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Volume overload leads to development of eccentric cardiac hypertrophy and heart failure.

In our previous report, we have shownmyocyte hypertrophy with no fibrosis and decrease

in gap junctional coupling via connexin43 in a rat model of aorto-caval fistula at 21

weeks. Here we set to analyze the electrophysiological and protein expression changes

in the left ventricle and correlate them with phenotypic severity based upon ventricles

to body weight ratio. ECG analysis showed increased amplitude and duration of the

P wave, prolongation of PR and QRS interval, ST segment elevation and decreased T

wave amplitude in the fistula group. Optical mapping showed a prolongation of action

potential duration in the hypertrophied hearts. Minimal conduction velocity (CV) showed a

bell-shaped curve, with a significant increase in the mild cases and there was a negative

correlation of both minimal and maximal CV with heart to body weight ratio. Since the CV

is influenced by gap junctional coupling as well as the autonomic nervous system, we

measured the amounts of tyrosine hydroxylase (TH) and choline acetyl transferase (ChAT)

as a proxy for sympathetic and parasympathetic innervation, respectively. At the protein

level, we confirmed a significant decrease in total and phosphorylated connexin43 that

was proportional to the level of hypertrophy, and similarly decreased levels of TH and

ChAT. Even at a single time-point, severity of morphological phenotype correlates with

progression of molecular and electrophysiological changes, with the most hypertrophied

hearts showing the most severe changes that might be related to arrhythmogenesis.

Keywords: connexin43, autonomic heart innervation, hypertrophy, conduction velocity, aorto-caval fistula

INTRODUCTION

Heart failure is a pathological state in which the heart is unable to pump blood sufficiently to supply
the organism with oxygen and nutrients. It could be due to either abnormal functional demands
(pressure or volume overload), or intrinsic problems within the myocardium (inflammation,
tumor, ischemic cardiomyopathy). Independent of its etiology, it decreases patient’s quality of life
and increases the risk of sudden death (reviewed in Stevens et al., 2013). Several large outcome

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://dx.doi.org/10.3389/fphys.2016.00367
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2016.00367&domain=pdf&date_stamp=2016-08-25
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:david.sedmera@lf1.cuni.cz
http://dx.doi.org/10.3389/fphys.2016.00367
http://journal.frontiersin.org/article/10.3389/fphys.2016.00367/abstract
http://loop.frontiersin.org/people/23184/overview
http://loop.frontiersin.org/people/273929/overview


Sedmera et al. Electrophysiological Remodeling in Volume-Overloaded Rat Heart

studies in heart failure patients showed a fivefold increase
in the risk of sudden death (Kannel et al., 1988) and low
left ventricular ejection fraction and incidence of ventricular
tachycardia on Holter monitoring as predictors of both overall
mortality and sudden cardiac death (Gradman et al., 1989).
One of the mechanisms was suggested to be changes in cardiac
repolarization (Tomaselli et al., 1994). A significant decrease
in quality of life of heart failure patients was demonstrated
in community settings (Hobbs et al., 2002), and health-related
quality of life was found to independently predict mortality and
hospitalization after adjustment for ejection fraction, age, and
functional classification (Konstam et al., 1996).

In case of volume-overload heart failure, the increased
volume of circulated blood worsens myocardial function
and is compensated by eccentric hypertrophy with possible
dilation followed by concentric hypertrophy (Ford, 1976). When
these initial compensation mechanisms are exhausted, the
decompensated heart failure sets in (Hood et al., 1968).

While volume-overload heart failure is not the most common
cause of cardiac decompensation in the patient population,
there are situations such as chronic dialysis shunt, arterio-
venous malformation, or valve regurgitation that could lead to
to ventricular failure. Arteriovenous fistula was found to be the
third most common cause (23%, N = 120) of high-output heart
failure in a recent (2010–2014) clinical study performed at the
Mayo clinic (Reddy et al., 2016). However, mitral regurgitation
(which does lead to volume overload) was implicated as an
aggravating factor in up to 30% of heart failure cases of other
etiologies. The study by Grigioni et al. (1999) have demonstrated
that mitral valve prolapse, while leading to mitral regurgitation,
is also associated with sudden death. The proportion of sudden
cardiac deaths attributable to arrhythmias is uncertain; a recent
review aimed at optimization of guidelines for implantation of
cardioverter-defibrillator suggests that both cardiac hypertrophy
and low ejection fraction are contribution factors (Stevens et al.,
2013), and further research exploring the links between genetic
and environmental factors leading to transition from cardiac
hypertrophy to heart failure is warranted.

Arrhythmias are a common complication of heart failure.
They are often linked to increased electrical heterogeneity of
the myocardium and slowed impulse conduction (Shah et al.,
2005). The mechanisms responsible for arrhythmogenicity are
myocardial fibrosis, changes in membrane excitability or tissue
architecture and alterations in expression of connexins (Libby
et al., 2008).

Several animal models of heart failure with different
etiology were created (Akar and Tomaselli, 2005). Ischemic
cardiomyopathy can be induced by creation of myocardial
infarction by coronary artery ligation. Pressure overload is
induced by transverse aortic constriction, renal artery occlusion
(via activation of renin-angiotensin system) or in spontaneous
hypertension (SHR rat model). Eccentric hypertrophy could
be induced experimentally by either cardiac tachypacing (Akar
et al., 2004) or volume overload caused by arteriovenous shunt
(Hatt et al., 1979; Melenovsky et al., 2011); the later models
simulate human aortic insufficiency, or arterio-venous shunt in
chronically dialyzed patients.

