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Mutations in striated muscle contractile proteins have been found to be the cause of

a number of inherited muscle diseases; in most cases the mechanism proposed for

causing the disease is derangement of the thin filament-based Ca2+-regulatory system of

the muscle. When considering the results of experiments reported over the last 15 years,

one feature has been frequently noted, but rarely discussed: the magnitude of changes

in myofilament Ca2+-sensitivity due to myopathy-causing mutations in skeletal or heart

muscle seems to be always in the range 1.5–3x EC50. Such consistency suggests it

may be related to a fundamental property of muscle regulation; in this article we will

investigate whether this observation is true and consider why this should be so. A

literature search found 71 independent measurements of HCMmutation-induced change

of EC50 ranging from 1.15 to 3.8-fold with a mean of 1.87 ± 0.07 (sem). We also found

11 independent measurements of increased Ca2+-sensitivity due to mutations in skeletal

muscle proteins ranging from 1.19 to 2.7-fold with a mean of 2.00 ± 0.16. Investigation

of dilated cardiomyopathy-related mutations found 42 independent determinations with

a range of EC50 wt/mutant from 0.3 to 2.3. In addition we found 14 measurements of

Ca2+-sensitivity changes due skeletal muscle myopathy mutations ranging from 0.39 to

0.63. Thus, our extensive literature search, although not necessarily complete, found that,

indeed, the changes in myofilament Ca2+-sensitivity due to disease-causing mutations

have a bimodal distribution and that the overall changes in Ca2+-sensitivity are quite

small and do not extend beyond a three-fold increase or decrease in Ca2+-sensitivity.

We discuss two mechanism that are not necessarily mutually exclusive. Firstly, it could

be that the limit is set by the capabilities of the excitation-contraction machinery that

supplies activating Ca2+ and that striated muscle cannot work in a way compatible with

life outside these limits; or it may be due to a fundamental property of the troponin system

and the permitted conformational transitions compatible with efficient regulation.

Keywords: muscle regulation, Ca2+-sensitivity, troponin C, HCM, DCM, myopathy, mutation

Abbreviations: HCM, hypertrophic cardiomyopathy; RCM, Restrictive cardiomyopathy; DCM, dilated cardiomyopathy;

EC50, Ca
2+ concentration that gives 50% maximal activation; pCa50, –log EC50.
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Marston Limited Changes in Ca2+-Sensitivity

Mutations in striated muscle contractile proteins have been
found to be the cause of a number of inherited muscle
diseases; in most cases the mechanism proposed for causing
the disease is derangement of the thin filament-based Ca2+-
regulatory system of the muscle. Hypertrophic cardiomyopathy
and hypercontractile diseases of skeletal muscle, such as distal
arthrogryposis and “stiff child syndrome,” have been linked
to a higher myofilament Ca2+-sensitivity (Marston, 2011;
Donkervoort et al., 2015). In contrast dilated cardiomyopathy
mutations are commonly, but not exclusively, linked to decreased
Ca2+-sensitivity. Mutations in contractile proteins that are linked
to nemaline myopathy and related skeletal muscle myopathies
have also been found to be associated with reduced Ca2+

sensitivity (Marttila et al., 2012, 2014). The causative connection
between myofilament Ca2+-sensitivity and muscle dysfunction
is a field of intensive research that is too complex to consider
in this account. However, when considering the results of such
experiments reported over the last 15 years, one feature has
been frequently noted, but rarely discussed. The magnitude
of changes in myofilament Ca2+-sensitivity due to myopathy-
causing mutations in skeletal or heart muscle seems to be always
in the range 1.5–3x EC50. Such consistency suggests it may be
related to a fundamental property of muscle regulation; in this
article we will investigate whether this observation is true and
consider why this should be so.

