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We here explore for the very first time how an advanced multiscale mathematical

modeling approach may support the design of a provenly successful tissue engineering

concept for mandibular bone. The latter employs double-porous, potentially cracked,

single millimeter-sized granules packed into an overall conglomerate-type scaffold

material, which is then gradually penetrated and partially replaced by newly grown

bone tissue. During this process, the newly developing scaffold-bone compound needs

to attain the stiffness of mandibular bone under normal physiological conditions. In

this context, the question arises how the compound stiffness is driven by the key

design parameters of the tissue engineering system: macroporosity, crack density,

as well as scaffold resorption/bone formation rates. We here tackle this question

by combining the latest state-of-the-art mathematical modeling techniques in the

field of multiscale micromechanics, into an unprecedented suite of highly efficient,

semi-analytically defined computation steps resolving several levels of hierarchical

organization, from the millimeter- down to the nanometer-scale. This includes several

types of homogenization schemes, namely such for porous polycrystals with elongated

solid elements, for cracked matrix-inclusion composites, as well as for assemblies

of coated spherical compounds. Together with the experimentally known stiffnesses

of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model

suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance

of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e.,

within several months) is additionally promoted by provision of small granule sizes, in

combination with high bone formation and low scaffold resorption rates.

Keywords: homogenization, multiscale, hydroxyapatite, material optimization, bone ingrowth

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://dx.doi.org/10.3389/fphys.2016.00383
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2016.00383&domain=pdf&date_stamp=2016-09-21
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:stefan.scheiner@tuwien.ac.at
http://dx.doi.org/10.3389/fphys.2016.00383
http://journal.frontiersin.org/article/10.3389/fphys.2016.00383/abstract
http://loop.frontiersin.org/people/89283/overview
http://loop.frontiersin.org/people/114245/overview
http://loop.frontiersin.org/people/364476/overview
http://loop.frontiersin.org/people/116494/overview


Scheiner et al. Modeling in Dental Tissue Engineering

1. INTRODUCTION

The importance of mathematical modeling in dentistry and
related fields has steadily increased over the last decades.
Thereby, the most popular examples concern Finite Element
models of the mandibular system, dating back to at least the early
1990s (Hart et al., 1992; Koritoth and Versluis, 1997).While these
models have been continuously improved over recent years, the
proper choice of mechanical material properties as key model
input parameters has gained particular attention. It has become
more and more customary to derive these parameters directly
from computed tomography (CT) images of the investigated
organs, be it through a more heuristic, regression analysis-based
approach (van Ruijven et al., 2007), or based on the combination
of X-ray physics and continuum micromechanics concepts
(Hellmich et al., 2008). The latter approach explicitly considers
the hierarchical organization of bone down to the microscopic
scales of cellular activity, i.e., to those which are in the very focus
of modern bioengineering approaches, including regenerative
medicine strategies. In the present contribution, we wish to
extend the application range of dental mathematical modeling,
from the mechanics of standard mandibular systems, to latest
developments in modern bioengineering approaches. In more
detail, we here explore for the very first time how an advanced
multiscale mathematical modeling approach may support the
design of a provenly successful tissue engineering concept for
regenerating large bone defects in the human mandible (Komlev
et al., 2002, 2003). The latter concept employs double-porous,
potentially cracked, single millimeter-sized granules packed into
an overall scaffold material, which is then gradually penetrated
and partially replaced by newly grown bone tissue.

The granules themselves, exhibiting diameters from a few
hundred micrometers to one or two millimeters, result from
a processing route based on the effect of immiscible fluids
(Komlev et al., 2002, 2003). Key morphological features of these
granules are seen in the left-hand column of Figure 1: Firstly,
they contain pores of two different characteristic lengths: small
pores, with a characteristic length of one to a few micrometers—
these pores are termed “micropores” hereafter; and large pores,
with a characteristic length of several hundred micrometers—
these pores are termed “mesopores” hereafter. A composite of
randomly oriented hydroxyapatite crystals and the micropores
constitutes the “base material” making up the granules. Upon
increasing the observation scale by several orders of magnitude,
one can discern not only the aforementioned mesopores, but
also cracks which pervade the individual granules. Finally, the
scaffold material is made up of the above described granules,
with pore space in-between—due to the characteristic length of
these pores, which is of the order of the granule diameters, these
pores are termed “macropores” throughout the present paper.
It is in these macropores, where the regeneration process starts,
i.e., where new bone tissue is formed after implantation of the
scaffold systems. During this regeneration process, the newly
developing scaffold-bone compound needs to attain the stiffness
of mandibular bone under normal physiological conditions.
In this context, the question arises how the compound
stiffness is driven by the key design parameters of the tissue

engineering system: macroporosity, crack density, as well as
scaffold resorption/bone formation rates. We here tackle this
question by combining the latest state-of-the-art mathematical
modeling techniques in the field of multiscale micromechanics,
as reviewed in Section 2.1, into an unprecedented suite of
highly efficient semi-analytically defined computation steps
resolving several levels of hierarchical organization, from the
millimeter- down to the nanometer-scale. This includes several
types of homogenization schemes, namely such for porous
polycrystals with elongated solid elements, for cracked matrix-
inclusion composites, as well as for assemblies of coated spherical
compounds; described in great detail in Sections 2.2–2.5. These
mathematical developments allow for first-ever insights into the
mechanical functioning of the investigated tissue engineering
system, including the role the aforementioned design parameters,
as is documented in Section 3, before the paper finds its
conclusion in Section 4.

2. METHODS – MATHEMATICAL
MODELING IN THE FRAMEWORK OF
MULTISCALE CONTINUUM
MICROMECHANICS, WITH
CORRESPONDING ANIMAL MODELS AND
BIOMATERIAL EXPERIMENTS

2.1. Consideration of Material Hierarchy –
Introduction of Representative Volume
Elements (RVEs)
In recent years, continuum micromechanics-based
homogenization theory (Hill, 1963; Suquet, 1997; Zaoui,
1997, 2002) turned out as particularly suitable means for the
mathematical modeling of the mechanical behavior of complex
hierarchical material systems found in biology and biomedical
engineering (Hellmich and Ulm, 2002; Hellmich et al., 2004a;
Fritsch andHellmich, 2007; Bertrand andHellmich, 2009; Fritsch
et al., 2009; Hamed et al., 2010; Fritsch et al., 2013; Scheiner
et al., 2016). In this context, a material is understood as a micro-
heterogeneous body filling a macro-homogeneous representative
volume element (RVE) with characteristic length ℓ, ℓ ≫ d, d
standing for the characteristic length of inhomogeneities within
the RVE, and ℓ ≪ L, L standing for the characteristic lengths
of geometry or loading of a structure built up by the material
defined on the RVE. Notably, for achieving results characterized
by a quite good accuracy of about 5%, d and ℓ need to be
separated by not more than a factor of 2 (Drugan and Willis,
1996), while ℓ and L need to be separated by a factor of 5 to 50
(Kohlhauser and Hellmich, 2013).

In general, the microstructure within such an RVE is so
complicated that it cannot be described in complete detail.
Therefore, the microstructural description within an RVE is
restricted to the choice of quasi-homogeneous subdomains
(called material phases), which are characterized by the following
properties: (i) their shapes, (ii) their volume fractions within
the RVE, (iii) their mechanical properties, and (iv) their
mechanical interactions. Based on these characteristics, one can
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FIGURE 1 | Investigated material system. Three-level representation of the hydroxyapatite-based granular biomaterial (column on the right-hand side), following

the morphological features found in images on different observation scales (column on the left-hand side); the depicted images have been acquired by means of

scanning electron microscopy (hierarchical level I) and µCT imaging techniques (hierarchical levels II and III).

then derive the homogenized (upscaled) behavior of the material
on the observation scale of the RVE, i.e., the relation between
homogeneous deformations acting on the boundary of the RVE
and resulting macroscopic (average) stresses. If a single material
phase is micro-heterogeneous itself, its mechanical behavior
can be estimated by means of introducing RVEs within this
phase, with characteristic lengths ℓ1 ≤ d, comprising again
inhomogeneities with characteristic length d1 ≪ ℓ1, and so on.
Such an approach is referred to as multi-step homogenization.
At sufficiently low observation scales, it may provide “universal”
phase properties, i.e., properties which are invariant throughout
an entire material class, such as all bone tissues occurring in
vertebrates (Fritsch and Hellmich, 2007).