Using the rat volume overload model created by aorto-
caval fistula (ACF), numerous insights into pathogenesis of
volume-overload induced heart failure were obtained. Volume
overload leads to increased heart weight due to biventricular
eccentric hypertrophy (Benes et al., 2011a). Unlike in pressure-
overload hypertrophy, there is a remarkable lack of increased
fibrosis (Ryan et al., 2007). There is also a decrease in the
amount of connexin43 protein and its phosphorylation (Benes
et al., 2011a). Metabolic changes in this model indicate changed
energetics with increased lipolysis and attenuated response
to insulin (Melenovsky et al., 2011). At the level of cardiac
mechanics, there is a decrease in left ventricular fractional
shortening, decreased slope in pressure-volume relationship
indicating systolic dysfunction that is apparent also at the level
of isolated myocytes (Guggilam et al., 2012). There is also
abnormal calcium handling and attenuated in vivo response to
beta-adrenergic stimulation (Guggilam et al., 2012).

Further indirect evidence that lethal arrhythmias occur in
this model stems from the long-term survival study (Melenovsky
et al., 2012), which showed two types of death, one due to heart
failure with edemas, and the other being sudden cardiac death,
which is widely regarded as due to arrhythmias. These results
are corroborated by reports from other volume overload animal
models such as dog (Peschar et al., 2003) or rabbit (van Borren
et al., 2012). Arrhythmias are known to be associated with cardiac
hypertrophy also in the clinical scenario (reviewed in Stevens
et al., 2013), and heart failure defined as low (<35%) ejection
fraction of the left ventricle represents an additive risk factor for
sudden cardiac death. However, the exact mechanisms of this
relationship are not completely understood, which prompted us
to further explore possible pathogenetic changes in the rat ACF
model.

All the factors combining to create an arrhythmogenic
substrate, which increases the incidence of potentially lethal
arrhythmias, were also reported in this model (Benes et al.,
2011a). Longitudinal analysis showed that most deaths occur
between 28 and 50 weeks after shunt creation, and the most
hypertrophied heart are prone to sudden death (Melenovsky
et al., 2012). Increased heart weight was inversely associated
with the length of survival. We have therefore set to investigate
if and how the level of cardiac hypertrophy correlates with
conduction anomalies and molecular changes and to explore
which of these parameters could be used for monitoring of
progression from compensated hypertrophy to end-stage heart
failure. We hypothesized that subdividing the experimental
group by phenotype severity would uncover parameters that
change during transition from compensated hypertrophy to heart
failure.

METHODS

Animals
The rats were kept in air-conditioned animal facility of the
Institute of Clinical and Experimental Medicine on a 12-/12-
h light/dark cycle. Throughout the experiments, the rats were
fed a standard diet (0.45% NaCl, 19–21% protein) supplied by
SEMED (Prague, Czech Republic) and had free access to tap
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water. The experiments were performed according to applicable
law (311/1997), were approved by the Ethic Committee of
the Institute of Clinical and Experimental Medicine (Prague,
Czech Republic, approval number 305/09/1390), and conform
to the guidelines from Directive 2010/63/EU of the European
Parliament on the protection of animals used for scientific
purposes. The ACF was created under general anesthesia of
ketamine and midazolam as described (Benes et al., 2011a;
Melenovsky et al., 2012). Briefly, the abdominal aorta was pierced
with a 1.2mm needle into the inferior vena cava. The needle was
removed after clamping the aorta above and applying acrylamide
tissue glue. The shunt functionality was verified after 3min
by pulsation of the inferior vena cava. Sham-operated animals
underwent the same procedure without puncture. Male Wistar
rats weighting 300–350 g were used for these experiments and the
changes were evaluated after 21 weeks unless stated otherwise.
For quantitative analysis we used a total of 20 ACF rats and
10 sham-operated controls. The parameters and allocation to
different severity groups (mild, moderate, and severe) according
to heart to body weight ratio (HBWR, heart weight being defined
as sum of both ventricles and the septum) are listed in Table 1.
Division into three sub-groups (of size permitting reasonable
statistical testing) was performed to evaluate any correlation
between the severity of hypertrophy and other markers of cardiac
hypertrophy or failure.

ECG Analysis
Rats were anesthetized with an intraperitoneal injection of
ketamine/midazolam (50/5mg/kg). Four ECG leads were
attached at the proximal part of the limbs using clips attached
to subcutaneous needles. ECG recording was performed using
FE 132 Bioamp and Powerlab 8 (ADInstruments, Australia)
data acquisition tool with 1 kHz sampling. Recordings were
off-line analyzed using LabChart Pro 7 program with ECG
module, with built-in algorithm for wave detection specific to
rodents. Successive 200 beats were extracted from the LabChart
channel from the lead with the best signal to noise ratio (lead
aVR). The beats labeled as good by the classifier were averaged
using alignment to the QRS maximum to form a single beat for
analysis (Figure 1). The R wave was identified by the program
as the most positive value in the neighborhood of the Beat
Marker. The start and end of the QRS complex were determined
by searches on each side of the R wave for regions where the
slope (dV/dt) falls to sufficiently low values. Isoelectric level
was defined as the median of all data values preceding the
QRS complex. Absolute values of Q, R, and S were added
to calculated QRS sum voltage. The peak of the P wave was
defined as the point of the greatest absolute deviation from
the isoelectric line in the interval from pre-P to just before the
beginning of QRS. The beginning of P wave was determined
by intersection of the isoelectric line and a straight line fitted
by least squares to points 15–60% prior of the peak of P wave.
T wave was defined as the first significant peak of either sign,
starting from the point after the end of QRS. The end of T
was defined by the first return to isoelectric level. ST height
was arbitrarily measured 15 ms after QRS alignment point. QT

interval was corrected for heart rate (QTc) using the Bazett
formula.