Most investigations have found increased Ca2+-sensitivity
in muscle with hypertrophic cardiomyopathy (HCM) and
restrictive cardiomyopathy (RCM)-causing mutations. Our
literature search found 71 independent measurements of the
mutation-induced change of EC50 ranging from 1.15 to 3.8-fold
with a mean of 1.87 ± 0.07 (sem) (Table 1). We also found
11 independent measurements of increased Ca2+-sensitivity due
to mutations in skeletal muscle proteins ranging from 1.19 to
2.7-fold with a mean of 2.00± 0.16 (Table 2).

Dilated cardiomyopathy-causing mutations were initially
found to decrease Ca2+-sensitivity but more recent studies have
indicated the situation is more complex. DCM-linked mutations
can both increase and decrease Ca2+-sensitivity depending on
the individual mutations, moreover the direction of change
can be different with a single mutation measured in different
systems (Marston, 2011; Memo et al., 2013). This is illustrated
in Table 3 where 42 independent determinations show a range
of EC50 wt/mutant from 0.3 to 2.3. In addition we found 14
measurements of Ca2+-sensitivity changes due skeletal muscle
myopathy mutations ranging from 0.39 to 0.63 (Table 4).

Thus, our extensive literature search, although not necessarily
complete, found that, indeed, the changes in myofilament Ca2+-
sensitivity due to disease-causing mutations have a bimodal
distribution and that the overall changes in Ca2+-sensitivity are
quite small and do not extend beyond a 3–4-fold increase or
decrease in Ca2+-sensitivity. Indeed when all the findings are
plotted as a histogram one finds that increases in Ca2+-sensitivity
on a log scale have an approximately normal distribution with
mean increase in Ca2+-sensitivity (EC50 wt/mutant) of 1.86-fold
(corresponding to1pCa50 = 0.255± 0.015), whilst the decreases
in Ca2+ sensitivity have a mean EC50 wt/mutant of 0.54-fold
(corresponding to 1pCa50 of –0.286 ± 0.01; Figure 1A). It

TABLE 1 | Effect of HCM-associated mutations on myofilament

Ca2+-sensitivity.

