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There is growing evidence that the microenvironment surrounding a tumor plays a

special role in cancer development and cancer therapeutic resistance. Tumors arise

from the dysregulation and alteration of both the malignant cells and their environment.

By providing tumor-repressing signals, the microenvironment can impose and sustain

normal tissue architecture. Once tissue homeostasis is lost, the alteredmicroenvironment

can create a niche favoring the tumorigenic transformation process. A major challenge in

early breast cancer diagnosis is thus to show that these physiological and architectural

alterations can be detected with currently used screening techniques. In a recent study,

we used a 1D wavelet-based multi-scale method to analyze breast skin temperature

temporal fluctuations collected with an IR thermography camera in patients with breast

cancer. This study reveals that the multifractal complexity of temperature fluctuations

superimposed on cardiogenic and vasomotor perfusion oscillations observed in healthy

breasts is lost in malignant tumor foci in cancerous breasts. Here we use a 2D

wavelet-based multifractal method to analyze the spatial fluctuations of breast density in

the X-ray mammograms of the same panel of patients. As compared to the long-range

correlations and anti-correlations in roughness fluctuations, respectively observed in

dense and fatty breast areas, some significant change in the nature of breast density

fluctuations with some clear loss of correlations is detected in the neighborhood of

malignant tumors. This attests to some architectural disorganization that may deeply

affect heat transfer and related thermomechanics in breast tissues, corroborating the

change to homogeneous monofractal temperature fluctuations recorded in cancerous

breasts with the IR camera. These results open new perspectives in computer-aided

methods to assist in early breast cancer diagnosis.
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1. INTRODUCTION

The past 30 years have seen the emergence in cancer biology of
the concepts of local microenvironments and stem cell niches
not only as key regulators of tissue specificity, homeostasis
maintenance and tumor control, but also as active players in
cancer initiation and progression to metastasis (Bissell et al.,
2005; Bissell and Hines, 2011; Maguer-Satta, 2011; Lu et al.,
2012). Important progress was made in the understanding of
the permanent dialogue that exists between stem cells and
their microenvironment (Fuchs et al., 2004; Li and Li, 2006;
Moore and Lemischka, 2006; Morrison and Spradling, 2008).
The role of the niche in normal tissues is critical in regulating
asymmetric cell division and stem cell fate (Fuchs et al., 2004;
Morrison and Kimble, 2006; Ho and Wagner, 2007; Marthiens
et al., 2010). On the one hand, it participates to maintain stem
cell quiescence until self-renewal divisions required to sustain
the stem cell pool from exhaustion and alteration, and, when
needed, to facilitate the proliferation necessary to respond to
some physiological demand or injury (Morrison and Kimble,
2006;Morrison and Spradling, 2008; Trumpp et al., 2010). On the
other hand, it contributes to drive cell differentiation processes
during lineage specification and organ development (Ho and
Wagner, 2007; Marthiens et al., 2010; Trumpp et al., 2010). Upon
asymmetric division, cell commitment is distributed upon two
daughter cells; one of them keeps stem cell properties while
the other one is driven toward a more differentiated stage to
respond, match, and adapt to the surrounding tissue (Marthiens
et al., 2010). But an imbalance between stem cell activation
and differentiation can lead to the generation of damaged
stem cells by either overexpanding the stem cell pool or a
failure in stem cell differentiation (Demicheli, 2001; Bissell
et al., 2005; Bissell and Labarge, 2005; Flynn and Kaufman,
2007). In homeostatic conditions, the stromal environment
of the niche, including fibroblast, vasculature and immune
cells as well as interstitial extracellular matrix (ECM), can
biochemically and biomechanically control the so-called cancer
stem cells to maintain tissue architecture and integrity (Bissell
and Hines, 2011; Maguer-Satta, 2011; Lu et al., 2012). This
explains why many occult tumors can lie dormant or evolve
very slowly (Demicheli, 2001; Bissell et al., 2005; Bissell and
Labarge, 2005; Faraldo et al., 2005; Li and Neaves, 2006;
Moore and Lemischka, 2006; Flynn and Kaufman, 2007;
Tysnes and Bjerkvig, 2007). There is increasing evidence
that the destabilization of tissue homeostasis originates from
the alteration of the tumor microenvironment that not only
affects the behavior of cancer stem cells, stroma and various
epithelial cells, but also contributes to transform the niche
into a tumorigenic microenvironment that further facilitates
the process of oncogenic transformation, tissue invasion and
metastasis evasion during cancer progression (Bissell et al., 2005;
Lee and Herlyn, 2007; Rønnov-Jessen and Bissell, 2009; Bissell
and Hines, 2011; Maguer-Satta, 2011; Lu et al., 2012). By favoring
the survival and proliferation of cancer stem cells, this altered
cancer promoting environment can maintain the quiescence
of these cells and make them resistant to treatment, creating
the possibility of regenerating a tumor (Demicheli, 2001; Hall

et al., 2007; Besançon et al., 2009; Bissell and Hines, 2011;
Maguer-Satta, 2011). The ongoing progress in understanding
the fundamental role of cancer stem cells within their niche
raises very challenging issues in cancer assessment, diagnosis
and therapy. There are emerging strategies and recent clinical
trials relevant to microenvironmental therapies (Hall et al., 2007;
Besançon et al., 2009; Bissell and Hines, 2011; Maguer-Satta,
2011). In this work, we combine the analysis of dynamic IR
thermograms and X-ray mammograms to show that changes in
the environment of a malignant breast tumor can be detected
with commonly used non invasive screening techniques.

