a linear combination of P2Y1 and
P2X7 with inhibitory P2X5 (ky1 = 1.5 ± 0.3, kx5 = −1.4 ±

0.4, kx7 = 0.91 ± 0.2, R2 = 0.99) or inhibitory P2X2
(ky1 = 1.5 ± 0.3, kx2 = −1.4 ± 0.4, kx7 = 0.95 ± 0.3,
R2 = 0.99).

DISCUSSION

In this study, we examined the interactions among P2
receptors endogenously expressed by mouse osteoblastic cells
and how such interactions shape the profiles of transient Ca2+

elevations induced by ATP over a wide range of concentrations.
Experimentally, we examined Ca2+ elevations in response to

10−9–10−2M ATP and observed complex dependence on [ATP]
for amplitude, duration and area under the curve. In particular,
the area under the curve (reflecting the amount of calcium
released) demonstrated the presence of two thresholds—the first
at approximately 1 nM ATP and the second at approximately
1mM ATP. At low [ATP], an increase in the amplitude of
Ca2+ responses created a sensitivity threshold in the ATP
concentration dependence. At high [ATP], an increase in
the duration of response coincided with a second threshold.
Finally, the amplitude of calcium responses demonstrated
a complex two-peak pattern suggesting the presence of
desensitization at intermediate concentrations of ATP. To
explain these complex trends, we used published data for [ATP]
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FIGURE 5 | Ca2+ responses induced by high [ATP]. Changes in [Ca2+]i induced by bath application of 10−9–10−2 M ATP to MC3T3-E1 cells loaded with fluo-4

were analyzed. (A) [ATP] dependence of average peak amplitude. (B) [ATP] dependence of average response duration. (C) [ATP] dependence of average area under

calcium response. For (A–C) data are means ± SEM, n = 8 independent experiments, 11–55 cells per condition in each experiment. Differences (indicated by

horizontal lines) were analyzed by ANOVA and were significant for (B,C), p < 0.0001. Selected statistically significant differences are shown with asterisks that

demonstrate significant increases with an increase in applied [ATP] assessed by Tukey post-test (*p < 0.05, **p < 0.01). (D,E) The correlation between the amplitude

and duration of Ca2+ responses was examined in 520 individual cells exposed to 10−6–10−4 M ATP (D) and in 588 individual cells exposed to 10−3–10−2 M ATP

(E). (F) The [ATP] dependence for the duration of calcium response was fit with the Hill equation with K1/2 = (6.0 ± 0.6) × 10−4 M and h = 4 ± 1 and an offset of β =

0.13 ± 0.03. (G) The [ATP] dependence for the area under calcium response was fit with the Hill equation with K1/2 = (4.6 ± 0.3) × 10−4 M and h = 4 ± 1 with an

offset of β = 0.05 ± 0.02. (H) Comparison of published P2X7 fit (green line) obtained for the overexpressed receptor [K1/2 = (1.3 ± 0.3) × 10−4 M and h = 2.2 ± 0.8;

(Surprenant et al., 1996)] to the fits for average duration (red line, same as in F) and average area (blue line, same as in G) observed in our experimental data.
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FIGURE 6 | Potential inhibitory role of a P2 receptor activated at intermediate [ATP]. Amplitudes of Ca2+ responses induced by bath application of

10−9–10−2 M ATP to MC3T3-E1 cells loaded with fluo-4 were analyzed. (A–C) The examples of [ATP] dependencies of the peak amplitude of calcium response

observed in three independent experiments. Data are means ± SEM, normalized to the maximal response (maximal response = 1) within an experiment, n = 19–25

cells/concentration for (A), 11–27 cells/concentration for (B), 17–31 cells/concentration for (C). Differences (indicated by horizontal lines) were analyzed by ANOVA

and were significant for all cases, with p < 0.0001. Selected statistically significant differences are shown with asterisks that demonstrate significant decreases in

amplitude with an increase in applied [ATP] assessed by Tukey post-test (*p < 0.05, **p < 0.01). (D) Eight experiments were analyzed for ATP concentrations and

relative amplitudes of (i) the initial low response, (ii) the first peak, (iii) the lowest value between the peaks, (iv) the second peak, and (v) the lowest value after the

second peak. Means ± SEM for [ATP] and relative amplitudes were plotted. Differences (indicated by horizontal dashed lines) were analyzed by ANOVA (p < 0.0001),

followed by Tukey post-test; **p < 0.01. (E) The resulting concentration dependence was fit with the linear combination of P2Y1, P2Y4, and P2X7 functions (ky1 = 1.8

± 0.4; ky4 = −1.4± 0.4; kx7 = 0.6 ± 0.2, R2 = 0.99).

dependencies of individual P2 receptors. We found that a linear
combination of different receptor functions described calcium
responses over a wide range of [ATP], if one of the receptors
activated by mid-range concentrations of ATP was assumed
to exhibit an inhibitory effect on the ATP-induced calcium
response.