Gene

name

Mutation wt/mutant

EC50 ratio

Measured in References

HCM

ACTC E99K 2.45 IVMA Song et al., 2011

ACTC E99K 1.24 IVMA (human) Song et al., 2011

ACTC E99K 1.89 IVMA Papadaki et al., 2015

ACTC E99K 1.3 Fibers TG Song et al., 2011

ACTC E99K 2.35 Myofibrils TG Song et al., 2013

MYL2 R58Q 1.29 Fibers X Szczesna-Cordary

et al., 2004

MYL2 D166V 1.78 Fibers TG Kerrick et al., 2009

MYL2 D166V 1.82 Fibers TG Yuan et al., 2015

MYH7 R403Q 1.79 Human fibers Sequeira et al., 2013

MYH7 R403Q 1.41 Fibers TG Blanchard et al., 1999

MYH7 R453C 1.99 Human fibers Palmer et al., 2004

MYBPC3 Cat R820W 2.01 IVMA Messer et al., 2016a

MYBPC3 “KI” 1.35 Fibers TG Fraysse et al., 2012

MYBPC3 E258K 1.80 Human fibers Sequeira et al., 2013

TNNC1 A8V 2.51 Fibers TG Martins et al., 2015

TNNC1 A8V 2.3 Fibers X Pinto et al., 2009

TNNC1 L29Q 1.26 Fibers X 2.3 µm Li et al., 2013

TNNC1 L29Q 1.17 Fibers X 1.9 µm Li et al., 2013

TNNC1 L29Q 2.1 IVMA Schmidtmann et al.,

2005

TNNC1 A31S 1.48 Fibers X Parvatiyar et al., 2012

TNNC1 A31S 2.75 ATPase Parvatiyar et al., 2012

TNNC1 D145E 1.74 Fibers X Pinto et al., 2009

TNNC1 C84Y 1.86 Fibers X Pinto et al., 2009

TNNI3 R21C 2.16 Fibers X Gomes et al., 2005a

TNNI3 L144Q 2.04 Fibers X Gomes et al., 2005b

TNNI3 R145G 3.63 ATPase Elliott et al., 2000

TNNI3 R145G 2.09 ATPase Takahashi-Yanaga

et al., 2001

TNNI3 R145G 1.82 IVMA Brunet et al., 2014

TNNI3 R145G 1.41 IVMA Deng et al., 2001

TNNI3 R145G 1.35 Fibers X Lang et al., 2002

TNNI3 R145G 1.15 Fibers TG Krüger et al., 2005

TNNI3 R145Q 1.41 Fibers X Takahashi-Yanaga

et al., 2001

TNNI3 R145Q 1.70 ATPase Takahashi-Yanaga

et al., 2001

TNNI3 R145W 2.45 Fibers X Gomes et al., 2005b

TNNI3 R145W 1.15 Human fibers Sequeira et al., 2013

TNNI3 R162W 1.28 ATPase Takahashi-Yanaga

et al., 2001

TNNI3 A171T 1.38 Fibers X Gomes et al., 2005b

TNNI3 K178E 2.95 Fibers X Gomes et al., 2005b

TNNI3 ∆K182 1.51 ATPase Takahashi-Yanaga

et al., 2001

TNNI3 ∆K183 3.8 IVMA Köhler et al., 2003

TNNI3 R192H 2.29 Fibers X Gomes et al., 2005b

TNNI3 G203S 3.02 IVMA Köhler et al., 2003

(Continued)
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Marston Limited Changes in Ca2+-Sensitivity

TABLE 1 | Continued

Gene

name

Mutation wt/mutant

EC50 ratio

Measured in References

HCM

TNNI3 K206Q 2.51 IVMA Köhler et al., 2003

TNNI3 K206Q 1.51 ATPase Takahashi-Yanaga

et al., 2001

TNNI3 K206I 1.81 ATPase Warren et al., 2015

TNNT2 TnT∆14 2.51 Fibers X Gafurov et al., 2004

TNNT2 TnTdel 2.69 ATPase Redwood et al., 2000

TNNT2 I79N 1.41 Fibers X Szczesna et al., 2000

TNNT2 I79N 2.04 Fibers TG Baudenbacher et al.,

2008

TNNT2 R92L 1.65 Fibers TG Ford et al., 2012

TNNT2 R92Q 1.66 Fibers TG Ford et al., 2012

TNNT2 R92Q 1.74 ATPase Robinson et al., 2002

TNNT2 R92Q 1.94 IVMA Robinson et al., 2002

TNNT2 F110I 2.34 Fibers TG Szczesna et al., 2000

TNNT2 F110I 1.32 Fibers TG Baudenbacher et al.,

2008

TNNT2 ∆E160 1.41 Fibers TG Lu et al., 2003

TNNT2 R278C 2.19 Fibers TG Szczesna et al., 2000

TNNT2 K280N 1.64 IVMA Messer et al., 2016b

TNNT2 K280N 1.26 IVMA (human

Tn)

Messer et al., 2016b

TPM1 E62Q 1.21 ATPase Chang et al., 2005

TPM1 A63V 1.91 Transfected cell Michele et al., 1999

TPM1 A63V 1.99 ATPase Heller et al., 2003

TPM1 K70T 1.58 Transfected cell Michele et al., 1999

TPM1 K70T 2.13 ATPase Heller et al., 2003

TPM1 D175N 1.23 IVMA Bing et al., 2000

TPM1 E180G 1.30 IVMA Bing et al., 2000

TPM1 E180G 1.63 IVMA Papadaki et al., 2015

TPM1 E180G 1.44 Transfected cell Michele et al., 1999

TPM1 E180G 2.75 ATPase Chang et al., 2005

TPM1 L185R 2.51 ATPase Chang et al., 2005

TPM1 I284V 1.50 Human fibers Sequeira et al., 2013

The criteria for inclusion in the table are (1) that a missense mutation has been convincingly

linked to the myopathy phenotype and (2) that only direct Ca2+-sensitivity comparisons of

mutant and “normal” are included. Seventy-one independent measurements of the HCM

mutation-induced change of EC50 shown as EC50 WT/mutant. Values range from 1.15 to

3.8-fold with a mean of 1.87 ± 0.07 (sem). Shading indicates gene studied.

