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The analysis of neural systems leverages tools from many different fields. Drawing

on techniques from the study of critical phenomena in statistical mechanics, several

studies have reported signatures of criticality in neural systems, including power-law

distributions, shape collapses, and optimized quantities under tuning. Independently,

neural complexity—an information theoretic measure—has been introduced in an effort

to quantify the strength of correlations across multiple scales in a neural system.

This measure represents an important tool in complex systems research because it

allows for the quantification of the complexity of a neural system. In this analysis,

we studied the relationships between neural complexity and criticality in neural culture

data. We analyzed neural avalanches in 435 recordings from dissociated hippocampal

cultures produced from rats, as well as neural avalanches from a cortical branching

model. We utilized recently developed maximum likelihood estimation power-law fitting

methods that account for doubly truncated power-laws, an automated shape collapse

algorithm, and neural complexity and branching ratio calculation methods that account

for sub-sampling, all of which are implemented in the freely available Neural Complexity

and Criticality MATLAB toolbox. We found evidence that neural systems operate at or

near a critical point and that neural complexity is optimized in these neural systems

at or near the critical point. Surprisingly, we found evidence that complexity in neural

systems is dependent upon avalanche profiles and neuron firing rate, but not precise

spiking relationships between neurons. In order to facilitate future research, we made all

of the culture data utilized in this analysis freely available online.

Keywords: neural criticality, neural complexity, neural avalanche, complex system, power law, shape collapse,

information theory

1. INTRODUCTION

Interest in the study of complex systems has undergone rapid growth. The principal aim of this
field is to seek general frameworks or overarching rules to explain complex behavior in systems
that appear to be widely varied (Bar-Yam, 1997; Haken, 2006). The brain has been a subject of
considerable treatment under the complex systems paradigm via the analysis of brain networks
(e.g., Bullmore and Sporns, 2009). Two important steps for analyzing the brain from a complex
systems perspective are devising a metric for quantifying complexity and describing its dependency
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on changes in the system in such a way that is amenable
to comparisons across systems. Though designed for different
purposes, neural complexity (Tononi et al., 1994) is an
ideal metric of complexity in the brain. Neural complexity
is an information theoretic measure that quantifies the
strength of correlations across all scales in a neural system.
Because information theoretic measures are generally model
independent, neural complexity can be applied to any type of
system that involves many interacting components and it can
be used to quantify how various perturbations to neural systems
affect their complexity.

Concurrently, the field of criticality in neural systems has
received extensive treatment, primarily via studies of cotemporal
sequences of neural activity, otherwise known as “neural
avalanches” (Beggs and Plenz, 2003, 2004; Beggs and Timme,
2012). Many recent studies have produced evidence that suggests
neural systems are poised at or near a critical point (Beggs
and Plenz, 2003; Petermann et al., 2006; Mazzoni et al., 2007;
Gireesh and Plenz, 2008; Pasquale et al., 2008; Hahn et al., 2010;
Friedman et al., 2012; Priesemann et al., 2013; Lombardi et al.,
2014, 2016; Priesemann et al., 2014; Williams-Garcia et al., 2014;
Shew et al., 2015). Furthermore, many studies (see Beggs, 2008;
Chialvo, 2010; Beggs and Timme, 2012 for reviews) have found
important implications for the brain if it is indeed operating at
or near a critical point, such as optimal communication (Beggs
and Plenz, 2003; Bertschinger and Natschlager, 2004; Ramo
et al., 2007; Tanaka et al., 2009; Shew et al., 2011), information
storage (Socolar and Kauffman, 2003; Kauffman et al., 2004;
Haldeman and Beggs, 2005), computational power (Bertschinger
and Natschlager, 2004), dynamic range (Kinouchi and Copelli,
2006; Shew et al., 2009), and phase sychrony (Yang et al., 2012). A
great deal of research on criticality in neural systems has focused
on the existence of power-laws in neural data (see Beggs and
Plenz, 2003; Priesemann et al., 2009; Shew et al., 2009; Klaus
et al., 2011; Ribeiro et al., 2014 as examples, Clauset et al.,
2009; Touboul and Destexhe, 2010; Dehghani et al., 2012 for
critiques, and Beggs and Timme, 2012 for a review), though
recent research has expanded the number analysis techniques
(Beggs and Timme, 2012) to include shape collapse (Friedman
et al., 2012; Priesemann et al., 2013), susceptibility (Williams-
Garcia et al., 2014), and tuning through criticality (Shew et al.,
2009, 2011). In this work, we included and improved upon many
of these analyses.