For the material system investigated herein, i.e., for assemblies
of double-porous hydroxyapatite granules with bone tissue
optionally coating the granules, the following suite of RVEs, with
increasing characteristic lengths, is introduced:

• On hierarchical level I, a microporous, overall isotropic,
hydroxyapatite polycrystal emerges, see the bottom of
Figure 1, showing a scanning electron micrograph of the

polycrystalline microstructure on the left-hand side, and a
two-dimensional schematical representation of the (actually
three-dimensional) RVE I on the right-hand side: The
latter is composed of spherical micropores (with volume

fraction φ
polyHA
micro , also called polycrystalline microporosity).

These micropores interact mutually with randomly oriented
cylindrical hydroxyapatite crystals, with volume fraction

f
polyHA
HA = 1 − φ

polyHA
micro . The microporosity typically amounts

to φ
polyHA
micro = 0.445 (Dejaco et al., 2012). The characteristic

length of the polycrystalline RVE I is in the order of 10µm,
see the bottom line of Figure 1.

• On hierarchical level II, a mesoporous, cracked matrix material
makes up the individual granules, see the center of Figure 1,
showing a micro-computed tomography (µCT) image of the
microstructure within a granule on the left-hand side, and a
two-dimensional schematical representation of the (actually
three-dimensional) RVE II on the right-hand side: Namely,
penny-shaped cracks, with vanishing volume fraction, while
being quantified in number and size through the crack density
parameter ǫ, see Equation (2), and spherical mesopores, with
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volume fraction φ
gran
meso, are embedded in the polycrystal matrix

with properties arising from the structure of RVE I. Within
RVE II, the latter matrix fills the volume fraction f

gran
polyHA = 1−

φ
gran
meso. The mesoporosity typically amounts to φ

gran
meso = 0.189

(Dejaco et al., 2012). The characteristic length of RVE II is in
the order of 1mm, see the middle row in Figure 1.

• On hierarchical level III, a macroporous conglomerate material
consisting of mesoporous, cracked hydroxapatite granules and
newly grown bone tissue emerges, see the top of Figure 1:
granules with the stiffness of RVE II described above and

filling volume fraction f
congl
gran , are surrounded by layers of

newly grown bone tissue, with volume fraction f
congl
bone and

stiffness derived from the ultrasonic tests of Ashman and
van Buskirk (1987). These coated spherical elements are
assembled, in mutual contact, to a granular conglomerate

with macropores, with volume fraction φ
congl
macro, in-between.

At the time of granule implantation, no bone tissue has been
formed yet, and this initial configuration is characterized

by f
congl
bone = 0.

2.2. Stiffness Tensor Homogenization at
Hierarchical Level I: Elasticity of Porous
Hydroxyapatite Polycrystal
The elastic behavior of interpenetrating non-spherical crystals
with pores in-between can be particularly well represented by
the self-consistent stiffness estimate introduced by Fritsch et al.
(2006), where infinitely many solid phases oriented in all space
directions as well as one spherical pore phase are embedded in
a matrix with zero volume fraction and with the stiffness of the
homogenized material itself. The corresponding stiffness tensor
of the water-filled porous polycrystal at hierarchical level I of
Figure 1 reads as

CpolyHA =

{

f
polyHA
HA CHA :

[ 2π
∫

ϕ = 0

π
∫

ϑ = 0

[

I+ P
polyHA
cyl (ϑ, ϕ) :

(

CHA − CpolyHA
)

]−1 sinϑ dϑ dϕ

4π

]

+ φ
polyHA
micro Cmicroφ :

[

I− P
polyHA
sph :

(

Cmicroφ − CpolyHA
)

]−1
}

:

{

f
polyHA
HA

[ 2π
∫

ϕ = 0

π
∫

ϑ = 0

[

I+ P
polyHA
cyl (ϑ, ϕ) :

(

CHA − CpolyHA
)

]−1 sinϑ dϑ dϕ

4π

]

+ φ
polyHA
micro

[

I− P
polyHA
sph :

(

Cmicroφ − CpolyHA
)

]−1
}−1

,

(1)

where φ
polyHA
micro and f

polyHA
HA are the volume fractions of the

micropores and the hydroxyapatite needles; CHA and Cmicroφ ,
respectively, are the fourth-order stiffness tensors of the
hydroxyapatite crystals and of the micropores, respectively; ϑ

and ϕ are the Euler angles quantifying the orientations of the

hydroxyapatite crystals; P
polyHA
cyl (ϑ, ϕ) and P

polyHA
sph , respectively,

are the fourth-order Hill (or morphology) tensors related to
cylindrical and spherical inclusions, respectively, embedded in a
matrix made up of the microporous hydroxyapatite polycrystal;
and I is the fourth-order unit tensor, the components of which
are defined via the Kronecker delta δij (δij = 1 if i = j and
δij = 0 if i 6= 1), namely Iijkl = 1/2(δikδjl + δilδjk). The double
integrals in Equation (1) can be evaluated based on Stroud’s
integration equations (Stroud, 1971; Pichler et al., 2009). Details

regarding the computation of the Hill tensors P
polyHA
cyl (ϑ, ϕ)

and P
polyHA
sph are presented in the Supplementary Material of

this paper.
Numerical evaluation of Equation (1) requires knowledge of

stiffness tensors CHA and Cmicroφ . The isotropic stiffness of
hydroxyapatite is known from the experiments performed by

Katz and co-workers (Katz and Ukraincik, 1971; Gilmore and
Katz, 1982), yielding a Young’s modulus of EHA = 114GPa, and a
Poisson’s ratio of νHA = 0.27, see also (Hellmich and Ulm, 2002;
Hellmich et al., 2004b). We here consider the case where the pore
fluid is free to leave the microporosity upon loading of RVE I.
This relates to so-called drained conditions, with Cmicroφ = 0
(Thompson and Willis, 1991).

2.3. Stiffness Tensor Homogenization at
Hierarchical Level II: Elasticity of Cracked
Mesoporous Granule Material
Matrix-inclusion composites are preferentially represented by
a so-called Mori-Tanaka-type morphology (Mori and Tanaka,
1973; Benveniste, 1987). At hierarchical level II, two types of
inclusions are embedded into a matrix made of the porous
polycrystal with a stiffness resulting from the homogenization
scheme of Section 2.2: (i) spherical pores (the volume fraction
of which is the mesoporosity φ

gran
meso), and (ii) penny-shaped

(non-frictional, open) cracks oriented in all space directions.
The latter fill an only negligible volume fraction, so that
their amount is quantified through their number per volume
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N and their radius rcr, combined into the so-called crack
density parameter according to Budianksy and O’Connell
(1976):

ǫ = N r3cr . (2)

Based on the works of Deudé et al. (2002) and Dormieux et al.
(2004), the corresponding stiffness estimate of the mesoporous,
pre-cracked granule material reads as

Cgran =
{

f
gran
polyHACpolyHA + φ

gran
mesoCmesoφ

:

[

I− P
polyHA
sph :

(

Cmesoφ − CpolyHA
)

]−1
}

:

{

f
gran
polyHAI+ φ

gran
meso

[

I− P
polyHA
sph

:

(

Cmesoφ − CpolyHA
)

]−1
+ ǫ

}−1

,

(3)

where f
gran
polyHA and φ

gran
meso are the volume fractions of the

matrix made up of the microporous hydroxyapatite polycrystal
and of the mesopores; CpolyHA is the fourth-order stiffness
tensor of the microporous hydroxyapatite polycrystal matrix
(see Section 2.2); Cmesoφ is the fourth-order stiffness tensor of
the mesopores, defined analogously to the stiffness tensor of

the micropores (i.e., drained), and P
polyHA
sph is the Hill tensor

for spherical inclusions embedded in the isotropic microporous
hydroxyapatite polycrystal matrix, see the Supplementary
Material for details. Tensor , also occurring in Equation (3), is
defined via the Poisson’s ratio of the microporous hydroxyapatite
polycrystal, νpolyHA,

=
16

9

1− (νpolyHA)
2

1− 2νpolyHA
K

+
32

45

(1− νpolyHA)(5− νpolyHA)

2− νpolyHA
J,

(4)

see (Dormieux et al., 2004).