Optical Mapping
The animals were anesthetized with sodium pentobarbital
(60mg/kg) and 100 units of heparin per animal were
administered to prevent blood clotting. They were then
weighted and euthanized by cervical dislocation and their hearts
were rapidly excised and cannulated via the ascending aorta on
ice in Tyrode’s solution bubbled with 100% O2 (composition:
NaCl 145mmol/l, KCl 5.9mmol/l, CaCl2 1.1mmol/l, MgCl2
1.2mmol/l, glucose 11mmol/l, HEPES 5mmol/l; pH = 7.4).
Lungs were dissected and weighted as well. After stabilization
in a horizontal Langendorff perfusion bath at 37◦C (Radnoti,
Inc) at a perfusion rate of 10ml/g/min, the hearts were bolus
stained with a mixture of 200 µl of 0.125% di-4-ANNEPS in
DMSO (Invitrogen) and 50 µl of 0.417% blebbistatin (Sigma,
motion inhibitor drug) injected into a compliance chamber of
the system (de la Rosa et al., 2013). Imaging was performed using
the ULTIMA L camera (SciMedia, Japan) under a 2x, 0.14NA
objective lens (effective pixel size 80 micrometers) with water
immersion lens cap (Olympus, Japan) on a fixed-stage BX51 WI
epifluorescence microscope (Olympus, Japan) equipped with a
150 W Xe arc lamp (Cairn, UK) and an appropriate wide green
filter set. Images were acquired at 333, 500, and 1000 frames
per second; for consistency and optimal signal to noise ratio,
data sets acquired at 500 frames per second were chosen for
analysis. The hearts were electrically paced from the middle of
the left ventricular free wall at 300 ms cycle length (5 mA, 2
ms pulse width). This was possible since the blebbistatin at the
concentration necessary to inhibit contractions considerably
slowed down the intrinsic heart rate. Imaged area included a
square of 8 × 8mm in the middle of left ventricular free wall
(lateral view) where the orientation of the subepicardial layer of
cardiomyocytes is predominantly oblique (Morley and Vaidya,
2001).

Analysis of Recordings
The data was band-pass filtered and processed using a 3 × 3
median filter to reduce noise. Action potential duration at 50
and 90% of amplitude was then measured from the recordings
in several representative subregions of each heart. The first
derivative was then numerically calculated, and its peak was
used to detect pixel activation time. Spatio-temporal activation
maps (Figure 2) were then constructed in the BV_Ana software
(SciMedia, Japan). Using this software, longitudinal (maximal)
and transverse (minimal) conduction velocity was measured,
along the prevailing long and short axis of subepicardial myocytes
as defined in rodents (Morley and Vaidya, 2001). Anisotropy
was defined as the ratio between the transverse (CVmin) and
longitudinal (CVmax) conduction velocity.

Western Blotting
Left ventricular free wall samples were carefully weighted and
then immediately frozen in Eppendorf tubes in liquid nitrogen.
They were then pulverized (N = 3 per group) under liquid
nitrogen and lysed in NHT buffer (140mMNaCl, 10mMHEPES,
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TABLE 1 | Summary of averages of all measured parameters by group (according to HBWR).

Parameter Sham (n = 10) ACF mild (n = 5) ACF moderate (n = 8) ACF severe (n = 4) ANOVA

ORGAN WEIGHTS

Body weight (BW), g 578± 48 610± 46 581± 48 595± 45 0.7

Heart weight (HW), g# 1.65± 0.18 2.90 ± 0.20** 3.16 ± 0.20** 3.85 ± 0.19** <0.0001