Breast cancer is one of the major causes of death among
women worldwide (Siegel et al., 2015). Clinical studies have
demonstrated that survival is significantly improved if the
breast anomalies are detected as early as possible (Lee, 2002).
Despite some criticism of the use of screening techniques
due to overdiagnosis (Jørgensen and Gøtzsche, 2009; Fenton
et al., 2011), early detection remains the best strategy for
improving prognosis and providing less invasive options for
both specific diagnosis and treatment (Ganesan et al., 2013;
Jalalian et al., 2013). In a preliminary study (Gerasimova
et al., 2013, 2014), we showed that skin temperature dynamics
recorded with an infrared (IR) camera displayed qualitative
changes around malignant breast tumors. Using a wavelet-based
time-frequency method, we demonstrated that temperature
temporal fluctuations superimposed on the cardiogenic and
vasomotor perfusion oscillations are not instrumental noise,
but contain physiological information that can be exploited to
anticipate the transition to malignancy. The observed drastic
simplification from multifractal (continuous change of statistics
across time-scales) to homogeneous monofractal (invariant
statistics across time-scales) skin temperature fluctuations in
malignant tumor foci, was hypothesized to be the signature
of blood vessels and other tissues showing signs of aberration
and architectural disintegration, likely affecting heat transfer
and related thermomechanics inside the breast. The aim
of the present study is to strengthen this interpretation
by showing that this disorganization of the breast tissue
architecture and vascular network in the environment of a
malignant tumor can also efficiently be detected with X-ray
mammography, the golden standard for breast cancer screening
detection (Nass et al., 2001; Bronzino, 2006). Using a wavelet-
based space-scale method (Arneodo et al., 2003), we show that
the long-range correlations and anti-correlations respectively
observed in the roughness fluctuations of the mammograms
of dense and fatty normal breasts, strikingly vanish in the
malignant tumor region. Note that most existing computer-
aided diagnostic (CAD) methods (Karahaliou et al., 2008; Ayer
et al., 2010; Tsai et al., 2011; Häberle et al., 2012; Meselhy
Eltoukhy et al., 2012) are designed for texture analysis or feature
extraction with the prerequisite that the background roughness
fluctuations of normal breast mammograms are homogeneous
and uncorrelated. In contrast, we propose characterizing
correlations in mammogram roughness fluctuations via the
estimate of a density fluctuation index H as an innovative and
effective discrimination method that will assist in early breast
cancer detection.
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2. METHODS OF ANALYSIS

The wavelet transform (WT) is a mathematical
microscope (Arneodo et al., 1988, 1995, 2008; Muzy et al.,
1991, 1994) suitable to the analysis of complex non-stationary
time-series, such as those found in genomics (Nicolay et al.,
2007; Arneodo et al., 2011; Audit et al., 2013) and physiological
systems (Ivanov et al., 1999, 2001; Goldberger et al., 2002;
Richard et al., 2015), thanks to its ability to be blind to low-
frequency trends in the analyzed signal 6(t). Its generalization
in two dimensions (2D) is used in image processing (Mallat,
1998; Arneodo et al., 2003, 2008; Antoine et al., 2008),
including applications in cellular biology (Khalil et al., 2007;
Snow et al., 2008; Goody et al., 2010; Grant et al., 2010) and
medicine (Kestener et al., 2001; Khalil et al., 2009; Batchelder
et al., 2014).

2.1. The 1D Wavelet Transform
(Time-Frequency Analysis)
The WT is a time-scale decomposition method which consists in
expanding signals in terms of wavelets constructed from a single
function, the “analyzing wavelet” ψ , by means of translations
and dilations. The WT of a real-valued function 6(t) is defined
as (Mallat, 1998)

Wψ [6](t0, a) =
1

a

∫ +∞

−∞

6(t)ψ(
t − t0

a
)dt , (1)

where t0 is a time parameter and a (> 0) a scale parameter
(inverse of frequency). By choosing a wavelet ψ whose n + 1
first moments are zero [

∫
tmψ(t)dt = 0, 0 ≤ m ≤ n], one

makes theWTmicroscope blind to order-n polynomial behavior,
a prerequisite for multifractal fluctuations analysis (Muzy et al.,
1991, 1994; Arneodo et al., 1995, 2008).

2.2. The 2D Wavelet Transform
(Space-Scale Analysis)
With an adapted analyzing wavelet, one can reformulate
Canny’s multiscale edge detection in terms of a 2D wavelet
transform (Mallat, 1998). The underlying strategy consists in
smoothing the discrete image data by convolving it with a filter
prior to computing the gradient of the smoothed image. Let us
define two wavelets as the partial derivatives with respect to x
and y of a 2D-smoothing function φ(x, y) (Mallat, 1998; Arneodo
et al., 2003):

ψ1(x, y) =
∂φ(x, y)

∂x
and ψ2(x, y) =

∂φ(x, y)

∂y
. (2)

TheWT of I(x, y) with respect toψ1 andψ2 has two components
and therefore can be expressed in a vectorial form:

Wψ [I](x0, a) =





Wψ1 [I] =
1
a2

∫
f (x)ψ1(

x−x0
a )d2x

Wψ2 [I] =
1
a2

∫
f (x)ψ2(

x−x0
a )d2x



 ,

= ∇{φx0,a ∗ I},

(3)

where x0 is a space parameter and a(> 0) a scale parameter. From
Equation (3), we can compute the modulus and argument of the
WT:

Mψ [I](x0, a) = [(Wψ1 [I](x0, a))
2 + (Wψ2 [I](x0, a))

2]1/2, (4)

and

Aψ [I](x0, a) = Arg[Wψ1 [I](x0, a)+ iWψ2 [I](x0, a)]. (5)

2.3. The Wavelet Transform Modulus
Maxima Method
The wavelet transform modulus maxima (WTMM) method
was originally developed to generalize box-counting
techniques (Arneodo et al., 1987) and to circumvent the
limitations of the structure function method to perform
multifractal analysis of 1D velocity signal in fully-developed
turbulence (Muzy et al., 1991, 1993, 1994; Bacry et al., 1993;
Arneodo et al., 1995). It proved to be a reliable method to
estimate scaling exponents and multifractal spectra (Muzy
et al., 1994; Delour et al., 2001; Audit et al., 2002). The WTMM
method was generalized in 2D for the multifractal analysis of
rough surfaces (Arneodo et al., 2000, 2003; Decoster et al., 2000;
Roux et al., 2000), and for the analysis of 3D scalar and vector
fields (Kestener and Arneodo, 2003, 2004; Arneodo et al., 2008).
Successful applications have already been reported in various
area of fundamental research (Muzy et al., 1994; Arneodo et al.,
1995, 2002, 2008, 2011). In the context of present study, the 1D
WTMMmethod demonstrated the multifractality in physiologic
dynamics and its breakdown with disease (Ivanov et al., 1999,
2001; Goldberger et al., 2002), whereas the 2D WTMM method
was used to detect microcalcifications and shown to have
great potential to assist in cancer diagnosis from digitized
mammograms (Kestener et al., 2001; Arneodo et al., 2003;
Batchelder et al., 2014).