2.4. Microstress and Microstrain Fields in
Bone Tissue-Coated Hydroxyapatite
Granules and in the Macropores –
Matrix-Inclusion Problems of the
Hervé-Zaoui and of the Eshelby Type
Having reviewed and confirmed, respectively, the
reliability of advanced self-consistent and Mori-Tanaka
homogenization schemes at hierarchical level I (in Section
2.2) and at hierarchical level II (in Section 2.3), we now
assign corresponding stiffness properties to individual
granules, which we surround by increasingly thick coatings
of newly formed bone tissue, and which we then pile up
to a conglomerate of bone tissue-coated granules, see the

granule and bone phases in RVE III shown in Figure 1.
This goes beyond extending the classical self-consistent and
Mori-Tanaka estimates, but requires the consideration of
shell-like morphologies as pioneered by Hervé and Zaoui
(1993); and this adaption motivates the following further
developments: While the phase strains at hierarchical levels I
and II were all estimated from homogenous inclusion strains
of the underlying Eshelby-problem consisting of a spherical or
cylindrical inclusion being embedded either into a real matrix,
or into a fictitious matrix with the stiffness of the homogenized
material, only the macropore phase exhibits this homogeneous
property as concerns the RVE of hierarchical level III. In
turn, as for the coated granule phase, Hervé-Zaoui’s matrix-
coated inclusion problem is considered (see Figure 2). This
problem is characterized by the following boundary and field
conditions:

• Homogeneous strains at any location which is infinitely far
from the inclusion center:

r → ∞ : ξ → E0 · x , (5)

where x is the position vector, ξ is the displacement field, and E0
is the field of uniform displacements to which the auxiliarymatrix
with the properties of the overall conglomerate is subjected
infinitely far from the inclusion.

• Equilibrium condition:

0 ≤ r < ∞ : div σ = 0 , (6)

where div denotes the divergence operator. Evaluation of
Equation (6) yields, when considering spherical coordinates, the
following three differential equations (Salençon, 2001):

FIGURE 2 | Adaption of the model of Hervé and Zaoui (1993).

Homogenization of the stiffness of the macro-porous granular scaffold material

considering bone ingrowth, with spherical granules coated by bone tissue, and

embedded in a polycrystal-type composite material consisting of the

bone-coated granules and macropores.
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∂σrr

∂r
+

1

r

∂σrϑ

∂ϑ
+

1

r sinϑ

∂σrϕ

∂ϕ
+

1

r

(

2σrr − σϑϑ − σϕϕ + σrϑ cotϑ
)

= 0 , (7)

∂σϑr

∂r
+

1

r

∂σϑϑ

∂ϑ
+

1

r sinϑ

∂σϑϕ

∂ϕ
+

1

r

[(

σϑϑ − σϕϕ

)

cotϑ + 3σrϑ
]

= 0 , (8)

∂σϕr

∂r
+

1

r

∂σϕϑ

∂ϑ
+

1

r sinϑ

∂σϕϕ

∂ϕ
+

1

r

(

3σϕr + 2σϕϑ cotϑ
)

= 0 . (9)

• Kinematic relation:

0 ≤ r < ∞ : ε = ∇sξ , (10)

where ∇s represents the symmetric gradient operator. Evaluation of Equation (10) in spherical coordinates yields (Salençon, 2001)

ε =



















∂ξr

∂r

1

2

(

1

r

∂ξr

∂ϑ
+

∂ξϑ

∂r
−

ξϑ

r

)

1

2

(

1

r sinϑ

∂ξr

∂ϕ
+

∂ξϕ

∂r
−

ξϕ

r

)

1

r

∂ξϑ

∂ϑ
+

ξr

r

1

2

(

1

r

∂ξϕ

∂ϑ
+

1

r sinϑ

∂ξϑ

∂ϕ
−

cotϑ

r
ξϕ

)

symm.
1

r sinϑ

∂ξϕ

∂ϕ
+

ξϑ

r
cotϑ +

ξr

r



















. (11)

The nature of the coated inclusion is reflected by stiffness
properties being defined as functions of the radius measured
from the center of that inclusion:

r ≤ rgran: σ (r) = Cgran : ε(r) , (12)

rgran ≤ r ≤ rbone: σ (r) = Cbone : ε(r) , (13)

r ≥ rbone: σ (r) = Ccongl : ε(r) , (14)

with rgran and rbone denoting the radii of the individual granule
and of the outer surface of the bone coating; with σ (r) and
ε(r) denoting the stresses and strains prevailing in the Hervé-
Zaoui coated inclusion problem; with Cgran as the isotropic
stiffness tensor of the granule material, determined according
to Equation (3); with Cbone as the stiffness tensor of newly
grown bone tissue; and with Ccongl as the stiffness of the overall

macroporous scaffold-bone compound of hierarchical level III.
Due to the random orientation of the morphological features on
all considered observation scales (hierarchical levels I – III), the
overall conglomerate stiffness is isotropic, hence it is defined as

Ccongl = 3kconglK+ 2µconglJ (15)

with kcongl and µcongl as the bulk and shear modulus of the
scaffold-bone conglomerate on the macroscopic observation
scale (hierarchical level III).

As regards the stiffness tensor of newly formed bone tissue,
Cbone, we adapt the strategy described in Bertrand and Hellmich
(2009) for the current purpose: We start with the ultrasound-
based tissue stiffness reported by Ashman and van Buskirk
(1987), amounting to

C
us
bone=

















Cbone,1111 Cbone,1122 Cbone,1133

√
2Cbone,1123

√
2Cbone,1113

√
2Cbone,1112

Cbone,2211 Cbone,2222 Cbone,2233

√
2Cbone,2223

√
2Cbone,2213

√
2Cbone,2212

Cbone,3311 Cbone,3322 Cbone,3333

√
2Cbone,3323

√
2Cbone,3313

√
2Cbone,3312√

2Cbone,2311

√
2Cbone,2322

√
2Cbone,2333 2Cbone,2323 2Cbone,2313 2Cbone,2312√

2Cbone,1311

√
2Cbone,1322

√
2Cbone,1333 2Cbone,1323 2Cbone,1313 2Cbone,1312√

2Cbone,1211

√
2Cbone,1222

√
2Cbone,1233 2Cbone,1223 2Cbone,1213 2Cbone,1212

















=

















15.908.33 9.79 0 0 0
8.33 18.8 9.79 0 0 0
9.79 9.7927.10 0 0 0
0 0 0 9.26 0 0
0 0 0 0 8.24 0
0 0 0 0 0 7.62

















GPa ,

(16)

where the directions 1, 2, and 3 refer to the radial, circumferential,
and axial directions of the orthotropic bone tissue material. The
axial direction is aligned with the collagen fibril orientation, and
during bone regeneration, the latter follows given morphological
features occurring under normal physiological conditions. Since
the spherical granular features deviate from the aforementioned
physiological situation, it is very probable that the collagen fibrils
are oriented along the tangent planes to the granule spheres,
while not having any preferred orientation within these planes.
As a first-order approximation of this situation, we let the

stiffness tensor given by Equation (16) rotate first around axis
3 and average over all corresponding results (this leads to a
transversely isotropic stiffness tensor with the isotropic plane
coinciding with the 1–2 plane), and we then let the latter stiffness
tensor rotate about an axis orthogonal to axis 3, which in turn
leads to yet another transversely isotropic stiffness tensor with
the plane of isotropy now including the axis 3. With respect to a
spherical coordinate system attached to the granule, see Figure 2,
the isotropic plane of the newly grown bone tissue coincides with
the eϑ -eϕ-plane, so that Cbone can be given as
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Cbone =

















Cbone,rrrr Cbone,rrϑϑ Cbone,rrϕϕ 0 0 0
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GPa . (17)

Given the isotropic nature of the overall scaffold-bone compound
material, our interest in auxiliary homogenous strain fields E0
prescribed at the infinite boundary of the Hervé-Zaoui matrix
according to Equation (6) can be restricted to purely volumetric
and purely deviatoric cases; as will become fully evident during
the bulk and shear modulus homogenization described in
Section 2.5.