HW/BW ratio, g/kg 2.87± 0.33 4.75 ± 0.14 ** 5.45 ± 0.21 ** 6.4 ± 0.38 ** <0.0001

LV, g 1.03± 0.15 1.74 ± 0.08 ** 1.95 ± 0.19 ** 2.27 ± 0.24 ** <0.0001

Septum, g 0.31± 0.09 0.54 ± 0.08 * 0.56 ± 0.79 * 0.70 ± 0.05 * <0.0001

RV, g 0.31± 0.03 0.62 ± 0.04 ** 0.65 ± 0.11 ** 0.93 ± 0.10 ** <0.0001

RV/LV ratio§ 0.23± 0.03 0.27± 0.01 0.26 ± 0.03 * 0.32 ± 0.02 ** 0.0002

Lungs, g 1.91± 0.06 2.42± 0.40 2.59 ± 0.42 * 3.50 ± 0.40 ** <0.0001

Lungs/BW, g/kg 3.40± 0.60 3.95± 0.58 4.46 ± 0.61 ** 5.84 ± 0.55 ** <0.0001

ELECTROCARDIOGRAM

Heart rate, bpm 414± 39 415± 38 397± 40 403± 36 0.8

P amplitude, µV 40± 27 80± 20 80 ± 29 * 61± 28 0.05

P duration, ms 15± 1.5 19 ± 1.4 ** 18 ± 1.6 ** 18 ± 1.4 ** 0.0003

PR duration, ms 47± 3 55 ± 4 ** 52 ± 3* 58 ± 3 ** 0.0008

QRS duration, ms 18± 1.2 21± 1.4 ** 21 ± 1.3 ** 22 ± 1.2 ** 0.0002

QT duration, ms 78± 9 82± 8 80± 8 77± 10 0.9

QRS amplitude sum, µV 386± 210 569± 200 591± 209 718± 190 0.08

T amplitude, µV 70± 36 54± 38 47± 37 − 10 ± 47 * 0.05

ST height, µV 16± 63 −34± 60 −33± 61 − 121 ± 57 ** 0.02

OPTICAL MAPPING

APD50, ms 56± 12 69± 12 75 ± 13* 65± 12 0.04

APD90, ms 94± 21 101± 20 121± 21 97± 19 0.07

CV min, cm/s 14.6± 11.1 32 ± 7.4* 13.7± 7.7 12.3± 7.1 0.004

CV max, cm/s 102± 72 184± 48 136± 50 102± 47 0.09

Anisotropy 7.1± 6.6 6.3± 6.0 12.3± 12.4 8.9± 5.9 0.4

Values are means ± SD, ANOVA, Dunnet test * p < 0.05 and ** p < 0.01 vs. sham controls.
#HW, sum of both ventricles and septum; §LV, LV weight + septum weight; CV, conduction velocity, APD, action potential duration; ACF, aorto-caval fistula; BW, body weight; LV, left

ventricle; RV, right ventricle.

1.5% Triton X-100, phosphatase inhibitor cocktail, pH 7.4).
Lysates were cleared by centrifugation at 14000 × g. Protein
concentration was determined by the Bradford assay (Bio-Rad,
CA, USA). Each sample (40 µg) was combined with SDS
loading buffer containing DTT, boiled for 5 min and resolved
by 10%SDS-PAGE in Tris-Glycine buffer. Electrophoresis was
performed at constant voltage for 30 min at 45 V per gel, and
then at 90 V per gel until the dye front reached the gel bottom.
Proteins were then transferred to 0.45 µm PVDF membranes
(Millipore, MA, USA) in a semi-dry blotter (Trans-Blot Turbo,
Bio-Rad, CA, USA) at constant current and voltage (1.0 A, 25
V) for 30min. Membranes were incubated with blocking buffer
containing PBS, 0.1% TWEEN 20 and 5% non-fat dried milk
for 1 h. As primary antibodies, rabbit anti-connexin43 (1:6000,
Sigma-Aldrich, MO, USA), rabbit anti-phospho-connexin43
(1:1000, Cell Signaling Technology, MA, USA), goat anti-choline
acetyltransferase (1:1000, Millipore, MA, USA) and rabbit anti-
tyrosine hydroxylase (1:1000, Sigma-Aldrich, MO, USA) were
used. Rabbit anti-GAPDH antibody (1:10000, Sigma-Aldrich,
MO, USA) was used as a loading control. After thorough
washing in blocking buffer a secondary horseradish peroxidase-
conjugated anti-mouse or anti-rabbit antibody was applied for
1 h (1:10,000, Sigma-Aldrich, MO, USA). After washing, signal

was detected using Western Blotting Luminol Reagent (Santa
Cruz Biotechnology, CA, USA) and membranes were exposed
to X-ray films (Kodak, NY, USA). Developed films were scanned
on GS-800 calibrated densitometer (Bio-Rad, CA, USA) and the
signal was quantified using Quantity One software (Bio-Rad,
CA, USA).

Statistical Analysis
All the results are expressed as mean± SD. Data were assembled
and statistically analyzed in JMP10 software (SAS, USA) using
t-test (for between group differences) or ANOVA and Dunnet
post-hoc test for comparison of means of subgroups compared
to control group. In addition, we divided the ACF animals into
two groups (milder and more severe) based on lung to body
weight ratio to distinguish between compensated hypertrophy
and overt left ventricular failure. Pearson’s correlation
coefficient was used for assessment of correlation between
continuous variables. P-value less than 0.05 was considered
significant.

Images
Plates were finally assembled and labeled in Adobe Photoshop (v.
8.0, Adobe Systems, Palo Alto, CA, USA).
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FIGURE 1 | Representative ECG and EP recordings highlighting the changes in quantitative parameters. Note an increased P wave amplitude and duration,

increased R amplitude, and prolonged QRS duration in a typical ACF recording. Prolongation of APD50 (right column) is present in the ACF group as whole (compare

with the sub-group values in Table 1).