In 1D, the WTMM method consists in computing the
WT skeleton defined, at each fixed scale a, by the local
maxima L(a) of the WT modulus M(t, a) = |Wψ (t, a)|.
These WTMM are positioned across scales on curves called
maxima lines (Figure S1). In 2D, these WTMM lie, for a given
scale, on connected chains called maxima chains (Figures S2A–
C). Considering the points along these maxima chains where
M(x, a) is locally maximum, we define the so-called WTMMM.
The WTMMM are then linked through scales to form the
WT skeleton (Figure S2D). Along these maxima lines the
WTMM (resp. WTMMM) behave as ah(t) (resp. ah(x)), where
h(t) (resp. h(x)) is the Hölder exponent characterizing the
singularity of 6 (resp. I) at time t (resp. position x) (Muzy et al.,
1994; Arneodo et al., 2003, 2008). The multifractal formalism
amounts to quantify statistically the contributions of each Hölder
exponent value via the computation of the singularity spectrum
defined as the fractal dimension D(h) of the set of points t (resp.
x) where h(t)(resp. h(x))= h. This spectrum can be derived from
the scaling behavior of partition functions defined in terms ofWT

Frontiers in Physiology | www.frontiersin.org 3 August 2016 | Volume 7 | Article 336

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Gerasimova-Chechkina et al. Multifractal Analysis of Thermograms and Mammograms

coefficients (Muzy et al., 1991, 1994; Arneodo et al., 1995, 2008,
2003):

Z(q, a) =
∑

l∈L(a)

M(·, a)q ∼ aτ (q), (6)

where q ∈ R. Then, from the scaling function τ (q), D(h) is
obtained by a Legendre transform:

D(h) = min
q

[qh− τ (q)]. (7)

In practice, to avoid instabilities in the estimation of the
singularity spectrum D(h) through the Legendre transform, we
instead compute the following expectation values (Muzy et al.,
1994; Arneodo et al., 1995, 2003)

h(q, a) =
∂

∂q
ln(Z(q, a)) =

∑

l∈L(a)

ln
(
M(·, a)Ŵ(q, l, a)

)
, (8)

and

D(q, a) = q
∂

∂q
ln(Z(q, a))− Z(q, a)

=
∑

l∈L(a)

Ŵ(q, l, a) ln
(
Ŵ(q, l, a)

)
, (9)

where Ŵ(q, l, a) =
M(·,a)q

Z(q,a)
corresponds to the Bolzmann

weight in the analogy that connects the multifractal formalism
to thermodynamics (Arneodo et al., 1995). Then, from the slopes
of h(q, a) and D(q, a) vs. ln a, we get h(q) and D(q), and in turn
the D(h) singularity spectrum as a curve parametrized by q.

2.4. Monofractal vs. Multifractal Functions
Homogeneous monofractal functions are functions with
singularities of unique Hölder exponent H. Their τ (q) spectrum
is a linear curve of slope H. Monofractal scaling indeed means
that the shape of the probability distribution function (pdf) of
rescaled wavelet coefficients (M(·, a)/aH) is independent of
the scale a: ρMa/aH (w) = ρ(w), where ρ(w) is a “universal”
pdf (Arneodo et al., 2002, 2011). A nonlinear τ (q) is the
signature of nonhomogeneous multifractal functions with
Hölder exponent h(t) (resp. h(x)) fluctuating over time t (Muzy
et al., 1991, 1994; Arneodo et al., 1995, 2008) [resp. over space
x (Arneodo et al., 2000, 2003; Decoster et al., 2000; Roux
et al., 2000)]. τ (q) data are generally well approximated by the
log-normal quadratic spectrum:

τ (q) = −c0 + c1q− c2q
2/2, (10)

where the coefficients cn > 0. The corresponding singularity
spectrum has a quadratic single-humped shape

D(h) = c0 − (h− c1)
2/2c2, (11)

where c0 = −τ (0) is the fractal dimension of the support of
singularities of 6 (resp. I), c1 is the value of h that maximizes
D(h) and the intermittency coefficient c2 (Delour et al., 2001)
characterizes the width of the D(h) spectrum as an indication of
a change in WT coefficient statistics across scales (Muzy et al.,
1991, 1994; Arneodo et al., 1995, 2002, 2003, 2008).

3. DESCRIPTION OF DATA

3.1. Study Design and Population
Subjects were recruited for the present study from Perm Region
Oncological Dispensary using procedures approved by the Local
Ethics Committe (Gileva et al., 2012). Patients gave informed
consent to participate in this study via recording IR thermograms
and X-ray mammograms of their two mammary glands: the
cancerous breast and the contralateral unaffected breast. The
thermography (resp. mammography) database included 33 (resp.
30 among these 33) females, aged 37–83 (average 57 years), who
all went through surgery to remove a histologically-confirmed
malignant tumor (invasive ductal and/or lobular cancer) a few
weeks after thermo-(mammo-)grams were recorded. The tumors
were found at depths varying from 1 to 12 cm into the tissue, with
a size (diameter) varying from 1.2 cm up to 6.5 cm (Table S1).

3.2. IR Thermography Imaging
Recording protocol was described in our preliminary
study (Gerasimova et al., 2014). The patient’s two breasts
were imaged with an InSb photovoltaic (PV) detector (Joro et al.,
2008). We performed imaging with the patient sitted with arms
down to avoid too much discomfort. Frontal images were taken
at a distance ∼ 1 m from the patient, with an environmental
room temperature ∼ 20 − 22 ◦C. The image frame rate was
50 Hz. During the 10 min immobile imaging period, we collected
30,000 256 × 320 pixel2 image frames at 14 bits on a computer
connected to the PV camera. We used skin surface markers as
reference points for low-frequency motion correction in the
analysis.