For the volumetric load case, the boundary condition defined
by Equation (6) is restricted to

r → ∞ : E0 = Evol,0 =
Evol,0

3
I ⇒ ξ 0 = ξ vol,0 = r

Evol,0

3
er

(18)
where I is the second-order unit tensor, and er is the base
vector in radial direction, see Figure 2. Spherical symmetry of
the remote loading conditions according to Equation (18) implies
spherical symmetry of the resulting displacement field,

ξ = ξ (r) = ξr(r)er , (19)

with the corresponding spherically symmetric strain field reading
as

ε =
∂ξr(r)

∂r
er ⊗ er +

∂ξr(r)

∂ϑ
eϑ ⊗ eϑ +

∂ξr(r)

∂ϕ
eϕ ⊗ eϕ . (20)

Insertion of this strain field into the elastic laws given by
Equations (12) – (14), and of the corresponding result into the
equilibrium condition given by Equations (6) – (9) yields

d2ξr
dr2

+
2

r

dξr
dr

−
2(Ci,ϑϑϑϑ + Ci,ϑϑϕϕ − Ci,rrϑϑ )

Ci,rrrr

ξr

r2
= 0 . (21)

When introducing parameter ni,

ni =

√

1

4
+

2(Ci,ϑϑϑϑ + Ci,ϑϑϕϕ − Ci,rrϑϑ )

Ci,rrrr
, (22)

the general solution of the ordinary differential equation (21)
reads as

ξi,r(r) = Ŵk
i,1r

−1/2+ni + Ŵk
i,2r

−1/2−ni . (23)

For the definitions of material parameters Ŵk
i,j (j = 1, 2), see

the Supplementary Material. Evaluating Equation (22) for an
isotropic phase, where Ciso

i,rrrr = Ciso
i,ϑϑϑϑ = ki + 4

3µi, and

Ciso
i,ϑϑϕϕ = Ciso

i,rrϑϑ = ki − 2
3µi, one can easily see that ni = 3/2;

this is the case for i = gran, scaff. For the bone tissue stiffness
according the Equation (17), nbone amounts to 1.79. Inserting the

general solution of the displacement field, Equation (23), into the
kinematic relation, Equation (11), yields the corresponding strain
field, given by its components in spherical coordinates,

εi,rr(r) =
(

−
1

2
+ ni

)

Ŵk
i,1r

−3/2+ni

+
(

−
1

2
− ni

)

Ŵk
i,2r

−3/2−ni , (24)

εi,ϑϑ (r) = Ŵk
i,1r

−3/2+ni + Ŵk
i,2r

−3/2−ni , (25)

εi,ϕϕ(r) = εi,ϑϑ (r) . (26)

The stress field resulting from hydrostatic deformations follows
from insertion of Equations (24) – (26) into the constitutive
relations, Equations (12) – (14), as

σi,rr(r) = r−3/2
(

MiŴ
k
i,1r

ni +NiŴ
k
i,2r

−ni
)

, (27)

σi,ϑϑ (r) = r−3/2
(

OiŴ
k
i,1r

ni + PiŴ
k
i,2r

−ni
)

, (28)

σi,ϕϕ(r) = σi,ϑϑ (r) . (29)

For the definitions of material constants Mi, Ni, Oi, and Pi, see
the Supplementary Material.

As regards the deviatoric loading, we prescribe a purely
deviatoric (pure shear) deformation Ed,0 at the infinitely remote
boundary of the domain depicted in Figure 2,

r → ∞ : Ed,0 = γ (ex ⊗ ex − ey ⊗ ey) , (30)

where ex and ey are the base vectors of a Cartesian coordinate
system with its origin in the center of the granule, and symbol⊗
represents the dyadic vector product. The related displacements
at the infinitely remote boundary follow as

ξd,0 = γ (xex − yey)

= γ
[

(

r sin2 ϑ cos 2ϕ
)

er +
(

r sinϑ cosϑ cos 2ϕ
)

eϑ

+
(

r sinϑ sin 2ϕ
)

eϕ

]

,

(31)

with er , eϑ , and eϕ as the base vectors of a spherical
coordinate system, also originating from the granule center.
Furthermore, the displacement field across the whole domain
reads as

4 =4(r, ϑ, ϕ)

=
[

ξr(r) sin
2 ϑ cos 2ϕ

]

er +
[

ξϑ (r) sinϑ cosϑ cos 2ϕ
]

eϑ

+
[

ξϕ(r) sinϑ sin 2ϕ
]

eϕ .
(32)
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The displacement field is then inserted into Equation (11). The
resulting strain field enters again the constitutive relations,
Equations (12) – (14), and the obtained stress field gives access,
via the equilibrium condition, Equations (6) – (9), to a set of
ordinary differential equations, which can be solved for the
components of the displacement field, see the Supplementary
Material. The general solutions of the set of differential equations
read

ξi,r(r) =
4

∑

j= 1

Ŵ
µ
i,jr

− 1
2−αi,j , (33)

ξi,ϑ (r) =
4

∑

j= 1

β(αi,j)Ŵ
µ
i,jr

− 1
2−αi,j , (34)

ξi,ϕ(r) = − ξi,ϑ (r) , (35)

with β(αi,j) defined as

β(αi,j) = −
Pi,11(αi,j)

Pi,12(αi,j)
. (36)

The underlying parameters, i.e., αi,j, Pi,11(αi,j), and Pi,12(αi,j),
are defined in the Supplementary Material. Note that, in line
with Bertrand and Hellmich (2009), Equation (33) – (35) are
subsequently employed for quantification of the displacement
field in the anisotropic constituents only (i.e., solely in the bone
phase). For the isotropic constituents within the RVE defined
on hierarchical level III, iiso = gran, congl, the displacement
field solutions originally given by Hervé and Zaoui (1993) are
employed:

ξiiso,r(r) = Ŵ
µ
iiso,1

r − 6
νiiso

1− 2νiiso
Ŵ

µ
iiso,2

r3 + 3
Ŵ

µ
iiso,3

r4

+
5− 4νiiso
1− 2νiiso

Ŵ
µ
iiso,4

r2
, (37)

ξiiso,ϑ (r) = Ŵ
µ
iiso,1

r −
7− 4νiiso
1− 2νiiso

Ŵ
µ
iiso,2

r3 − 2
Ŵ

µ
iiso,3

r4
+ 2

Ŵ
µ
iiso,4

r2
,

(38)

ξiiso,ϕ(r) = − ξiiso,ϑ (r) . (39)

For determination of parameters Ŵ
µ
i,j, see the Supplementary

material.
For estimating strain states in the macropores, the standard

Eshelby matrix-inclusion problem (Eshelby, 1957) is considered,
where the infinite matrix is subjected to the same strains as
those in the Hervé-Zaoui problem. Under these conditions, the
strains in a spherical inclusion with the stiffness properties of
the macropores, Cmacroφ , which is embedded in a matrix with
the stiffness Ccongl of the overall scaffold-bone conglomerate
material, read as

ε
congl
macroφ =

{

I+ S
congl
sph :

[

(

Ccongl
)−1

: Cmacroφ − I

]}−1
: E0 ,

(40)

with S
congl
sph as the Eshelby tensor of a spherical inclusion

embedded in amatrix with stiffnessC
congl
sph , see the Supplementary

Material for more details. Notably, the macropores are, as micro-
and mesopores, considered to be drained, i.e., Cmacroφ = 0. The
phase stresses corresponding to the phase strains given through
Equation (40) follow from the elastic law of the macropores,
reading as

σ
congl
macroφ = Cmacroφ : ε

congl
macroφ . (41)

2.5. Bulk and Shear Stiffness
Homogenization at Hierarchical Level III:
Elasticity of Macroporous Granule-Bone
Conglomerate
Homogenization of bulk and shear moduli of the overall
conglomerate will be performed on the basis of (i) the
microdisplacement, microstress, and microstrain fields in the
granule, bone, and macropore phases as given through
Equations (23) – (29), (33) – (39), as well as (40) and (41), of
(ii) the stress and strain average rules applied to the RVE III
of Figure 2, and of (iii) the definition of the bulk and the
shear modulus in the terms of macroscopic stress and strain
measures. The aforementioned stress and strain average rules,
enforcing equilibrium and kinematic compatibility within the
RVE III, read as