Sensitivity Threshold at Low
Concentrations of ATP
At low ATP concentrations from 1 to 100 nM, P2Y1 is the
predominant rodent receptor responsible for Ca2+ elevations.
Published data on the P2Y1 receptor reported a K1/2 of 50–
200 nM ATP (Palmer et al., 1998; Vohringer et al., 2000);
whereas, our experimental data on osteoblastic cells requires
P2Y1 to be more sensitive to ATP (K1/2 ∼ 1 nM). We
could partially account for this discrepancy by assuming that

mechanical perturbation contributed to the calcium response,

as previously described (Grol et al., 2013); however, the
fit obtained with such an assumption was not very good
(R2 = 0.36). On the other hand, when we considered the
simultaneous activation of P2Y1 and P2Y4, we achieved an
increase in the apparent sensitivity of P2Y1 to 1 nM ATP.
Interestingly, the increased sensitivity of P2Y1 was only possible
if we assumed an inhibitory effect of P2Y4 activation. P2Y4-

mediated inhibition permits the situation where the response
to P2Y1 stimulation is limited to an apparent maximum,
while the actual maximal response is greater. As a result,
the apparent K1/2 for P2Y1 is shifted to the left. Although
it is known that allosteric regulators can affect the apparent

K1/2 of receptor-ligand interactions (Hulme and Trevethick,
2010), we describe a mechanism in which the function of
an individual receptor is not affected, but the simultaneous
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activation of stimulatory and inhibitory pathways changes the
apparent K1/2. Importantly, such heterologous desensitization
allows for generation of a steep threshold, while at the same
time limiting themaximal level of stimulation. This phenomenon
may be relevant to diverse systems in which sharp response
thresholds are observed and multiple receptors are activated
by the same or similar ligands, such as eicosanoid signaling
(Rundhaug et al., 2011), odor recognition (Dewan et al., 2013),
and neurotransmission by nicotinic receptors (Exley and Cragg,
2008).

P2X7 is Responsible for Responses to ATP
at High Concentrations
Our study suggests that cell responses to high [ATP] above
200µM reflect activation of the P2X7 receptor. It was previously
known that only activation of P2X7 results in prolonged elevation
of calcium (Virginio et al., 1999; Naemsch et al., 2001; Grol
et al., 2012; Jiang et al., 2013). In P2X7 knockout mice, the Ca2+

response is transient, similar to the response induced by low
[ATP] (Grol et al., 2013). In the present study, we found that
duration of calcium responses was not dependent on [ATP] at
concentrations less than 10−4 M, but strongly increased at higher
concentrations with K1/2 of 600 ± 120µM. We also found that
the second threshold in area under the curve mirrored that of
the increase in duration. In our study, the observed sensitivity of
the P2X7 receptor was less than that reported for overexpressed
receptors, whereas the cooperativity was greater (Surprenant
et al., 1996; Roger et al., 2010). Millimolar levels of ATP
represent the normal intracellular concentration range for ATP
(Ataullakhanov and Vitvitsky, 2002). Therefore, extracellular
ATP in the millimolar range likely occurs following cell damage,
or in response to vigorous mechanical stimuli. It is well-known
that bone adapts to mechanical loading by increasing its mass.
In this regard, activation of P2X7 receptors by extracellular ATP
in the millimolar range has been proposed to stimulate anabolic
responses in bone (Ke et al., 2003; Li et al., 2005; Panupinthu
et al., 2008; Grol et al., 2013, 2016). Therefore, we propose that
the second, P2X7-mediated threshold in calcium responses to
ATP provides an anabolic signal following robust mechanical
stimulation as well as during the early stages of wound healing
following trauma.