3.3. X-Ray Mammography
Themammographic procedure involved taking two X-ray images
of the (two) compressed breasts of each patient, the standard
medio-lateral oblique (MLO) and cranio-caudal (CC) views.
Spatial resolution of the images was 50µmper pixel. The ionizing
radiation dose was 0.4 mSv per patient.

3.4. Data Sampling
3.4.1. Thermograms

As commonly done for noise signals (Muzy et al., 1994; Audit
et al., 2002), and previously performed to analyze rainfall
time-series (Venugopal et al., 2006), the 1DWTMMmethod was
applied to the cumulative (or integral)6 of the temperature time-
series (Figure S1), using the second-order compactly supported

version ψ
(2)
(3)

of the Mexican hat (Roux et al., 1999) (see Figure S1

in (Gerasimova et al., 2014)). The singularities with possible
negative Hölder exponent −1 < h < 0, became singularities
with 0 < hc = h + 1 < 1 in the cumulative. We grouped
single-pixel temperature time-series (Figures S1A,B) into 8 × 8
pixel2 squares spanning 10 × 10 mm2 and covering the entire
breast (see Figures 1A,A′). The results thus correspond to
averaged partition functions and multifractal τ (q) (Equation 10)
and D(h) (Equation 11) spectra computed from the WT
skeleton (e.g., Figures S1E,F) of 64 cumulative temperature time-
series in these 8 × 8 subareas. For each breast analyzed, we have
color-coded these squares according to the diagnosis obtained
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FIGURE 1 | Wavelet-based multifractal segmentation of dynamic infrared thermograms and X-ray mammograms. Patient 20 (age 56): cancerous right

breast (A–C) and contralateral unaffected left breast (A′–C′). (A,A′) As estimated from the τ (q) spectrum of skin temperature temporal fluctuations computed with the

1D WTMM method (Figures 2D–F), 8× 8 pixel2 squares spanning 10× 10 mm2 were color coded according to monofractal (c2 < 0.03, red), multifractal (c2 ≥ 0.03,

blue) and no scaling (white) diagnostic, where c2 is the intermittency coefficient that defines the width of the D(h) singularity spectrum (Equations 10, 11) (Gerasimova

et al., 2014). (B,B′) As estimated from the τ (q) spectra of CC mammographic view computed with the 2D WTMM method (Figures 2A–C), 256× 256 pixel2 squares

spanning 12.8× 12.8 mm2 were color coded according to monofractal H < 0.45 (blue), 0.45 ≤ H ≤ 0.55 (yellow), H > 0.55 (red) and no scaling (pink). (C,C′) Same

as (B,B′) for MLO mammographic view.

with the 1DWTMMmethod (Table 2 in Gerasimova et al., 2014):
monofractal (c2 < 0.03, red), multifractal (c2 ≥ 0.03, blue) and
no scaling (white) (Figures 1A,A′).

3.4.2. Mammograms

For 2DWTMM analysis of mammograms, we used the isotropic
Gaussian function

8(x, y) = exp−(x2+y2)/2 = exp−|x|2/2, (12)

as a smoothing function, meaning that we worked with first-
order (one vanishing moment) analyzing wavelets ψ1 and
ψ2 (Equation 2). We divided the entire mammographic images
into 360 × 360 pixels2 overlapping (to control edge effects)
squares spanning 18 × 18 mm2. Subimages of the breast in
each of these squares were analyzed using the 2D WTMM
methodology (Arneodo et al., 2000, 2003; Decoster et al.,
2000; Roux et al., 2000). For a given square, when computing
the partition functions and multifractal spectra from the WT
skeleton, only the central (256 × 256 pixels2) part that does

not overlap with the central part of the neighboring squares
was taken into account (Figure S2). For each breast analyzed,
we have color-coded these squares according to the monofractal
diagnosis obtained with the 2D WTMM method: long-range
correlations (H > 0.55, red), anti-correlations (H < 0.45,
blue), no-correlations (0.45 ≤ H ≤ 0.55, yellow), and no
scaling (pink) (Figures 1B,B′,C,C′).

3.5. Statistical Tests
Statistical analyses were performed using the R statistical package
(https://cran.r-project.org/). A nonparametric
Wilcoxon rank-sum test was used to calculate p-values when
comparing CC and MLO mammograms, cancer breasts
and contralateral unaffected breasts, and thermograms and
mammograms. Linear correlation of data sets were analyzed via
a Pearson test.

3.6. Software and Documentation
The numerical procedure to perform the WTMM analysis of 1D
signals is avaliable at
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FIGURE 2 | Multifractal analysis of IR temperature time series and

X-ray mammograms of patient 20. Comparative analysis of spatial

roughness fluctuations in individual 256× 256 pixel2 squares in the cancerous

right breast with respectively monofractal H < 0.45 (blue),

0.45 ≤ H ≤ 0.55 (yellow) and H > 0.55 (red): (A) log2 Z(q, a) vs. log2 a;

(B) τ (q) vs. q estimated by linear regression fit of log2 Z(q, a) vs.

log2 a (Equation 6) over a range of space-scales [0.7; 2.8] mm; (C) D(h) vs. h.

Comparative analysis of temperature fluctuations in a 8× 8 pixel2 square in

the cancerous right breast (monofractal c2 < 0.03, red) and contralateral

unaffected left breast (multifractal c2 ≥ 0.03, blue): (D–F) as (A–C).

http://perso.ens-lyon.fr/benjamin.audit/Last

Wave

LastWave is an open source software written in C. We
recommend interested users read the LastWave C-Application
Programming Interface documentation and to contact the
corresponding author to be directed to the part of the code
of most relevance to them. For 2D WTMM analysis, we
adapted home-made Xsmurf software written in C, for specific
application to mammograms.