Gene names: ACTC, cardiac alpha actin; TNNI3, cardiac troponin I; TNNT2, cardiac

troponin T (T3 isoform); TNNC2 cardiac troponin C; MYL2, ventricular regulatory myosin

light chain; MYH7, beta myosin heavy chain; MYBPC3, cardiac myosin binding protein C;

TPM1, alpha tropomyosin, Tpm1.1.

Measurement methods: IVMA, in vitro motility assay; Fibers TG, skinned fibers from

transgenic or knock-in mouse heart; Myofibrils TG, single myofibrils from transgenic

or knock-in mouse heart; Fibers X, skinned fibers with mutation protein exchanged in

Human fibers, skinned fibers from human heat muscle; ATPase, reconstituted thin filament

activation of myosin ATPase activity.

is also worth noting that this small Ca2+-sensitivity shift is
observed independent of the measurement method Figure 1B

compares the 1pCa50 distribution measured by unloaded assays
(actomyosin ATPase or in vitro motility) and by loaded assays
(force measurements in skinned muscles, cell, and isolated
myofibrils). The mean magnitude of the Ca2+-sensitivity change
is about 20% less when measured in loaded assays.

TABLE 2 | Effect of skeletal muscle gain-of -function mutations on

Ca2+-sensitivity shown as EC50 WT/mutant.

Gene

name

Mutation wt/mutant

EC50 ratio

Measured in References

ACTA1 K326N 2.50 IVMA Jain et al., 2012

TPM2 1K49 1.19 IVMA Marston et al., 2013

TPM2 1E139 1.51 IVMA Marston et al., 2013

TPM2 E181K 1.58 Human fibers Ochala et al., 2012

TPM2 1K7 50% 2.00 IVMA Mokbel et al., 2013

TPM2 1K7 2.70 Human fibers Mokbel et al., 2013

TPM3 K168E 2.67 IVMA Marston et al., 2013

TPM3 K168E 50% 1.85 IVMA Marston et al., 2013

TPM3 1E224 1.34 Human fibers Donkervoort et al., 2015

TPM3 1E224 2.2 IVMA Donkervoort et al., 2015

TPM3 1218 2.5 IVMA Donkervoort et al., 2015

The mean change is 1.65± 0.16-fold (range 1.19–2.70).

GENE NAMES: ACTA1, skeletal muscle alpha actin; TPM2, beta tropomyosin, Tpm2.2;

TPM3, Tpm3.12, “gamma tropomyosin.”

Shading indicates gene studied.

What could be the underlying reason for this consistent and
small effect of mutations on EC50? We will consider two possible
mechanisms that are not necessarily mutually exclusive. Firstly, it
could be that the limit is set by the capacity of the EC coupling
system that supplies activating Ca2+ and that striated muscle
cannot work in a way compatible with life outside these limits;
alternatively it may be due to a fundamental property of the
troponin system and the permitted conformational transitions
compatible with efficient regulation.

Before attempting to discuss these mechanisms it is
worthwhile considering some additional evidence on Ca2+-
sensitivity shifts. Perhaps the most puzzling observation is that
there appears to be no correlation between the Ca2+-sensitivity
shift and disease severity. Skeletal myopathymutations that cause
life-threating muscle weakness from birth and often require
mechanical assistance in breathing (Ravenscroft et al., 2015),
have the same Ca2+-sensitivity shifts as dilated cardiomyopathy
mutations which are considerably less lethal (Hershberger
et al., 2013). Whilst heart muscle has compensatory strategies
not available in skeletal muscle to account for this difference,
the small change in Ca2+-sensitivity even in the most severe
skeletal muscle disease might be indicative of a fundamental
structure-based limit on changes in EC50.