6congl =
1

VRVE III

∫

VRVE III

σ (x) dV , (42)

and

Econgl =
1

VRVE III

∫

VRVE III

ε(x) dV , (43)

with the location vector x labeling points inside the RVE III.
By definition, the bulk modulus describes the volume
change of a material volume if it is subjected to hydrostatic
pressure. Accordingly, the bulk modulus of the scaffold-bone
compound material with a stiffness according to Equation (15) is
defined as

kcongl =
6congl,m

Econgl,vol
, (44)

where 6congl,m is the mean macroscopic stress of the scaffold
material, 6congl,m = tr6congl/3, and Econgl,vol is the macroscopic
volumetric strain of the scaffold material, Econgl,vol =
trEcongl; “tr” denoting the trace operator. Dividing the RVE
III into the material phases introduced in Section 2.1 and
Figure 1, the mean conglomerate stresses and the volumetric
conglomerate strains can be expressed by means of the stress
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and strain average rules defined by Equations (42) and (43),
yielding

6congl,m = f
congl
gran

〈

σm(x)
〉congl
gran + f

congl
bone

〈

σm(x)
〉congl
bone

+φ
congl
macro

〈

σm(x)
〉congl
macroφ , (45)

Econgl,vol = f
congl
gran

〈

εvol(x)
〉congl
gran + f

congl
bone

〈

εvol(x)
〉congl
bone

+φ
congl
macro

〈

εvol(x)
〉congl
macroφ . (46)

where f
congl
gran , f

congl
bone , and φ

congl
macro are the volume fractions of the

granules, of the newly formed bone tissue, and of themacropores,

respectively;
〈

σm(x)
〉congl
gran ,

〈

σm(x)
〉congl
bone , and

〈

σm(x)
〉congl
macroφ are the

volume averages of themeanmicroscopic stresses in the granules,
in the newly formed bone tissue, and in the macropores,

respectively; and
〈

εvol(x)
〉congl
gran ,

〈

εvol(x)
〉congl
bone , and

〈

εvol(x)
〉congl
macroφ

are the volume averages of the volumetric microscopic strains
in the granules, in the newly formed bone tissue, and in the
macropores, respectively. The phase strain averages occurring
in Equation (46) are then approximated by the microstrain
fields obtained from the matrix-(coated or non-coated) inclusion
problems introduced in Section 2.4. I.e., Equation (40) is
evaluated for E0 = Evol,0, so as to arrive at

〈

εvol(x)
〉congl
macroφ

= tr

[

{

I+ S
congl
sph :

[

(

Ccongl
)−1

: Cmacroφ − I

]}−1
: Evol,0

]

=
3kcongl + 4µcongl

3kmacroφ + 4µmacroφ
Evol,0 ,

(47)

and the corresponding mean stress follows as

〈

σm(x)
〉congl
macroφ = kmacroφ

〈

εvol(x)
〉congl
macroφ , (48)

with kmacroφ and µmacroφ as the bulk and shear moduli of the
macropore phase. The average volumetric phase strains in the
granule and bone tissue phases, respectively, are obtained from
averaging over strains occurring in the granules, and of the bone
tissue coating of the Hervé-Zaoui problem of Figure 2, according
to

〈

εvol(x)
〉congl
i

= tr

[

1

Vi

ri,out
∫

ri,in

π
∫

0

2π
∫

0

r2ε(r) sinϑ dϑ dϕ dr

]

. (49)

For the evaluation of Equation (49), it is mandatory that all
strain tensors are expressed in the same (Cartesian) coordinate
system; also in Equation (49), ri,in and ri,out denote the inner
and outer radii of the respective layer: e.g., i = bone gives
rbone,in = rgran and rbone,out = rbone, see Figure 2. Analogously,
the phase volume averages of the mean stresses in the granule

and bone phases follow from the stress field components given
by Equations (27) – (29) as

〈

σm(x)
〉congl
i

=
1

3
tr

[

1

Vi

ri,out
∫

ri,in

π
∫

0

2π
∫

0

r2σ (r) sinϑ dϑ dϕ dr

]

. (50)

The mathematical expressions resulting from evaluating
Equations (49) and (50) for the granule and the bone phases
are given in the Supplementary Material. Finally, inserting
Equations (47) – (50) into Equations (45) and (46), and of
the resulting expression into Equation (44), yields an implicit
equation for calculation of kcongl.

The macrosopic shear modulus of the scaffold material is
governed by another classical relation of continuum mechanics,
namely

µcongl =
6congl,d,ij

2Econgl,d,ij
, (51)

hence µcongl follows from arbitrary components (with i 6= j)
of the deviatoric part of the macroscopic stress tensor, 6congl,d,
defined through6congl,d = 6congl− I6congl,m, and the deviatoric
part of the macroscopic strain tensor, Econgl,d, defined through
Econgl,d = Econgl− IEcongl,m. Taking into account that the scaffold
material is a composite as defined in Figure 2, 6congl,d and
Econgl,d follow from volume averaging as

6congl,d = f
congl
gran

〈

σ d(x)
〉congl
gran + f

congl
bone

〈

σ d(x)
〉congl
bone

+φ
congl
macro

〈

σ d(x)
〉congl
macroφ , (52)

Econgl,d = f
congl
gran

〈

εd(x)
〉congl
gran + f

congl
bone

〈

εd(x)
〉congl
bone

+φ
congl
macro

〈

εd(x)
〉congl
macroφ , (53)

with
〈

σ d(x)
〉congl
gran ,

〈

σ d(x)
〉congl
bone , and

〈

σ d(x)
〉congl
macroφ as the volume

averages of the deviatoric stress tensors across the granular

material, bone, and macropore phases, and with
〈

εd(x)
〉congl
gran ,

〈

εd(x)
〉congl
bone , and

〈

εd(x)
〉congl
macroφ as the volume averages of the

deviatoric strain tensors across the granular material, bone,
and macropore phases. The strain tensor components, obtained
through insertion of Equations (33) – (35) and Equations (37) –
(39), respectively, into Equation (10), are then rotated to a
Cartesian base frame, and averaged over the volumes of the
individual phases i,

〈

ε(x)
〉

i
=

1

Vi

ri,out
∫

ri,in

π
∫

0

2π
∫

0

r2ε(r) sinϑ dϑ dϕ dr . (54)

Analogously, the volume average of stress tensors across one
individual phase, whose components follow from insertion of the
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phase strain tensors into the constitutive relations, Equations (12)
– (14),

〈

σ (x)
〉

i
=

1

Vi

ri,out
∫

ri,in

π
∫

0

2π
∫

0

r2σ (x) sinϑ dϑ dϕ dr . (55)

Given that the here applied loading is purely deviatoric, the
deviatoric strain and stress tensors are equal to the respective full
tensors, that is

〈

εd(x)
〉

i
=

〈

ε(x)
〉

i
and

〈

σ d(x)
〉

i
=

〈

σ (x)
〉

i
. The

resulting expressions for
〈

εd(x)
〉congl
gran ,

〈

εd(x)
〉congl
bone ,

〈

σ d(x)
〉congl
gran ,

and
〈

σ d(x)
〉congl
bone , are given in the Supplementary Material. The

average deviatoric part of the strain tensor across the macropore
phase follows again from the matrix-inclusion-type approach of
Equation (40),

〈

ε(x)
〉congl
macroφ =

{

I+ S
congl
sph :

[

(

Ccongl
)−1

: Cmacroφ − I

]}−1
:Ed,0 .

(56)

Due to the purely deviatoric loading,
〈

εd(x)
〉congl
macroφ equals

〈

ε(x)
〉congl
macroφ , reading, when further evaluating Equation (56), as

〈

εd(x)
〉congl
macroφ =

(

5µcongl(3kcongl + 4µcongl)
)

Ed,0

×
[

(µcongl(9kcongl + 8µcongl)

+ 6µmacroφ(kcongl + 2µcongl)
]−1

.