4. RESULTS

4.1. Mammographic Tissue Classification
Using the 2D WTMM Method
We analyzed individual 360 × 360 pixel2 mammographic
subimages of patient breasts with malignant tumor using the

2D WTMM method (Materials and Methods). From the central
256 × 256 pixels2 part of the WT skeleton we computed the
partition functions Z(q, a) (Equation 6) that were found to
display nice scaling properties over a range of scales 1 . log2 a .

3 corresponding to [0.7 mm, 2.8 mm] for linear regression
fit estimates in a logarithmic representation (Figure 2A). The
scaling deteriorates when considering larger scales due to finite
size effects. In the range −1 . q . 3, statistical convergence
is achieved; the so-obtained τ (q)-spectrum is remarkably linear,
as the signature of monofractal roughness fluctuations and this
wherever the location of the mammographic subimages over the
cancerous breast (Figure 2B). Indeed the data are well-fitted by
the theoretical spectrum τ (q) = qH − 2 of monofractal rough
surfaces, which are almost everywhere singular with a unique
hölder exponent h = H (Arneodo et al., 2000, 2003, 2008;
Decoster et al., 2000). This is confirmed when computing the
D(h) singularity spectrum from the slopes h(q) and D(q) of the
partition functions h(q, a) (Equation 8) and D(q, a) (Equation 9)
vs. ln a (Figure S3). h(q) and D(q) do not significantly depend
on q, meaning that the D(h) singularity spectrum reduces to a
single point D(h = H) = 2 (Figure 2C). Actually, what possibly
changes when investigating different regions of cancerous
breasts is the Hurst exponent H determined by the WTMM
method (Figures 2B,C). As previously noted in a preliminary
study (Kestener et al., 2001; Arneodo et al., 2003), we recovered
H ≃ 1/3 in regions of fatty breast tissues as an indication
of antipersistent (anti-correlated) roughness fluctuations, while
dense tissues more likely displayed monofractal scaling with
H ≃ 2/3 as an indication of persistent long-range correlations.
But what was undetermined in previous analysis, was the
existence of breast regions where the estimated Hurst exponent
H ≃ 1/2, the hallmark of uncorrelated monofractal rough
surfaces (Figures 2B,C). Importantly, the loss of correlations in
roughness fluctuations is mainly observed in the region of the
breast where the malignant tumor is located.

4.2. Segmentation of Breast Mammograms
into Physiologically Altered (Risky) and
Normal Regions: Comparative Analysis of
the CC and MLO Mammographic Views
We extended our wavelet-based multifractal analysis of CC
and MLO mammographic images to the entire sets of 256 ×

256 pixels2 squares that cover every breast of the 30 (among
33) patients that proceeded through X-ray mammography prior
to surgery. As shown in Figures 1B,B′,C,C′ for patient 20, we
color-coded each of these squares according to the parameter
H estimated with the 2D WTMM method: (i) H < 0.45,
blue (“fatty”) anti-correlated rough surface, (ii) H > 0.55,
red (“dense”) long-range correlated rough surface, (iii) 0.45 ≤

H ≤ 0.55, yellow uncorrelated rough surface, and pink when no
convincing scaling was observed in the considered square. For
the two mammographic views of each breast, we calculated the
numbers of blue (Nb), red (Nr), yellow (Ny) and pink (Nn) squares
and corresponding percentages of breast coverage (Table S2). We
first confirmed that, except in a minority of squares, monofractal
scaling was clear. For the cancerous breasts, the mean percentage
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of no-scaling pink squares was 6.5% (resp. 5.7%) in CC (resp.
MLO) mammograms, which was consistent with the mean
percentage 5.9% (resp. 6.1%) in CC (resp. MLO) mammograms
obtained for the (a priori healthy) contralateral unaffected
breasts. Most of the patients had breasts consisting of mostly fatty
tissues, with a majority of anti-correlated blue squares covering
on average 70.9% (resp. 72.4%) of CC (resp.MLO)mammograms
of the cancerous breasts and 79.1% (resp. 80.1%) in CC (resp.
MLO) mammograms of the contralateral unaffected breasts. This
excess was compensated by a rather small percentage of long-
range correlated red squares 6.4% (resp. 6.5%) in CC (resp.
MLO) mammograms of the cancerous breasts, as well as in the
CC (resp. MLO) mammograms of the contralateral unaffected
breasts [6.5% (resp. 6.5%)]. A similar agreement was observed
between the percentages of uncorrelated yellow squares (further
called H = 0.5 squares) in the CC and corresponding MLO
mammograms of each breast of each patient (Figure 3A and
Table S2). However, the number (Figures S4, S5A,A′) and
percentage (Figures 3A, 4A,A′) of uncorrelated H = 0.5
squares in the cancerous breast mammograms were both larger
than in the contralateral unaffected breast mammograms. In
the CC (resp. MLO) view, Ny/NTot ranges in the interval
[4.5%, 41.4%] (resp. [4.9%, 32%]) with a mean percentage
16.1% (resp. 15.4%) for the breasts with the malignant tumor,
as compared to the interval [0.6%, 27%] (resp. [0%, 16.7%])
and mean percentage 8.5% (resp. 7.3%) for the opposite
breasts. A statistical comparison between cancerous breasts and
contralateral unaffected breasts was performed using a Wilcoxon
rank-sum test which yielded p < 10−4 and 10−5 for the
moduli of the values in Figure 3A and Figure S4A, respectively.
Moreover, the moduli of values for both cancerous breasts and
contralateral unaffected breasts in CC and MLO mammograms
exhibited linear correlation. In Figures 4A,A′, cancerous breasts
and contralateral unaffected breasts were different with p <

10−8. This statistically significant excess of H = 0.5 squares in
the mammograms of cancerous breasts is evidence that the loss
of correlations in the mammographic spatial density fluctuations
can be used as an indicator of malignancy.