Consideration of the Ca2+-sensitivity shifts in
cardiomyopathies (Tables 1, 3) do not indicate any correlation
with disease severity. Any relationship that may exist is masked
by the extreme variability of Ca2+-sensitivity shift measurements.
For instance, the “severe” TNNI3 R145G HCM/RCM-linked
mutation features at both extremes of the Ca2+-sensitivity range
(1.15x and 3.65x); for the 6 assays in the table the mean is 1.84,
close to the mean of all 71 HCMmeasurements (1.87). The same
variability can be seen with other mutations where multiple
values are available: ACTC E99K, n = 5, 1.24–2.45 mean 1.85;
TPM1 E180G, n = 4, 1.30–2.75, mean 1.78. The second relevant
observation is that the physiological modulation of cardiac
muscle myofilament Ca2+-sensitivity due to phosphorylation
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TABLE 3 | Effect of dilated cardiomyopathy linked mutations on

Ca2+-sensitivity.

Gene

name

Mutation wt/mutant

EC50 ratio

Measured in References

ACTC E361G 1.05 IVMA Song et al., 2010

ACTC E361G skTn 0.30 IVMA Song et al., 2010

TNNI3 K36Q 0.47 IVMA Memo et al., 2013

TNNI3 K36Q 0.41 ATPase Carballo et al., 2009

TNNI3 N185K 0.42 ATPase Carballo et al., 2009

TNNT2 R131W 0.59 ATPase Mirza et al., 2005

TNNT2 R131W 0.63 IVMA Mirza et al., 2005

TNNT2 R134G 0.89 Fibers X Hershberger et al., 2009

TNNT2 R141W 0.69 IVMA Memo et al., 2013

TNNT2 R141W 0.80 ATPase Mirza et al., 2005

TNNT2 R141W 0.89 Fibers X Venkatraman et al., 2005

TNNT2 R151C 0.81 Fibers X Hershberger et al., 2009

TNNT2 R159Q 0.83 Fibers X Hershberger et al., 2009

TNNT2 R206L 0.35 IVMA Mirza et al., 2005

TNNT2 R205L 0.34 ATPase Mirza et al., 2005

TNNT2 R205L 0.68 Fibers X Mirza et al., 2005

TNNT2 R205W 0.83 Fibers X Hershberger et al., 2009

TNNT2 ∆K210 hetero 0.63 IVMA Du et al., 2007

TNNT2 ∆K210 0.75 Fibers X Venkatraman et al., 2005

TNNT2 ∆K210 0.45 IVMA Du et al., 2007

TNNT2 ∆K210

recombinant

1.54 ATPase Mirza et al., 2005

TNNT2 ∆K210 50% 0.46 IVMA Mirza et al., 2005

TNNT2 D270N 0.65 IVMA Mirza et al., 2005

TNNT2 D270N 0.64 ATPase Mirza et al., 2005

TNNC1 Y5H 0.82 Fibers X Pinto et al., 2011

TNNC1 D73N 0.55 ATPase McConnell et al., 2015

TNNC1 D73N 0.59 Fibers X McConnell et al., 2015

TNNC1 D145E 0.52 Fibers X Pinto et al., 2011

TNNC1 I148V 0.91 Fibers X Pinto et al., 2011

TNNC1 G159D 0.56 ATPase Mirza et al., 2005

TNNC1 G159D 0.55 IVMA Mirza et al., 2005

TNNC1 G159D 1.86 IVMA Dyer et al., 2009

TNNC1 G159D skTn 0.56 IVMA Dyer et al., 2009

TNNC1 G159D Fibers X Biesiadecki et al., 2007

TPM1 E40K 0.69 IVMA Memo et al., 2013

TPM1 E40K

baculovirus

0.38 IVMA Memo et al., 2013

TPM1 E40K 0.64 ATPase Chang et al., 2005

TPM1 E54K 0.58 ATPase Mirza et al., 2005

TPM1 E54K 1.90 Ca binding Robinson et al., 2007

TPM1 D230N

baculovirus

2.30 IVMA Memo et al., 2013

TPM1 D230N

bacu+skTn

0.59 IVMA Memo et al., 2013

TPM1 D230N

Recombinant

0.54 ATPase Lakdawala et al., 2010

Forty-two independent measurements of the mutation-induced change of EC50 shown

as EC50 WT/mutant.