(57)

The corresponding average deviatoric stress tensor follows as

〈

σ d(x)
〉congl
macroφ = 2µmacroφ

〈

εd(x)
〉congl
macroφ . (58)

The macroscopic shear modulus of the scaffold material,
µcongl, follows then from insertion of Equations (54), (55), (57),
and (58) into Equations (52) and (53), and of the resulting
expression into Equation (51). Analogously to the scaffold
bulk modulus, µcongl is a function of the scaffold stiffness.
This implies that determination of µcongl has to occur in
conjunction with determination of kcongl, and calls for an implicit
scheme.

2.6. Animal Studies and Biomaterial
Experiments, Revealing Kinetics of Bone
Ingrowth and Scaffold Resorption
When applying the hydroxyapatite granule system in vivo, two
out of the various phase volume fractions seen in Figure 2

and Section 2.1 significantly evolve over time: (i) the bone

tissue volume fraction f
congl
bone , and (ii) the microporosity φ

polyHA
micro .

Corresponding evolutions can be estimated as follows:
As concerns bone ingrowth, we make use of insights gained

from X-ray microtomography. Over a time span of roughly 10
weeks after implantation, the increase of the thickness of newly
grown bone tissue on implanted biomaterials turned out to
be approximately linear, at a rate of approximately kgrowth =
4µm/week (Cancedda et al., 2007). Given the near-spherical

shape of the granules making up the biomaterial scaffold, the
bone volume fraction evolution over time follows as

f
congl
bone =

[
(

rgran + kgrowtht
)3

r3gran
− 1

]

f
congl
gran , (59)

where t is the time variable, t = 0 being the time instant of
implantation, and rgran the (average) radius of the granules. In
order to define the bone deposition rate that is to be expected
for the biomaterial studied in this paper, specific histological
animal studies were carried out at the Central Scientific
Research Institute of Dentistry and Maxillofacial Surgery
(CRID), in Moscow, Russia. These studies were performed in
conformity with the relevant institutional guidelines, which are
in compliance with respective national laws and policies related
to animal care, and which were approved by the Animal Ethics
Committee of CRID. Thirty adult Wistar rats (12 weeks old, body
weight 250 to 300 grams, and of both sexes) were divided into 2
groups. The rats were allowed free access to food and water ad
libitum at all times and were maintained on a 12 h light/dark
cycle (lights on from 8 a.m. and 8 p.m.). They were constantly
exposed to a temperature of 23 ± 1◦C, and a relative humidity
of 60 ± 10%. All rats were maintained and used in accordance
with the guidelines of the Animal Ethics Committee of CRID For
surgery, each rat was anesthetized by intraperitoneal injection of
Zoletil 50 (Virbac S.A., France) with a dose of 0.2mL/100 grams
of body weight. For the femoral epiphysis model, an incision was
made in the skin on the medial side of the thigh and the femoral
quadriceps muscle was exposed. The muscle was sectioned
longitudinally in its distal third and separated anterolaterally.
After exposure of the distal end of the epiphysis of the right
femur and peeling of the periosteum, a bone defect was created
with a 3mm hand-held surgical drill under irrigation of NaCl
0.9%. In the test group, carbonate hydroxyapatite (CHA) ceramic
granules were inserted into the defect. In the control group, the
bone defects were empty and healed under blood clots. Five
animals of both groups were sacrificed at each 2, 4, and 8 weeks
after implantation. For histological examination, the grafts with
surrounding tissues were dissected and fixated in 10% buffered
formalin for 24 h. Each graft was sectioned in ten pieces through
its midline and embedded in paraffin. Serial 5µm-sections were
deparaffinized, hydrated and stained with hematoxylin and eosin.
Photomicrographs of internal sections of each sample were taken
by means of a light microscope (Leica DM LB, Germany) and
photographed (Sony, Japan). Computer-assisted measurements
of the histological parameters were obtained using an automated
image analysis system Image-Pro Plus (Media Cybernetics, USA).
For each graft at least 5 sections were examined, in each section at
least 25 fields of vision were analyzed. The region of interest was
taken at 100×magnification and resolution of 2500×1200 pixels,
see Figure 3. By measuring the percentage of newly formed
bone (area) on the CHA test groups at 2, 4, and 8 weeks after
implantation, revealing a bone bone ingrowth rate of kgrowth =
7±3µm/week, complying well with the aforementioned previous
studies (Cancedda et al., 2007).

As concerns hydroxyapatite granule resorption, a recent
µCT-based study on tricalcium phosphate biomaterials
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FIGURE 3 | Histological study of bone regeneration in bone defects optionally containing CHA granules. (A) control group at 2 weeks after

implantation—the bone defect is filled with connective tissue; (B) CHA group at 2 weeks after implantation—the granules are surrounded with connective tissue, in

some granules osteoid formation can be discerned ; (C) CHA group at 2 weeks after implantation—near bone edges granules are surrounded with woven bone; (D)

control group at 4 weeks after implantation—the bone defect is filled with connective tissue and woven bone; (E) CHA group at 4 weeks after implantation—the

granules in the center of the defect are mostly surrounded with trabecular and woven bone; (F) CHA group at 4 weeks after implantation (higher

magnification)—woven bone is forming around and inside CHA granule; (G) control group at 8 weeks after implantation—newly formed bone can be discerned at the

edges of the bone defect; (H) CHA group at 8 weeks after implantation—trabecular bone has formed between CHA granules; (I) CHA group at 8 weeks after

implantation—near bone edges granules are integrated in well-formed trabecular bone.

(Czenek et al., 2014) revealed that pseudo-physiological
conditions favor micropore growth, while pores of larger
sizes remain fairly unaffected. The corresponding temporal
evolution of the microporosity during granule resorption thus
reads as

φ
polyHA
micro = φ

polyHA
micro,0 + krest , (60)

with φ
polyHA
micro,0 as the microporosity before resorption sets in,

and kres as scaffold resorption rate. In order to find numerical
values for the resorption rate, the solubility of CHA ceramic
granules was studied in a TRIS-HCl buffer solution, exhibiting
a pH-value of 7.4 (according to ISO 10993-14-2001) for 21 days
at a constant liquid phase volume (thus representing a closed
system). The desired pH-value was reached through adding
13.25 g of TRIS (Cat. No: 77-86-1, Sigma-Aldrich) and 125ml
of HCl (Cat. No: 7647-01-0, Aldrich-Aldrich). The solid-to-
liquid ratio was 0.5 g/100mL. The development of the calcium

concentration over time in the liquid phase was measured
using the atomic emission spectrometer Ultima 2 (Jobin-Yvon,
France), see Figure 4. The corresponding dissolution rate of the
scaffold material can be back-analyzed based on the chemical
composition of the material, i.e., Ca10(PO4)6(OH)2−2x(CO3)x,
with x = 0.05. Additionally, the gained experimental data
was fitted by function CCa2+ = (0.1073t2 + 5.18t +
0.3093)/(t2 + 44.11t + 42.61) (see the dashed graph in
Figure 4), in order to get a continuous description of the
dissolution progress. Considering the molecular masses of the
hydroxyapatite crystals (which constitute the solid part of the
granules), we back-calculated, through simple compositional
rules, that the dissolution rate amounted to kres ≈ 0.016w−1

at the start of the dissolution process while, owing to the
closed experimental system implying a changing buffer solution
in the course of the dissolution process, the dissolution
rate decreases thereafter, eventually converging to virtually
zero.
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FIGURE 4 | Dissolution behavior of CHA granules. Calcium concentration

measured in the buffer solution by means of atomic emission spectrometry,

reflecting the dissolution behavior of the immersed CHA granule; the

cross-shaped markers represent the measured data, whereas the dashed

graph represents the fitting of the experimental data by means of function

C
Ca2+ = (0.1073t2 + 5.18t+ 0.3093)/(t2 + 44.11t+ 42.61).