4.3. Comparative Statistical Analysis of
Mammogram Roughness Fluctuations in
Cancerous and Contralateral Unaffected
Breasts
Asymmetry of patient’s breast can be a sign of breast cancer.
When comparing the percentages of uncorrelated H = 0.5
squares on both the cancerous and contralateral unaffected breast
mammograms of each patient, we found that a majority (25/30)
have more H = 0.5 squares (average over CC and MLO views)
on the cancerous breast (Figure 3B and Figure S4B and Table S2),
including patients 20 (Figure 1), 17 (Figure S6), 24 (Figure S7),
and 29 (Figure S8). For the 5 patients left including patients
3 (Figure S9), 7 (Figure 5) and 30 (Figure S10), an important
and slightly larger (or equal) percentage of H = 0.5 squares
was found in the second breast as a probable indication of
some physiological and architectural changes in the undiagnosed
opposite breast. When looking at the excess of H = 0.5 squares
in the cancerous breasts we realized that these uncorrelated
squares were not sparsely distributed all over the breast, but
were concentrated in specific regions likely surrounding the
underlying malignant tumor (Figures 1B,C and Figures S6B,C,
S7B,C, S8B,C). To quantify this inhomogeneous distribution, we
investigated the size distribution of H = 0.5 clusters defined as
H = 0.5 squares sharing a common edge or corner (Table 1).
If cancerous and contralateral unaffected breasts display about
the same number of isolated H = 0.5 squares (singlet), the
former are comprised of clusters with sizes larger than 2 and up
to 26 (patient 13). The corresponding histogram of H = 0.5

FIGURE 3 | Analysis of the percentage of monofractal uncorrelated H = 0.5 256× 256 pixel2 squares in the mammograms of the breasts of 30 patients

with breast cancer. (A) Percentage of H = 0.5 squares in cancerous (red) and contralateral unaffected (blue) breasts: MLO view vs. CC view. (B) Mean percentage

of H = 0.5 squares in MLO and CC views: contralateral unaffected breast (CUB) vs. cancerous breast (CB). In (A,B), the numbers correspond to patient numbers

defined in Table S1.
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FIGURE 4 | Differential monofractal H = 0.5 signature on the (CC and MLO) mammograms of cancerous breasts (CB) and contralateral unaffected

breasts (CUB). (A) Histograms of the percentage of squares in the mammograms of the CBs (red) and CUBs (blue) of 30 patients with breast cancer. (B) Histograms

of the size of H = 0.5 square clusters (see text) in CBs (red) and CUBs (blue). (C) Histograms of the size of the largest H = 0.5 square cluster in CBs (red) and

CUBs (blue). (A′–C′) same as (A–C) for the corresponding cumulative distribution functions. Clusters are defined by squares sharing a common edge or corner.

In (A–C), the pink and green vertical lines correspond to the mean (dashed line) and median (dashed-dotted line) of the histogram obtained for CBs and CUBs

respectively.

FIGURE 5 | Wavelet-based multifractal segmentation of dynamic infrared thermograms and X-ray mammograms. Same as Figure 1 but for

patient 7 (age 47): cancerous right breast (A–C) and contralateral unaffected left breast (A′–C′).
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TABLE 1 | Statistics of monofractal uncorrelated H = 0.5 yellow square clusters in the CC and MLO mammographic views of the cancerous and

contralateral unaffected breasts of our patients with breast cancer.

Cancerous breast Contralateral unaffected breast

Total Ny Ncluster Sizecluster Total Ny Ncluster Sizecluster

1-CC 10 3 5 4 1 11 4 7 2 1 1

1-MLO 8 6 3 1 1 1 1 1 12 3 8 2 2

2-CC 7 2 6 1 2 2 1 1

2-MLO 9 1 9 4 2 2 2

3-CC 13 3 11 1 1 24 2 23 1

3-MLO 15 4 9 2 2 2 12 9 2 2 2 1 1 1 1 1 1

4-CC 14 5 5 4 2 2 1 12 2 9 3

4-MLO 15 3 12 2 1 10 5 5 2 1 1 1

5-CC 8 5 3 2 1 1 1 10 5 4 2 2 1 1

5-MLO 19 4 11 6 1 1 2 2 1 1

6-CC 24 5 18 3 1 1 1 0 0 0

6-MLO 19 3 17 1 1 0 0 0

7-CC 12 4 9 1 1 1 13 2 10 3

7-MLO 15 4 11 2 1 1 11 5 3 3 3 1 1

8-CC 19 7 6 4 3 2 2 1 1 11 3 8 2 1

8-MLO 17 3 14 2 1 8 6 2 2 1 1 1 1

9-CC 12 7 5 2 1 1 1 1 1 10 3 6 3 1

9-MLO 12 2 10 2 9 6 3 2 1 1 1 1

11-CC 9 3 6 2 1 3 2 2 1

11-MLO 9 6 3 2 1 1 1 1 1 1 1

12-CC 15 4 12 1 1 1 3 3 1 1 1

12-MLO 15 6 6 4 2 1 1 1 4 4 1 1 1 1

13-CC 23 3 19 2 2 1 1 1

13-MLO 28 3 26 1 1 7 4 3 2 1 1

14-CC 4 2 3 1 1 1 1

14-MLO 6 3 2 2 2 4 1 4

16-CC 10 4 6 2 1 1 3 1 3

16-MLO 17 3 15 1 1 6 2 4 2

17-CC 9 4 6 1 1 1 1 1 1

17-MLO 14 2 13 1 6 2 5 1

18-CC 14 8 5 3 1 1 1 1 1 1 2 1 2

18-MLO 18 5 8 6 2 1 1 2 2 1 1

19-CC 10 1 10 1 1 1

19-MLO 6 1 6 0 0 0

20-CC 24 2 19 5 8 3 6 1 1

20-MLO 22 2 19 3 9 3 7 1 1

21-CC 14 5 9 2 1 1 1 5 4 2 1 1 1

21-MLO 12 7 2 2 2 2 2 1 1 5 5 1 1 1 1 1

23-CC 5 3 3 1 1 9 2 8 1

23-MLO 11 4 4 4 2 1 7 2 6 1

24-CC 24 3 13 6 5 7 4 3 2 1 1

24-MLO 15 3 12 2 1 9 3 7 1 1

25-CC 19 5 12 4 1 1 1 5 4 2 1 1 1

25-MLO 17 4 6 5 5 1 9 3 5 3 1

26-CC 4 1 4 7 4 3 2 1 1

26-MLO 10 1 10 6 1 6

27-CC 13 4 10 1 1 1 1 1 1

27-MLO 11 6 4 3 1 1 1 1 4 3 2 1 1

(Continued)
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TABLE 1 | Continued