RESULTS

Table 1 lists all the variables measured in experimental animals
with their allocation into different experimental subgroups. Two
ACF animals died prior to study termination; autopsy performed
in one revealed increased heart weight and grossly increased
lung weight with presence of ascites and hydrothorax, suggesting
heart failure as the cause of death. One ACF animal with no
change in the HBWR and normal lung weight at the time of
sampling was excluded from the analysis. The fistula was patent,
but hemodynamically insignificant, a situation that occus in less
than 5% of the operated animals. According to HBWR, the
ACF animals were arbitrarily subdivided for quantitative sub-
group analysis into mild (range 4.55–4.88, 5 animals), moderate
(5.19–5.73, 8 animals), and severe group (5.99–6.83, 4 animals).
Sham operated animals (N = 10) had HBWR in the range
2.26–3.31; however, even the mild ACF group had significantly
enlarged hearts due to increase in weight of both ventricles. Lung
weights were also increased in the ACF group, especially in severe
cases (Table 1), but there was neither ascites nor hydrothorax
present in any of the animals sampled. Lung weight adjusted to

body weight—a marker of heart failure development—increased

continually with increasing heart weight. Both left and right

ventricular weight was increased, in absolute values as well

as when indexed for body weight. The ratio of right to left
ventricular weight, indicating relative RV hypertrophy, was
increased in the severe group.

Correlations between different parameters were analyzed
within the ACF group. Not surprisingly, the HBWR correlated
well with both the left (R = 0.66, p = 0.004) and right (R = 0.79,
p = 0.0002) ventricular weight, making any of these parameters
a good indicator of heart failure severity. All these parameters
showed good correlation (R = 0.5–0.7, p < 0.05) with the
lung weight in both absolute numbers and when indexed with
body weight. However, body weight was not associated with
the severity of cardiac hypertrophy, similar to our previous
findings (Melenovsky et al., 2012). Left ventricular weight was
closely correlated with right ventricular weight (R = 0.76, p
= 0.0004), indicating biventricular hypertrophy. Heart rate,
QRS, QT, and QT(c) durations were quite independent of
phenotype severity (or showed no changes at all). Prolongation
of some ECG intervals (PR, QRS) in the setting of ventricular
hypertrophy is not surprising, since the impulse has greater
distance to travel (Benes et al., 2011b), and is not incompatible
with normal conduction velocity. APD50 and APD90 quite
logically correlated well with each other (R = 0.75, p = 0.0006).
APD50 was increased in the whole ACF group (Figure 1) with
no significant changes between the subgroups; when these were
tested individually against sham animals, only the values from the
moderate group reached statistical significance (Table 1).

Interesting associations became apparent when the
analysis was performed based on division of compensated/
decompensated heart failure based upon lungs to body weight
ratio below/over 5, resulting in 10 non-failing and 7 failing hearts
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FIGURE 2 | Epicardial activation patterns of the left ventricle during

electrical pacing. Representative activation maps constructed at 2 ms

intervals from the LV mid-portion lateral wall (field of view 8 × 8 mm) are shown

for each group. Pacing cycle length is 300 ms in all cases. Asterisk indicates

the site or pacing, bidirectional arrows the direction of maximal and minimal

conduction velocity. Scale bar 5mm. The graph below shows correlation

between the maximal and minimal conduction velocity and phenotype severity.

r, Pearson’s correlation coefficient. Line represents linear regression.

within the ACF group. According to this division, a significantly
increased right to left ventricular weight ratio was observed in
the failing group, and there was a mild trend toward increased
body weight, explainable by increased fluid retention. Even
such division confirmed that some parameters (QT interval,
anisotropy) showed no differences between groups.

ECG analysis showed a significant prolongation in P wave
duration in all ACF subgroups (+24%), and PR interval (+11–
23%) without any differences in heart rate compared to controls
(Table 1). QRS duration was likewise prolonged (on average
+17%, slightly more in the severe cases) in the ACF group,
but was constant in the three ACF sub-groups. QT and QT(c)
intervals were, on the other hand, unchanged. Q, R, and S wave
amplitude was increased, and there was a significant ST segment
depression. T wave amplitude was significantly decreased, as the
T wave was frequently inverted (Figure 1).

Figure 2 shows typical examples of activation maps from
different groups. The animals with mild left ventricular
hypertrophy had a trend toward increase in both longitudinal
(along the myocyte long axis, CV max) and transverse
(perpendicular to this, CV min) conduction velocity, which
reached statistical significance for the transverse velocity
(Table 1). There was a bell-shaped relationship, with the CV
min values in the most severe group declining (although
insignificantly) below the sham animals. HBWR correlated
inversely with minimal and maximal conduction velocities
(Figure 2). In the most severe group, there were further
irregularities of conduction, with areas of block present in two
of four hearts analyzed (Figure 2, bottom map panels).

Western blotting (Figure 3) detected a significant decrease in
both total and phosphorylated connexin43 protein in the ACF
hearts, consistent with the previous results (Benes et al., 2011a).
Phenotype severity (HBWR) inversely correlated with both
connexin43 or P-connexin43 densities with the most enlarged
hearts showing the most pronounced decrease (Figure 3). Total
connexin43 amount was strongly negatively correlated with
biventricular weight (R = −0.92, p = 0.0004); interestingly,
less with the left (R = −0.55, p = 0.1177) and more with
the right (R = −0.77, p = 0.0277) ventricular weight. Total
connexin43 was also negatively correlated with anisotropy ratio
(R = −0.70, p = 0.0348) and QRS sum amplitude (R = −0.67,
p = 0.05; Figure 4). This suggests strongly a critical role of
this gap junctional protein in myocardial conduction properties,
together with changes in ion channels responsible for the changes
in APD. Similar behavior was observed for the phosphorylated
connexin. Interestingly, correlation coefficient between these two
isoforms was only 0.63 (p = 0.06), suggesting that the amount
of connexin43 and its phosphorylation might be regulated by
separate mechanisms. The ratio of these isoforms mildly (0.49,
p= 0.1771) correlated with the QRS duration.