3. RESULTS AND DISCUSSION

3.1. Microstructure-Property Relations:
How Micro/Meso/Macroporosity, Crack
Density, and Bone Tissue Volume Fraction
Govern the Overall Scaffold-Bone
Conglomerate Stiffness
For elucidating the influence of the scaffold material composition
on its stiffness, the latter wasmicromechanically estimated for the
following parameter variations:

• The microporosity is varied between φ
polyHA
micro = [0.2, 0.6],

while φ
gran
meso = 0.189, ǫ = 10, f

congl
bone = 0, and φ

congl
macro =

[0.3, 0.4, 0.5];
• the mesoporosity is varied between φ

gran
meso = [0.1, 0.3], while

φ
polyHA
micro = 0.445, ǫ = 10, f

congl
bone = 0, and φ

congl
macro =

[0.3, 0.4, 0.5];
• the crack density parameter is varied between ǫ = [0, 100],

while φ
polyHA
micro = 0.445, φ

gran
meso = 0.189, f

congl
bone = 0, and

φ
congl
macro = [0.3, 0.4, 0.5]; and

• the bone tissue volume fraction is varied between f
congl
bone =

[0, 0.5], while φ
polyHA
micro = 0.445, φ

gran
meso = 0.189, ǫ = 10, and

φ
congl
macro = [0.3, 0.4, 0.5].

Furthermore, since stiffness of an isotropic material is often
associated with the so-called Young’s modulus, we present the
computed bulk and shear modulus of the scaffold material in
terms of the corresponding Young’s modulus, through

Econgl =
9kconglµcongl

3kcongl + µcongl
. (61)

Accordingly performed stiffness homogenization reveals that the
Young’s modulus of the scaffold material decreases non-linearly
with increasing microporosity, whereas this dependence is the
more pronounced the lower the macroporosity, see Figure 5A.
Likewise, increasing the mesoporosity leads to a decreasing
Young’s modulus of the scaffold material, and the decrease is
again more significant for lower macroporosities, see Figure 5B.
Comparing Figures 5A,B suggests that the influence of the
microporosity on the Young’s modulus of the scaffold material
is more significant than the influence of the mesoporosity—
however, it should be noted that the technologically relevant
range considered in these parameter studies is much larger for
the microporosity than for the mesoporosity. An increase of the
density of cracks obviously leads to a decreasing stiffness, see
Figure 5C. Particularly for low crack densities an increase of the
crack density parameter leads to a very steep stiffness loss. For
higher crack density parameters, the additional stiffness loss due
to further crack densification appears to be far less substantial.
Notably, in the parameter study presented in Figure 5C, crack
density parameters up to ǫ = 100 were considered. However,
due to the minor dependence of the scaffold material stiffness on
ǫ at high crack densities, only the range ǫ = {0, 25} is shown in
Figure 5C. Finally, Figure 5D shows the dependence of Econgl on
the bone tissue volume fraction. Obviously, bone ingrowth leads
to a stiffness increase of the scaffold material. Depending on the
initial value of themacroporosity, the stiffness increase stops once
all of the macropore space is filled with bone tissue. Thus, while

the stiffness for φ
congl
macro = 0.5 is quasi-zero and thus much lower

than for φ
congl
macro = 0.3, the opposite is true once all of the pore

space is filled with bone tissue.
Importantly, all dependencies discussed so far are significantly

non-linear, and also highly interrelated; e.g., the influence of an
increasing crack density differs, in quantitative terms, between
an uncracked and a strongly cracked material, and so forth. This
implies that for being able to adequately estimate the stiffness of a
hierarchical material such as the one studied in this paper, using
simplistic empirical relations is certainly not expedient, and may
lead to serious misestimations.

3.2. Comments on Experimental Validation
The micromechanical representations depicted in Figure 1,
and the corresponding homogenization steps, have undergone
extensive experimental validation, in the context of various
material systems. The self-consistent scheme with needle-shaped
solid phases oriented in all space directions and spherical
pores, see Section 2.2, has been experimentally validated for
various porous hydroxapatite biomaterial systems (Peelen et al.,
1978; Akao et al., 1981; de With et al., 1981; Shareef et al.,
1993; Arita et al., 1995; Martin and Brown, 1995; Liu, 1998;
Charrière et al., 2001; Fritsch et al., 2009); and it has been also
corroborated for a wide range of other porous polycrystalline
systems, such as gypsum (Sanahuja et al., 2010), or a variety
of piezoelectric ceramics, alumina-, circonia-, and silicon-based
materials (Fritsch et al., 2013).

The relevance of the Mori-Tanaka estimate for the
mesoporous, cracked matrix-inclusion material system
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FIGURE 5 | Influences of porosities, crack density, and bone tissue volume fraction on the conglomerate stiffness. Young’s modulus of the macroscopic

scaffold material, Econgl, in GPa, computed for varying macroporosity, φ
congl
macro = {0.3, 0.4, 0.5}, and (A) varying microporosity, φ

polyHA
micro = [0.2, 0.6], (B) varying

mesoporosity, φ
gran
meso = [0.1, 0.3], (C) varying crack density, ǫ = [0, 25], and (D) varying bone tissue volume fraction, f

congl
bone = [0,0.5].

(of Section 2.3) can be readily seen from comparison
of corresponding results to those of the Finite Element
(FE) simulations of Dejaco et al. (2012): µCT scans of the

investigated granule reveal a microporosity of φ
polyHA
micro = 0.445,

a mesoporosity of φ
gran
meso = 0.189, a crack number of

N ≈ 3.80 × 10−6 µm−3, and an average crack radius
of rcr ≈ 260µm; the latter two yielding a crack density
parameter of ǫavg = 66.85. Inserting this compositional
data into the stiffness estimate of Equation (3) yields a
homogenized shear modulus of µhom

gran = 78.50MPa. It
needs to be compared to the shear modulus corresponding
to the FE-modeled splitting test of Dejaco et al. (2012),
which can be retrieved by the analytical formula for a
sphere loaded at its poles (Lurje, 1963). The corresponding
shear modulus amounts to µFE

gran = 80.63MPa. The good

agreement between µhom
gran and µFE

gran impressively underlines
the reliability of the homogenization scheme defined by
Equation (3).

The micromechanics of granular assemblies as seen in the top
image of Figure 1 are standardly treated by the self-consistent
scheme, as has been validated for material systems such as shale
(Ortega et al., 2007). This renders the choice of a self-consistent
assembly of pores and coated spheres as described in Sections 2.4
and 2.5 as very natural. Of course, an additional directmechanical
testing of bone-scaffold compounds is of general interest—
however, given various technological and ethical challenges, this
is clearly beyond the scope of this manuscript. Our philosophy is
rather to collect and integrate, by use of latest engineering science
developments, the large existing data base in biomaterial science
and beyond, in order to bring forth novel design solutions for
tissue engineering.

3.3. Toward Mathematical Modeling-Based
Biomaterial Design
Finally, we present an outlook on how the presented
homogenization scheme could be utilized in biomaterial
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FIGURE 6 | How design parameter combinations affect bone regeneration. Evaluation of bone regeneration kinetics laws, Equations (59) and (60), for

rgran = 500µm, ǫ = 10, kgrowth = 7µm/week, and kres = 0.008week−1, in terms of microporosity and bone tissues volume fraction evolutions (A), and in terms of

the respective Young’s modulus (B); model-predicted development of the Young’s modulus of the macroscopic scaffold material, Econgl, in GPa, during bone

regeneration, for varying crack density parameter ǫ = {0, 10,100}, granule radius rgran = {300µm, 500µm, 1000µm}, macroporosity φ
congl
macro = {0.3,0.4, 0.5},

resorption rate kres = {0,0.008week−1,0.016week−1}, and bone ingrowth rate kgrowth = {4µm/week, 7µm/week, 10µm/week}, depicted for (C) ǫ = 0, (D)

ǫ = 10, and (E) ǫ = 100, with the green area ranging from 5 to 19GPa indicating the targeted stiffness range; graphical representation of successful parameter

combinations at (F) t = 5weeks, and (G) t = 20weeks, with circle sizes being proportional to the success of specific parameter combinations and line thicknesses

being proportional to the success of specific parameter combinations.
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FIGURE 7 | Effects of bone regeneration kinetics parameters on the overall conglomerate stiffness at distinct time points. Young’s modulus of the

macroscopic scaffold material for ǫ = 10, φ
congl
macro = 0.4, and rgran = 500µm, as well as kres = [0,0.016week−1] and kgrowth = [4µm/week, 10µm/week], after

(A) 5 days, (B) 10 days, (C) 15 days, and (D) 20 days; (E) illustration when certain combinations of kres and kform yield 5GPa ≤ Econgl ≤ 19GPa.

design. In particular, the important question of how the stiffness
of the scaffold material, once implanted, evolves during bone
regeneration is addressed—notably, bone regeneration involves
growth of new bone tissue, with rate kgrowth, and resorption
of hydroxyapatite crystals, with rate kres, see Section 2.6.
First, the development of the material’s macroscopic Young’s
modulus is studied when considering a specific set of parameters,
namely, rgran = 500µm, ǫ = 10, kgrowth = 7µm/week,

and kres = 0.008week−1. Corresponding evaluation of the
bone regeneration kinetics laws considered in this work, see
Equations (59) and (60), shows that the development of the
bone tissue volume fraction depends on the macroporosity,
while the resorption-related increase of the microporosity
depends solely on the resorption rate, see Figure 6A. The
Young’s modulus increases due to the addition of new bone
tissue in the macroscopic pore space up to the point where all
pore space is occupied by bone tissue, after which the Young’s
modulus slightly decreases due to still progressing resorption
of hydroxyapatite, see Figure 6B. Thus, although at t = 0 the
macroscopic stiffness increases with decreasing macroporosity,
the eventual stiffness after filling up the macroscopic pore
space by new bone tissue is actually proportional to the
macroporosity.