Cancerous breast Contralateral unaffected breast

Total Ny Ncluster Sizecluster Total Ny Ncluster Sizecluster

28-CC 13 6 5 2 2 2 1 1 4 3 2 1 1

28-MLO 16 6 8 4 1 1 1 1 6 2 5 1

29-CC 14 3 7 6 1 9 4 5 2 1 1

29-MLO 14 3 6 6 2 5 1 5

30-CC 8 4 2 2 2 2 12 6 3 3 2 2 1 1

30-MLO 13 3 11 1 1 9 3 6 2 1

31-CC 12 2 9 3 3 2 2 1

31-MLO 18 4 8 7 2 1 7 3 3 3 1

32-CC 40 8 16 7 4 4 4 2 2 1 30 13 6 5 3 3 3 2 2 1 1 1 1 1 1

32-MLO 36 11 12 6 4 3 3 3 1 1 1 1 1 19 10 5 4 2 2 1 1 1 1 1 1

33-CC 8 3 5 2 1 4 4 1 1 1 1

33-MLO 10 2 7 3 8 2 7 1

Average 14.3 3.9 8.9 7.1 3.2 4.0

St. dev. 6.9 2.0 5.1 5.5 2.3 3.5

Ny = number of H = 0.5 squares; Ncluster = number of H = 0.5 square clusters; Sizecluster = number of H = 0.5 squares in each cluster. Clusters are defined by squares sharing a

common edge or corner.

cluster size displays a long tail in cancerous breasts that has no
counterpart in the contralateral unaffected breasts (Figure 4B).
As seen on the cumulative histogram (Figure 4B′), more than
20% ofH = 0.5 clusters have a size larger than 5 in the cancerous
breast as compared to only 8.7% in the contralateral unaffected
breasts. This clustering effect is even more pronounced on
the histogram of the size of the largest H = 0.5 square
cluster (Figure 4C), with 33.3% of the cancerous breasts with a
largest H = 0.5 square cluster bigger than 10 as compared to
only 3.4% for the contralateral unaffected breasts (Figure 4C′).
Using Wilcoxon rank-sum test to compare cancerous breasts
and contralateral unaffected breasts in Figures 4A–C yielded
p < 10−8, 10−3, and 10−8, respectively. Note that the only
contralateral unaffected breast with a H = 0.5 square cluster of
size 22 is the second breast of patient 3 that was previously shown
to have more H = 0.5 squares that the breast with the malignant
tumor (Figure S9). Quite similar statistical results were obtained
when defining H = 0.5 clusters from squares sharing a common
edge only (Figures S5B,B′,C,C′ and Table S3).

4.4. Comparative Multifractal Analysis of
the Skin Temperature Dynamics and
Mammogram Spatial Roughness
Fluctuations
For the same cohort of patients, the analysis of dynamic IR
thermograms put into light some significant change in the
nature of temporal fluctuations of breast skin temperature in
cancerous breasts (Gerasimova et al., 2013, 2014). When using
the 1D WTMM method, the computation of the partition
functions Z(q, a) (Equation 6), h(q, a) (Equation 8) and
D(q, a) (Equation 9) revealed that, besides the cardiogenic and
vasomotor perfusion oscillations, the temperature dynamics
display some scale invariant background component that extends

from the characteristic human respiratory frequency (& 0.3 Hz)
up to the cross-over frequency (. 4 Hz) toward instrumental
white noise (Figure 2D). For normal breasts as well as in
healthy regions of cancerous breasts, the τ (q) spectrum is
definitely non-linear (Figure 2E) and accordingly the D(h)
spectrum has a single humped shape (Figure 2F), the hallmark of
multifractal scaling. By contrast, in the region of the malignant
tumor in cancerous breasts the τ (q) spectrum is nearly linear
and the D(h) spectrum reduces to a single point as the
signature of monofractal scaling. As illustrated in Figures 1A,A′

for patient 20, we have segmented the two breasts of each
patient into 8 × 8 pixels squares that were further color-
coded according to the monofractal (red), multifractal (blue)
or no-scaling (white) diagnosis obtained with the 1D WTMM
method. In good agreement with our previous segmentation of
CC (Figures 1B,B′) and MLO (Figures 1C,C′) mammograms,
more “risky” monofractal squares (49.7% coverage) were found
in the cancerous breast (Figure 1A) than in the contralateral
unaffected breast (7.7%) (Figure 1A′). In addition to their
number, the location and clustering of these “risky” squares,
where the multifractal complexity of temperature fluctuations is
lost, correlate with the clustering of the “risky”H = 0.5 squares in
CC andMLOmammograms indicating some additional evidence
of loss of correlations in spatial density fluctuations in the upper
outer quadrant of the right breast of patient 20 where the
underlying tumor is located.

The results obtained for patient 20 are quite representative
of the outcome of our overall comparative analysis of
IR thermograms and X-ray mammograms for our set of
30 patients (Figure 6, Figure S11). The use ofWilcoxon rank-sum
test to compare cancerous breasts and contralateral unaffected
breasts in Figure 6 and Figure S11 yielded p < 10−4 and
10−3, respectively. But both types of breasts did not exhibit
linear correlation between mammogram and thermogram
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FIGURE 6 | Comparative analysis of thermograms and (CC and MLO

averaged) mammograms. Percentage of monofractal squares in

thermograms vs. percentage of H = 0.5 squares in mammograms of the

cancerous (red) and contralateral unaffected (blue) breasts of the 30 patients

with breast cancer. The numbers correspond to patient numbers defined in

Table S1.