Shading indicates gene studied.

of troponin I by protein kinase A has been known to be a
2–3-fold shift for many years (Solaro et al., 2008). Table 5 lists a
number of recent determinations of this Ca2+-sensitivity shift

TABLE 4 | Skeletal myopathy mutations causing a loss of function.

Gene name Mutation wt/mutant

EC50 ratio

Measured in References

TPM2 E117K 0.41 IVMA Marttila et al., 2012

TPM2 Q147P 0.63 IVMA Marttila et al., 2012

TPM3 L100M 0.52 IVMA Marttila et al., 2012

TPM3 R167C 0.36 Myofibers Ochala et al., 2012

TPM3 R167H 0.59 IVMA Marston et al., 2013

TPM3 R167H 50% 0.58 IVMA Marston et al., 2013

TPM3 R244G 0.46 IVMA Marston et al., 2013

TPM3 R244G 50% 0.60 IVMA Marston et al., 2013

TPM3 K169E 0.55 Myofibers Yuen et al., 2015

TPM3 R245G 0.45 Myofibers Yuen et al., 2015

TPM3 L100M 0.53 Myofibers Yuen et al., 2015

TPM3 R168G 0.48 Myofibers Yuen et al., 2015

TPM3 R168H 0.42 Myofibers Yuen et al., 2015

TPM3 R167C 0.39 Myofibers Yuen et al., 2015

Fourteen independent measurements of the mutation-induced change of EC50 shown as

EC50 WT/mutant. The mean change is 0.49 ± 0.02-fold (range 0.36–0.63).

Shading indicates gene studied.

in several species and measured by both loaded and unloaded
assays illustrating its small range. Figure 1C shows how the
magnitude and distribution of measured changes is similar to
the changes induced by disease-causing mutations. It would be
logical to conclude that this represents the range of achievable
Ca2+ sensitivity shifts in cardiac muscle due to the limitations of
the EC coupling system.

In principle, it should be possible to go beyond the Ca2+-
sensitivity limits set by EC coupling in an in vitro system where
Ca2+ binding affinity can be much greater or much less than the
native troponin. Cardiac troponin C presents extreme examples
in a single molecule. Only site II binds Ca2+ in the physiologically
relevant range (2.5 × 105 M−1) and so is solely responsible
for Ca2+-regulation (Holroyde et al., 1980). A few amino acid
changes in the EF-hand motifs results in sites that do not bind
Ca2+ (Site I) or sites that bind Ca2+ 200x tighter (sites III and
IV) and are permanently occupied by Ca2+ or Mg2+ (Li and
Hwang, 2015). Thus, it would seem that neither a very high
Ca2+ sensitivity nor a very low one are able to participate in
regulation. How much deviation of Ca2+ affinity from the norm
is compatible with muscle regulation?

It is known that for mutations, the small Ca2+-sensitivity
changes correlate with Ca2+ binding affinity to thin filaments
(Robinson et al., 2007). In a study of mutations induced in
skeletal muscle troponin C, Davis et al. achieved a 243-fold
range of Ca2+ binding affinities for troponin C. However, this
did not translate into such a great range when Ca2+-binding
was measured in the presence of TnI (96-148) and caused a
still smaller shift in the Ca2+-sensitivity of force production
(Davis et al., 2004). Thus, the most extreme Ca2+-sensitizing
mutation, V45Q increased TnCCa2+ binding affinity 19-fold, but
the increase was only 3.1-fold when measured in the presence
of the TnI peptide and Ca2+-sensitivity in skinned fibers was
just 2.3-fold more than wild-type. This is within the same
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FIGURE 1 | Histograms showing distribution of the change in