To assess the role of autonomic signaling, we measured
the expression of choline acetyltransferase (ChAT) and tyrosine
hydroxylase (TH) as a proxy for cholinergic (vagal) and
adrenergic innervation, respectively. We found a clear decrease
in both ChAT and TH, correlating with the phenotypic severity
(Figure 3). ChAT was strongly negatively correlated with HBWR
(R = −0.81, p = 0.0081) and loosely (R = 0.52, p = 0.1496) with
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FIGURE 3 | Changes in connexin expression and autonomic innervation markers after ACF. Values are means ± SD, N = 3 samples per group, *p < 0.05 vs.

sham, #p < 0.05 vs. less severe ACF groups (t-test). ChAT, choline acetyltransferase, TH, tyrosine hydroxylase. Graphs show correlation analysis of connexins and

autonomic innervation markers with phenotype severity. Amounts of all proteins detected by Western blot decrease with increasing cardiac mass. N = 9 samples from

the ACF group (3 for each sub-group), r, Pearson’s correlation coefficient. Line represents linear regression.
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FIGURE 4 | Correlation analysis of anisotropy of conduction (A) and

QRS voltage (B) with connexin43 amount in the ACF rats. With

decreasing connexin43 expression that represents increasing phenotypic

severity within the ACF group, there is an increase in conduction anisotropy

and amplitude of QRS voltage. N = 9 samples from the ACF group (3 for each

sub-group), r, Pearson’s correlation coefficient. Line represents linear

regression.

QRS duration. It paralleled the changes in minimal conduction
velocity (R = 0.85, p = 0.003), maximal velocity (R = 0.57,
p = 0.1054), APD50 (R = 0.76, p = 0.0163), but with APD90 the
correlation coefficient was only 0.1 (p = 0.788). The values went
also along with the changes in connexin43 (R= 0.93, p= 0.0003)
and its phosphorylated isoform. It showed a strong negative
correlation (R = −0.83, p = 0.005) with lungs to body weight
ratio, suggesting its expression was decreased especially in the
severely failing hearts.

Since the role of adrenergic stimulation is well established
in heart failure, we investigated separately the time course
of adrenergic signaling in a parallel longitudinal study, using
the catecholamine degradation enzyme monoamine oxidase
(MAO) expression as a proxy (Figure 5). During the course of
development of eccentric hypertrophy after creation of ACF,
there was a steady increase in the adrenergic activity, evidenced
by increased levels of MAO detected by Western blotting. These
changes reached a plateau at 24 weeks, suggesting that near
maximal adaptation was already in place during our sampling.
Increased adrenergic stimulation can be viewed as an adaptive
measure to increase myocardial performance during increased
functional demands, despite blunting of the beta-adrenergic
signaling reported in heart failure (Aiba and Tomaselli, 2010).

DISCUSSION

Electrophysiological Changes
Despite a massive increase in heart weight accompanied by
a drastic connexin43 downregulation, the conduction velocity
was decreased only mildly and only in the most severe group.
In contrast, the mildly hypertrophied hearts showed instead
an increase in impulse conduction velocity. This goes against
the common notion that cardiac hypertrophy is associated
with slowing of the conduction velocity, which is considered
to be a major factor predisposing the heart to arrhythmias.
We do not view our results as contradictory, since simple
elongation of the myocytes is likely, according to the cable
theory, to increase conduction velocity, and the mild and

FIGURE 5 | Longitudinal changes in MAO expression in the ACF model.

Western blot was performed with samples from left ventricles of animals with

ACF and sham-operated animals (animals sacrificed 8, 16, 24, and 51 weeks

after creation of ACF). Each sample represents a pooled tissue homogenate

from five animals from the individual group. Samples were loaded in duplicates

on the 10% minigels. As a primary antibody rabbit anti-monoamine oxidase A

was used (MAO-A, 1:333, Sigma-Aldrich, MO, USA).

moderate groups present a compensated stage of hypertrophy
without overt failure. In the severe cases we observed return
to normal values and further decrease in gap junction protein
connexin 43 (Table 1, Figure 3). Indeed, the most severely
affected animals were dying of sudden death in a longitudinal
survival study in this model (Melenovsky et al., 2012),
suggesting that only the severe hypertrophy combined with
heart failure constitute the arrhythmogenic substrate, consistent
with a recent review of clinical studies (Stevens et al., 2013).
Observations similar to ours were made in a rabbit pressure-
overload hypertrophy model by Wiegerinck et al. (2006),
who demonstrated increased longitudinal conduction velocity
despite lower levels of connexin43. Mathematical modeling
in this interesting study showed that increased conduction
velocity could be explained by cell enlargement (especially
elongation) and by low levels of fibrosis. Increased conduction
velocity may not fully compensate the ventricular hypertrophy,
resulting in a significant QRS prolongation reported in some
failing hearts (Anderson et al., 1993; Winterton et al., 1994;
Cooklin et al., 1998). It is difficult to quantify from our data
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the relative contribution of increased (doubled) distance the
impulse must travel (Benes et al., 2011b) and changes in CV–
QRS and PR interval duration. The conduction system shows
a rich autonomic innervation, and we found a significant
reduction in markers of both adrenergic and cholinergic
innervation; however, since our ECG measurements come
from the anesthetized animals, these data should not be over-
interpreted. Considering further the ambiguities in determining
ECG intervals in hypertrophied hearts, we are planning future
in vitro studies using plunge electrodes and optical mapping of
wedge preparation to further dissect the transmural conduction
through the Purkinje system and working myocardium. The
model of volume overload hypertrophy (Melenovsky, 2013) is
unique by lowering of collagen content in the myocardium
accompanying dilation (Ryan et al., 2007). Development of end-
stage heart failure in this model is then associated with increased
collagen production, explaining the drop in conduction velocity
below the control levels in themost severely hypertrophied hearts
(Hutchinson et al., 2010, 2011).