data. Most patients have consistent large numbers (breast
coverage & 10%) of “risky” uncorrelated H = 0.5 (yellow)
squares in mammograms and monofractal (red) squares in
thermograms of their cancerous breast as compared to their
contralateral unaffected breast (breast coverage . 10%),
including patients 17 (Figure S6) and 29 (Figure S8). Note that
for the subset of (5) patients, including patients 3 (Figure S9),
7 (Figure 5), and 30 (Figure S10), who were shown to have
also a lot of “risky” H = 0.5 squares on their contralateral
unaffected breast mammograms, they also have a lot of
risky monofractal squares on the thermograms of their two
breasts which might be an additional sign of the possible
extension of cancer to their second breast. Among the patients
with few “risky” monofractal squares (. 10%) on their
IR thermograms of their cancerous breast, 4 correspond to
rather deep tumors, namely patients 12 (size 1.8 cm, depth
12 cm), 16 (3.4 cm, 7 cm), 18 (3.49 cm, 6 cm) (Figure 7)
and 28 (3.49 cm, 8 cm). For these 4 patients the percentage
of “risky” H = 0.5 squares on their corresponding cancerous
breast mammograms is significantly high (& 10%), meaning
that, although imperceptible in temperature dynamics at the
skin surface, the change in the microenvironment of these deep
tumors turns out to be detectable with X-ray mammography.
Let us also mention that if the Paget disease of the nipple of
the left breast of patient 24 (Figure S7) was hardly identified
in the IR thermograms with only few (breast coverage 4.9%),
but well localized, “risky” monofractal squares (Figure S7A),

FIGURE 7 | Wavelet-based multifractal segmentation of dynamic infrared thermograms and X-ray mammograms. Same as Figure 1 but for

patient 18 (age 37): cancerous left breast (A–C) and contralateral unaffected right breast (A′–C′).

Frontiers in Physiology | www.frontiersin.org 11 August 2016 | Volume 7 | Article 336

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Gerasimova-Chechkina et al. Multifractal Analysis of Thermograms and Mammograms

FIGURE 8 | Comparative multifractal analysis of the mammograms of the cancerous breast of patient 30 (age 54) before surgery (A,B) and 11 months

after surgery (C,D). The color coding of the 256× 256 pixel2 squares in the CC (A,C) and MLO (B,D) mammogram views is the same as in Figures 1B,B′,C,C′.

(A′–D′) Similar comparative multifractal analysis of the mammograms of the contralateral unaffected breast of patient 30.

Frontiers in Physiology | www.frontiersin.org 12 August 2016 | Volume 7 | Article 336

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Gerasimova-Chechkina et al. Multifractal Analysis of Thermograms and Mammograms

it could not be missed on the CC (Figure S7B) and
MLO (Figure S7C) mammograms, with respective 41.4%
and 24% coverages by “risky” uncorrelated H = 0.5
squares.

4.5. Comparative Analysis of the
Mammograms of a Cancerous Breast
before and 11 Months after Surgery: a
Control Experiment
As a control, we reproduced our 2DWTMMmultifractal analysis
on the mammograms of the two breasts of patient 30 that
were recorded 11 months after surgical treatment of invasive
ductal carcinoma of the right breast. For both mammographic
views, the number of “risky” H = 0.5 squares in the cancerous
breast was reduced from Ny = 8 (Figure 8A) to 3 (Figure 8C)
in CC mammograms, and from Ny = 13 (Figure 8B) to
1 (Figure 8D) in MLO mammograms. However, less expected
was the quite similar quantitative reduction observed in the other
breast of patient 30, who was one of the 5 patients having slightly
moreH = 0.5 squares on the contralateral unaffected breast than
on the cancerous breast (Figure S10): Ny = 12 (Figure 8A′) to
0 (Figure 8C′) in CC mammograms, and Ny = 9 (Figure 8B′)
to 3 (Figure 8D′) in MLO mammograms. These observations
suggest that the surgery and associated therapeutic treatment
were efficient with regards to removing the malignant tumor, as
well as of its tumorigenic microenvironment including cancer
stem cells. They also attest to some regeneration of the breast
tissue, probably via the activation of quiescent epithelial stem
cells housed in the ducts, and which were shown to exhibit
a high proliferative, self-renewal and morphogenic capacity
in culture (Villadsen et al., 2007). The underlying recovery
mechanisms appear to be engaged and operating not only in the
cancerous breast but also in the other breast which contained
an above average number of “risky” H = 0.5 squares on both
mammographic views.

5. CONCLUSIONS

To summarize, we showed that the wavelet-based multifractal
analysis of X-ray mammograms was able to detect the
presence of an internal malignant tumor via some loss of
correlations in the breast density spatial fluctuations. We
demonstrated that this important change in mammogram
roughness fluctuations strongly correlated with some drastic
simplification of temperature dynamics recorded with an IR
camera, frommultifractal to homogeneousmonofractal temporal
fluctuations. The nature of this study was exploratory, with
a data set limited to females who all went through surgery
to remove the histologically confirmed malignant tumor of
rather large size (diameter between 1.2 and 6.5 cm). To
our knowledge, our study is the first to report on the
observation of some physiological alteration and architectural
disorganization of the microenvironmet of breast tumors using
classical screening techniques, including the currently, most
used X-ray mammography. Since the alteration of the niche

surrounding a breast tumor is likely to correspond to a transition
from an antitumorigenic to a tumorigenic microenvironment
that probably preceeds and further facilitates the process of
oncogenic transformation and tumor progression (Bissell et al.,
2005; Rønnov-Jessen and Bissell, 2009; Bissell and Hines, 2011;
Maguer-Satta, 2011; Lu et al., 2012), the results reported are
not only novel, but show great promise toward improving
early breast cancer diagnosis that is known to be critical for
the treatment and survival of the patient. Of course these
results deserve to be confirmed over a larger set of patients
at different stages of cancer development. We just started the
analysis of longitudinal studies that should bring statistical
estimates of the sensitivity and specificity of our mathematical
and computational approach mainly based on the estimate of the
mammographic density fluctuation index H. This preliminary
study does suggest that combining sparse and sometimes painful
and quite uncomfortable mammography examinations with
more frequent inexpensive, quick and painless IR thermography
examinations could become an efficient routine breast cancer
screening method to identify, as early as possible, women with
high risk of breast cancer.
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