Ca2+-sensitivity due to mutations and phosphorylation. The X-axis is

pCa50(mutant-WT, 1pCa50) or EC50 (WT/mutant), log scale. (A) All 149

values from Tables 1–4 are plotted. The plot is bimodal. Mean of decreased

Ca2+-sensitivity (1pCa50 < 0) = –0.286 ± 0.016, Mean of increased Ca2+

(Continued)

FIGURE 1 | Continued

sensitivity (1pCa50 >0) = 0.255 ± 0.015. (B) Distribution of change in

Ca2+-sensitivity is compared for loaded (pale blue) and unloaded (dark blue)

assays of cardiac muscle regulation (data from Tables 1, 3). Unloaded assays

are IVMA and ATPase, loaded assays are Fibers TG, Myofibrils TG, Fibers X,

Human fibers, For decreased Ca2+ sensitivity mean unloaded 1pCa50 is

–0.27 ± 0.02 and mean loaded is –0.21 ± 0.03, p = 0.05. For increased

Ca2+-sensitivity mean unloaded 1pCa50 is 0.26 ± 0.02 and mean loaded is

0.021 ± 0.02, p = 0.04. (C) Distribution of change in Ca2+-sensitivity due to

troponin I phosphorylation (EC50 unphosphorylated/EC50 phosphorylated).

Data from Table 5. The mean change is 0.50 ± 0.06-fold (n = 9), 1pCa50 =

−0.30.

TABLE 5 | Ca2+ sensitivity change due to troponin I phosphorylation 8

independent measurements of the phosphorylation-induced change of

EC50 shown as ratio of EC50 unphosphorylated/phosphorylated (uP/P).

EC50 wt/mutant

EC50 ratio

Measured in References

Human failing/donor 0.57 IVMA Messer, 2007; Messer

et al., 2007

Human failing/donor 0.68 Human fibers van der Velden et al.,

2003

Donor uP/P 0.34 IVMA Song et al., 2011

Donor uP/P 0.32 IVMA Bayliss et al., 2012

Donor uP/P 0.34 IVMA Memo et al., 2013

Mouse uP/P 0.33 IVMA Song et al., 2010

Mouse uP/P 0.50 IVMA Memo et al., 2013

Mouse uP/P 0.74 Myofibrils Vikhorev et al., 2014

WT cTnI/cTnI-DD 0.69 Fibers X Biesiadecki et al., 2007

Measurements were made with troponin (IVMA) or skinned muscle from human (donor)

or mouse heart. The mean change is 0.50 ± 0.06-fold (range 0.32–0.74).

range of many HCM-causing mutations (Table 1). A similar
picture emerges from Cardiac troponin C where the single
regulatory Ca2+-binding site simplifies the argument: V44Q
increases Ca2+-binding affinity to TnC 6.5-fold but increases
myocyte Ca2+-sensitivity by just 3.4-fold (Parvatiyar et al., 2010).
Thus, it seems that the structure of troponin and its interactions
with the rest of the thin filament does limit the consequences of a
modification that increases Ca2+ binding affinity.

A slightly different situation arises when Ca2+ binding affinity
is less than wild-type. Davis et al., noted that the mutations
that decreased Ca2+ binding affinity the most (F26Q, 63-fold,
I37Q, 24-fold and I62Q, 10-fold) could not properly regulate
force in skinned fibers since they only produced about 13%
of the maximal force of wild-type muscle at saturating Ca2+

concentrations. On the other hand, two less extreme mutations,
M81Q and F78Q decreased Ca2+-sensitivity whilst retaining
the same maximum force production as wild type. In these
cases, again, the increased Ca2+ binding affinity for TnC was
substantially greater than the increased Ca2+-sensitivity of
skinned fibers (5.9x vs. 1.8x forM81Q and 8.4x vs. 4.2x for F78Q).
Thus, thin filament structure seems to limit the possible effects of
changes in Ca2+-binding affinity.