Previously conducted experimental studies of impulse
propagation in cardiac muscle used canine or sheep myocardium
(Kadish et al., 1986; Delgado et al., 1990). Most of the studies
conducted on rat myocardium was done on tissue cultures
of myocyte monolayers (Fast et al., 1996; McSpadden et al.,
2009), which might behave quite differently than the native
tissue with fibrous scaffolding, blood vessels, and other sources
of heterogeneity. In these studies the anisotropy ratio was
approximately around 2–3, which is much less than in our study.
Some of the previous studies on mathematical models of the
native myocardium showed much higher anisotropy values,
with longitudinal-to-transverse velocity ratios of 5.7 (Leon
and Roberge, 1991) and 9.6 (Muller-Borer et al., 1994), which
much more correlate with our findings. The reason for such
high anisotropy can be also partly artificial—the velocities are
calculated from 2D image of epicardial signal spreading from
the center of the left ventricle. Given the curvature of the heart,
crowding of the isochrones can occur in the transverse direction,
which can lead to an artificial slowing of the CV min.

This study attempts to dissect the changes in established
markers of cardiac hypertrophy and failure during the
progression from compensated to decompensated stage.
ECG changes in the ACF animals confirmed increased cardiac
mass (P and QRS wave amplitude) and suggest prolonged
atrial and ventricular conduction time, which could be well
due to the larger size of these compartments. ACF-induced
hypertrophy and heart failure were associated with a mild
APD prolongation (Figure 1), which was significant only in the
early phase (APD50). Unfortunately, residual motion artifacts
during the repolarization phase prevented reliable estimation of
action potential dispersion, which would be also an interesting
parameter expected to be altered in hypertrophied hearts. This
might suggest alterations in ion channels (Shah et al., 2005;
Aiba and Tomaselli, 2010). Some of these changes might be
also due to alterations in calcium cycling, which is known to
occur in the settings of heart failure (Ai et al., 2005; Guggilam
et al., 2012). Conduction anomalies (mostly slowing) observed
in non-ischemic dilated cardiomyopathy were reviewed by Akar

and Tomaselli (2005) and include changes in myocyte excitability
(sodium and potassium channels), extracellular matrix (fibrosis,
mostly absent in this model), and cell coupling (connexins).
Tissue architecture (cell shape and size) is also an important
factor, and there is an agreement that anisotropy of conduction
is preserved in this setting, corresponding well with our present
data. Expression of numerous ion channels such as sodium
channel NaV1.5 (de la Rosa et al., 2013), potassium channels
or NaH exchanger is often implicated in arrhytmogenesis in
cardiac hypertrophy and/or failure (Stevens et al., 2013) and
detailed analysis at the molecular and functional level together
with temporal dynamics would require numerous further
experiments using alternative techniques (RT-PCR, patch clamp,
isolated myocytes).

Changes in Gap Junctional Proteins
Our findings of connexin43 downregulation and
hypophosphorylation correspond well with our previous study
(Benes et al., 2011a), that of Guggilam and colleagues in the
ACF model (Guggilam et al., 2012) as well as some of the others
including different animal models (Ai and Pogwizd, 2005; Akar
et al., 2007). However, the role of connexin43 cellular distribution
is less well understood, as we did not previously observe any
significant lateralization on the cell membrane, in contrast with
others (Akar et al., 2004). Considering the complexity of tissue
architecture and likely influence of sampling location and exact
analysis method, the in vivo studies could be expected to differ in
details. This complexity turned our attention instead to possible
relationship between more precisely quantifiable parameters
like the total amount and protein phosphorylation detected by
Western blot and degree of ventricular hypertrophy; for the
first time, we report here a clear and often significant trend
of more severe changes in advanced hypertrophy and heart
failure.

Autonomic Innervations
We observed a large drop in the amount of choline
acetyltransferase, a marker of cholinergic signaling, which
was most pronounced in the severe ACF group. Most cholinergic
terminations are supposed to be present around the coronary
arteries. Our findings agree with other reports indicating
that parasympathetic ganglia are present in the ventricles,
connecting to relatively dense parasympathetic innervation
of ventricular muscle that may modulate excitability and
propensity to arrhythmias at the local level, independently of
activation of sympathetic fibers (Coote, 2013). Acetylcholine can
be synthesized in cardiomyocytes as well—this non-neuronal
source may boost parasympathetic cholinergic signaling to
counterbalance sympathetic activity (Roy et al., 2013). Indeed,
pharmacological M2 muscarinic receptor activation was
proposed to present an alternative to beta blockers (Rauch
and Niroomand, 1991). On the other hand, M2 antagonist
cisatracurium and atropine were demonstrated to suppress
vagally-mediated action potential shortening and prevent atrial
arrhythmias (Patterson et al., 2008).