Extending the elucidation of how the macroscopic
stiffness is influenced by the various design parameters
of the scaffold material leads actually to a multi-factorial
task. Here, we consider the following parameter variations:
ǫ = {0, 10, 100}, rgran = {300µm, 500µm, 1000µm},
φ
congl
macro = {0.3, 0.4, 0.5}, kres = {0, 0.008week−1, 0.016week−1},

kgrowth = {4µm/week, 7µm/week, 10µm/week}. Then,
the arising 243 parameter combinations yield as many
corresponding developments of the Young’s modulus Econgl
over time, see Figures 6C–E. Across the human mandible, for
which the here studied scaffold material has been developed, a
significant variation of the apparent density of the bone organ,
and consequently of the stiffness has been observed (Kingsmill
and Boyde, 1998; Swasty et al., 2009; Daegling et al., 2011). E.g.,
in (Daegling et al., 2011), the Young’s modulus of mandibular
bone is revealed to vary between 5 and 19GPa—this range of
targeted stiffness is indicated in Figures 6C, D by green color,
whereas too low or two high stiffness are indicated by red color.
It is instructive to evaluate which specific parameter values and
which specific parameter combinations lead to the required
scaffold stiffness within a reasonable duration. Figures 6F,G

show, on the one hand, how often (out of the respectively
possible 81 parameter combinations) a specific parameter value
has led to a stiffness within the targeted range—the larger
(and the darker) the circles related to a specific parameter
value, the more often this parameter has led to an appropriate
Young’s modulus. On the other hand, the lines between two
specific parameters indicate how often a specific parameter
combination was successful—the thicker (and the darker) the
lines, the more often this parameter combination has led to an
appropriate Young’s modulus. It is striking that after 5 weeks of
bone regeneration, the crack density is the by far dominating
parameter, i.e., only uncracked materials allow to reach the
targeted stiffness, while all other parameters appear to be of
minor importance, see Figure 6F. After 20 weeks, however, a low
crack density still plays an important role, but also a low granule
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radius (rgran = 300µm), a low resorption rate (kres = 0), and
a high bone growth rate (kgrowth = 10µm/week) turn out as
essential for the stiffness development of the scaffold material. In
terms of parameter combinations, particularly the combination
of ǫ = 0 and kres = 0 turns out as crucial factor for the stiffness
development.

Considering that the scaffold resorption rate and the bone
ingrowth rate are kind of tunable properties, e.g., by slightly
changing the chemical composition of the hydroxyapatite
needles, or by adding bone morphogenetic proteins, it is
interesting to study the stiffness development for continuous
variations of these two quantities. For this purpose, a scaffold

material is studied with ǫ = 10, φ
congl
macro = 0.4 and rgran =

500µm, whereas kres and kgrowth are varied in the ranges of kres =
[0, 0.016week−1] and kgrowth = [4µm/week, 10µm/week].
Then, our model suggests that after 5 weeks none of the
considered combinations of kres and kgrowth leads to Econgl ≥
5GPa, that after 10 weeks, a combination of low resorption rate
and high ingrowth rate leads to sufficient stiffness, and that after
20 weeks virtually all bone growth rates (within the considered
range) lead to sufficient stiffness as long as the bone resorption
rate remains at a low level, see Figures 7A–D. Figure 7E shows
at which time instants Econgl ≥ 5GPa is reached for specific
combination of kres and kgrowth. Similar computations can be

performed for other combinations of ǫ, rgran, and φ
congl
macro, in order

to work out the appropriate parameter space.
Actually utilizing the stiffness prediction tool proposed in

this paper for scaffold optimization, requires however more
detailed knowledge on the bone ingrowth and scaffold resorption
kinetics. In the here presented studies, linear kinetics laws were
assumed. In the physiological environment of the implanted
scaffold material, long-term occurrence of such linear behavior
is however unlikely, for several reasons: Bone ingrowth is a
process which typically occurs in degressive fashion, see e.g.,
(Hing et al., 2004; Cancedda et al., 2007); on the one hand
because of purely geometric reasons, namely due to decreasing
area on which new bone tissue can be laid down, and on the
other hand because of the decreasing availability (with decreasing
porosity) of the biological factors necessary for initiating bone
apposition. Also, specifically designing a scaffold, for a particular
patient, requires information on the location of insertion, e.g.,
density distributions gained from CT imaging may be sufficient
to estimate the site-specific stiffness distribution (Hellmich et al.,
2008). Considering these additional influences, namely both the
biological environment and the mechanical environment which
are to be expected in vivo, is however beyond the scope of this
paper.

4. CONCLUSIONS

In this paper, we have presented a new mathematical model
for determining the stiffness of a hydroxyapatite-based
granular biomaterial, through upscaling of compositional and
morphological information known on three distinct observation
scales. The model predictions are, from a qualitative point of

view, plausible. The distinctively non-linear dependencies of
the derived elastic constants on underlying nano-, micro-, and
macro-porosities, as well as on the extent of cracks emerging on
the micro-scale underline the necessity of using sophisticated
mathematical models when reliable stiffness estimates are
required.

The proposed model provides substantiated outlooks as
to how specific design parameters influence the macroscopic
stiffness of the scaffold-bone compound. In order to reach a
physiologically relevant Young’s modulus of mandibular bone,
typically ranging from 5 to 19GPa (Daegling et al., 2011),
granules with the lowest possible crack density need to be
produced, especially at early stages of bone regeneration. Later,
other design parameters, such as a low granule radius or a high
bone formation rate become relevant as well. In such a way, as
demonstrated in Section 3.3, optimal design parameters or even
combinations of design parameters can be worked out, paving
the way to mathematical modeling-driven optimization of the
scaffold-bone compound’s performance.

Furthermore, we plan to couple the here presentedmechanical
model with computed tomography (CT) image-to-mechanical
properties conversion techniques, as demonstrated for different
materials in (Scheiner et al., 2009; Dejaco et al., 2012). Such
conversion techniques allow for direct interpretation of the gray
value distributions that constitute CT images in terms of the
corresponding distributions of mechanical properties. Finally,
once such three-dimensional distributions of the scaffold stiffness
and the surrounding bone matrix are computed, the model
could be further coupled to recently developed mechanobiology
models (Scheiner et al., 2013), eventually allowing to assess the
bone regeneration progress for prescribed mechanical loading
regimes. These model upgrades will allow to design patient-
specific scaffold materials and structures, which is believed
to entail a significant increase of the efficiency of such
materials.
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	2.5. Bulk and Shear Stiffness Homogenization at Hierarchical Level III: Elasticity of Macroporous Granule-Bone Conglomerate
	2.6. Animal Studies and Biomaterial Experiments, Revealing Kinetics of Bone Ingrowth and Scaffold Resorption

	3. Results and Discussion
	3.1. Microstructure-Property Relations: How Micro/Meso/Macroporosity, Crack Density, and Bone Tissue Volume Fraction Govern the Overall Scaffold-Bone Conglomerate Stiffness
	3.2. Comments on Experimental Validation
	3.3. Toward Mathematical Modeling-Based Biomaterial Design

	4. Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