Inhibitory Contribution of a P2 Receptor
with Mid-Range Sensitivity to ATP
We found that the amplitude of P2 receptor-induced calcium
responses exhibited an unexpected dependence on ATP
concentration. Specifically, a significant decrease in peak
amplitude could be observed with increases in [ATP] at mid-
range concentrations of 10−7–10−4 M. Agonist concentration
dependencies that could not be simply explained by known
P2 receptor characteristics have been described previously for
neuronal cells (Patel et al., 2001) as well as taste buds cells
(Fedorov et al., 2007). We found that, to describe this behavior
using only a linear combination of known receptors, it was
necessary to assume that one or more of the receptors activated

by mid-range ATP concentrations contributes negatively to the
overall response.

Although, none of the P2 receptors expressed individually
demonstrates inverse agonism in response to ATP, several
reasons for observing such behavior in naïve cells can be
suggested. First, different P2 receptors can form heteromers
with physiological and pharmacological properties distinct from
homomeric receptors (Surprenant et al., 2000; Coddou et al.,
2011b; Compan et al., 2012). Second, the availability of different
receptors can be regulated in complex manner. For example, it
was reported that P2X4 receptors undergo rapid internalization
in olfactory neurons, whereas P2X2 are not regulated by
translocation (Bobanovic et al., 2002). Third, simultaneous
activation of several receptors may result in a crosstalk at
the level of signaling events, potentially altering responses of
some or all the receptors. In this regard, it was shown that
membrane depolarization (as induced by activation of P2X
receptors) can enhance P2Y-mediated Ca2+ responses, and that
voltage-related potentiation of the P2Y1 receptor has an inverse
relationship with agonist concentration (Gurung et al., 2008).
Fourth, endogenously expressed receptors may be modulated by
allosteric regulators or signaling pathways absent when the same
receptor is expressed in heterologous systems (Coddou et al.,
2011a). Finally, the possibility of a novel receptor subtype or
splice variant cannot be discarded.

Notwithstanding the mechanism underlying this effect, our
data suggest that the role of at least one of the P2 receptors
active at 10−7–10−4M [ATP] is to limit the responsiveness of the
system over this range of ATP concentrations. Importantly, such
behavior would result in a desensitization phase, and facilitate
formation of a sharp threshold in response to ATP between 10−4

and 10−3 M.

Study Limitations
An important limitation of the current study is the application
of P2 receptor characteristics obtained in studies of individual
receptors in one cell type to the analysis of complex responses
in another cell type. The following important assumptions were
made during the initial stages of analysis. (1) We assumed
that overexpression of an individual receptor in cells that do
not normally express this receptor does not fundamentally
change the characteristics of this receptor. While this may not
be true, evidence of the contrary (that characteristics of P2
receptors change when overexpressed) has not yet been reported.
Moreover, at this moment, there is no reliable way to obtain
the concentration dependences of individual P2 receptors in an
endogenous system due to overlapping action of the same ligand
on different receptors. Therefore, we believe this assumption is
important and unavoidable at the moment. (2) We assumed that
characteristics of the receptors in related species of rodents (mice
and rats) are similar and used them to model responses in a
mouse cell line.While receptor characteristics may differ between
mice and rats, limited data is available comparing responses. Of
interest, we found that when receptors of rodent and human
origin are compared, 4 out of 9 receptors have almost identical
ATP concentration dependences, and 2 more have similar ATP
concentration dependences (Figure 1). More studies are required
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to fully understand the differences between P2 receptors of
different species.

CONCLUSION

Taken together, our data suggest that, rather than having distinct
individual roles, P2 receptors work in concert with both additive
and inhibitory interactions. The ensemble yields a complex
pattern of dependence on ATP concentration. This relationship is
characterized by the presence of two thresholds: the first (at lower
concentrations of ATP) likely relevant for tissue maintenance in
response to moderate mechanical stimulation, and the second (at
high concentrations of ATP) for anabolic responses to stronger
mechanical stimulation and tissue damage. In mouse models,
deficiency of individual P2 receptors studied to date have resulted
in a bone phenotype; however, each of the reported phenotypes
demonstrate unique characteristics, for example, reduced bone
mass in P2Y1 and P2X7 receptor knockout mice, increased
bone mass in P2Y2 and P2Y6 receptor knockout mice, and
lower trabecular bone volume and increased cortical thickness
in P2Y13 receptor knockout mice (Wang et al., 2013). In future
studies, it will be important to examine how dependence on
ATP concentration is affected by the absence of individual
P2 receptors. Moreover, it would be interesting to test for
heterologous desensitization among P2 receptors, as predicted by
our model. Such information may allow the design of targeted
experiments aimed at determining how change in overall [ATP]
dependence affects bone adaptation to low, intermediate or high
mechanical strains.
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