It is self-evident that changing myofilament Ca2+ sensitivity
will affect contractile output in muscle. It is well-established
that EC50 for skinned muscle fibers is about 1 µM and
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FIGURE 2 | The effects of changing Ca2+-sensitivity on contractility.

Ca2+-activation curves for mouse myofibrils with EC50 of 0.8 µM, a Hill

coefficient of 4 and a [Ca2+]i range from 500 nM at peak to 100 nM when

relaxed (pink box). The curves with two-fold higher Ca2+ sensitivity, as found

with HCM mutations, four-fold higher Ca2+ sensitivity and 0.5-fold

Ca2+-sensitivity, as may be found in some DCM mutations, is plotted for

comparison.

that Ca2+-activation of contraction is highly cooperative.
Most measurements suggest a five-fold range in free Ca2+

concentration during a cardiac muscle contraction. Peak Ca2+

concentration is about 600 nM at rest and can be substantially
higher during adrenergic stimulation, thus normally muscle is
only partially activated (Negretti et al., 1995; Dibb et al., 2007).

Figure 2 shows a real life example: in a mouse model of HCM
(ACTC E99K) we measured both the Ca2+-activation curve for
myofibrils and the contractility of intact papillary muscle as well
as the Ca2+-transient (Song et al., 2013). Under the conditions
of this experiment the Ca2+ transient was the same in Wild-type
and ACTC E99K muscle, Ca2+ sensitivity was 0.8 µM for wild-
type and 0.34 µM for ACTC E99K with a Hill coefficient of about
4. The increase in Ca2+-sensitivity due to the ACTC E99K HCM
mutation corresponds to an approximately four-fold increase in
twitch force in the absence of a change in the Ca2+-transient that
was actually observed.

We can use this model to consider what would happen
if Ca2+-sensitivity changed beyond the normal range. If
myofilament Ca2+-sensitivity was 4 times normal, maximum
force would reach close to 100%, leaving no range for it to be

modulated by adrenergic agents. Moreover, it is likely that the
muscle would not fully relax, since, based on the five-fold range of
the Ca2+ transient even at the lowest Ca2+ level force would be 5–
10%, a substantial fraction of the peak force of wild-type muscle,
thus the hypercontractile phenotype would impose amajor defect
in relaxation, much more severe than the diastolic dysfunction

associated with HCM mutations with only a 1.8-fold average
Ca2+ sensitivity increase.

If myofilament Ca2+-sensitivity were decreased to half the
normal, contractility would be very low indeed. The fact that
mutations that decrease Ca2+-sensitivity are not lethal and
indeed in transgenic mice, may exhibit little phenotype, is
probably due to a compensatory increase in the Ca2+-transient
(Du et al., 2007). However, this compensationmay not be enough
to support normal contraction in the long term, leading to
DCM, the phenotype commonly associated with reduced Ca2+-
sensitivity.

CONCLUSION

The objective of this article was to confirm that Ca2+-
sensitivity of contractility only varies within an narrow range
of three-fold above and below the normal EC50 at rest and
to investigate why this should be. The high cooperativity of
muscle activation by Ca2+ means there is a narrow [Ca2+]
range between relaxed and active muscle. It would appear that
the excitation-contraction coupling machinery of the cell has
limited ability to change the amplitude of the Ca2+-transient
or baseline [Ca2+] to compensate for changes in EC50; thus
increased Ca2+-sensitivity would be limited by inability to relax
and reduced Ca2+-sensitivity would be limited by inability
to contract. It is intriguing that the Ca2+-sensitivity range
of the thin filament itself is independently limited. Mutations
that change Ca2+-binding affinity to TnC by a large amount
nevertheless only produce a small change in EC50 for activation
of loaded or unloaded contractility in vitro. Whether this
property is an evolutionary adaptation that limits the deleterious
effects of mutations in thin filaments or simply fortuitous in
unknown.
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