Despite of global sympathetic activation, severe heart failure
is simultaneously characterized by loss of cardiac sympathetic
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neurons and noradrenergic terminals, leading to myocardial
norepinephrine depletion that likely further contributes to
pump failure (Himura et al., 1993). In line with this previous
observation, our study documented inverse relation between
abundance of sympathetic marker TH and left ventricular
hypertrophy severity or degree of congestion. We have verified
the results from the western blot by immunohistochemistry
performed on sister sections of sham andACF (21 weeks) animals
used in a previous study (Benes et al., 2011a). Western blotting
represents a more objective measure, since the immunostaining
is highly non-uniform within the ventricular wall. We observed
that sympathetic and parasympathetic denervation goes in
parallel, and our study does not support presence of cholinergic
transdifferentiation as suggested in another rodent HF model
(Kanazawa et al., 2010). Decreased sympathetic nerve density and
signaling is in agreement with blunting of the beta-adrenergic
signaling reported previously in this type of heart failure model
(Aiba and Tomaselli, 2010).

It would be interesting to explore further the physiological
consequences of altered autonomous innervation; however, truly
physiologically relevant studies would need to be performed
in active animals using telemetry, which is beyond the scope
of the present study. Analysis of parameters such as heart
rate variability, decrease of which is a sign of cardiac distress,
would then be possible; it could provide further insight beyond
the resting heart rate of anesthetized animals, which was not
significantly changed in our study (Table 1).

Prognostic Markers of Heart Failure?
Longitudinal study of rats with ACF showed that 82% of
operated animals develop heart failure, and 72% die within 1 year
(Melenovsky et al., 2012). Prior to death due to heart failure, there
was first a mild increase in body weight due to water retention,
followed by a drop likely due to anorexia. Most of the symptoms
(e.g., increased lung weight) are of the left ventricular failure;
we believe it is due to the fact that the left ventricle is primarily
constructed as a pressure pump, tolerating well pressure overload
(such as in banding models or systemic hypertension), unlike
the right ventricle, which is design as a volume pump tolerating
well increased preload, but not afterload (Hutchins et al., 1978;
Pesevski and Sedmera, 2013). Since most sudden deaths (likely
due to arrhythmias) occurred in the most enlarged hearts, we
sought for other parameters that could predict or explain these
deaths. We can divide the measured parameters into several
groups according to their behavior during the development of
eccentric ventricular hypertrophy and heart failure. In the first
group, there is a quantitative change in hypertrophy independent
of its magnitude. These are the markers of cardiac hypertrophy
and include most of the ECG parameters—P wave amplitude
and duration, PR interval duration, QRS interval duration,
and ST segment depression. They reflect adaptive changes
such as myocardial hypertrophy as well as ischemia. Another
electrophysiological parameter without a clear correlation with
phenotype severity is prolongation of action potential duration.
The second group is similar in showing considerable differences
between normal hearts and hypertrophied/failing ones, but with
a significantly higher change in more hypertrophied group.

These are mostly gross weight parameters, which are direct
indicators of the level of ventricular hypertrophy, but also signs
of heart failure such as lung weight (in extreme cases leading
to hydrothorax, and ascites). On the electrophysiological level,
this was represented by abnormal conduction including blocks
in the severe group (Figure 2). These changes were reflected on
the protein level by gradual decrease of connexin43 protein, a
trend in the phosphorylated isoform, and dose-response in TH
and choline acetyltransferase expression. All these parameters are
potentially useful as indicators of transition from compensated to
decompensated stage of hypertrophy and imminent death, either
from heart failure, or arrhythmogenic.

CONCLUSIONS AND PERSPECTIVES

In this study, we explored changes in ventricular myocardium
in the settings of volume-overload heart failure as a potential
substrate for arrhythmias. ECG changes were consistent with
eccentric hypertrophy. Electrophysiologically, we observed an
increase in minimal conduction velocity in the mild ACF group
and partial conduction blocks in the severe group, while there
were no significant changes in maximal conduction velocity
among groups. Both maximal and minimal conduction velocity
inversely correlated with the degree of cardiac hypertrophy,
and APD50 was mildly prolonged. We confirmed a significant
decrease in connexin43 protein expression and phosphorylation,
with further accentuation of these changes in the most
severely hypertrophied hearts. This was accompanied at the
biochemical level by decreased cholinergic and increased
adrenergic neurotransmitter expression, showing the role of
the autonomic innervation in adaptation to increased volume
loading. Additional studies might deal with the temporal
dynamics of expression and function of the ion channels, and
telemetry recordings could document and quantify the actual
in vivo frequency of arrhythmias. Future attention will be focused
on the right ventricle, which shows even higher degree of
hypertrophy in this model. Furthermore, remodeling of the atria
could be also analyzed in the context of arrhythmogenesis in
heart failure. These findings could direct our future therapeutic
strategies in similar clinical settings.
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