In this article, we present the first study relating a measure
of complexity to criticality in a neural system. This analysis
is important because it provides a strong link between these
two methods of conceptualizing the brain. Though research in
complexity and criticality are motivated by different questions,
we hypothesized that complexity and criticality are related in
neural systems. It is important to note, however, that their
relationship is not trivial. Indeed, as we will discuss below,
neural complexity is not dynamic, while the criticality analyses
we will apply are dynamic. Neural complexity is dependent
on the distribution of states (i.e., patterns of spiking neurons
in a time bin) observed in the data without regard to the
time ordering of those states. Conversely, neural criticality
analyses explicitly rely on time ordered network states (i.e.,

patterns of spiking neurons across multiple adjacent time
bins).

To study the relationship between complexity and criticality
in neural systems, we chose to analyze action potential data
from dissociated hippocampal cultures from rats grown on large
multielectrode arrays. We recorded neural activity from these
cultures through the first 5 weeks of development. We chose to
use this system because it allowed for the relatively easy collection
of large amounts of data (435 recordings including nearly 40,000
neurons) and because similar cultures were previously found to
produce critical or near-critical behavior (Tetzlaff et al., 2010).
In analyzing the data, we used recently introduced techniques,
including: a maximum likelihood estimation (MLE) fitting
method for doubly truncated discrete power-laws (Marshall et al.,
2016), which allowed us to account for sampling and finite size
effects in measuring power-laws (Clauset et al., 2009; Touboul
and Destexhe, 2010; Dehghani et al., 2012); an automated
method for performing and measuring shape collapses (Marshall
et al., 2016), which represented a significant improvement in
methodology over previous manual shape collapses analyses
(Friedman et al., 2012); methods to account for sub-sampling
in complexity calculations, thus improving the accuracy of these
calculations in large systems of neural sources; and a branching
ratio calculation technique designed to account for sub-sampling
(Wilting and Priesemann, 2016).

Using our large data set and advanced analysis tools, we
found the following results: (1) In a critical model, we found
that complexity peaked near the critical point for the model.
(2) In real data, we found critical exponents that agreed
with previous studies and expected values. Also, we produced
results from shape collapse, power-law fitting, and susceptibility
analyses that were not preserved under randomization. In
addition, after accounting for sub-sampling we found the real
data produced branching ratio values near 1 for the vast
majority of the recordings. These results are consistent with
the hypothesis that the neural system is operating near a
critical point. (3) In the real data, complexity was also not
preserved under randomization, indicating that complexity
tracks well with other well established methods of assessing
critical systems. (4) Surprisingly, we found that complexity in
neural systems was primarily dependent upon neuron firing
rate and avalanche profiles, not precise spiking relationships
between neurons. Taken together, these results are evidence
that neural systems operate at or near a critical point and that
complexity is also optimized in these neural systems at or near
the critical point. (5) In order to facilitate research in this
area and others, we have made the culture data freely available
online via the CRCNS data sharing initiative (Timme et al.,
2016b).

2. MATERIALS AND METHODS

2.1. Ethics Statement
All neural tissue samples from animals were prepared according
to guidelines from theNational Institutes of Health and all animal
procedures were approved by the Indiana University Animal
Care and Use Committee (Protocol: 11-041).
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2.2. Neural Cultures and Spike Sorting
Dissociated hippocampal cultures were produced from rats
using the procedures detailed in Hales et al. (2010). Briefly,
timed pregnant female rats (Sprague-Dawley from Harlan
Laboratories) were euthanized using CO2. Embryonic day 18
embryos were removed. Embryonic tissue was used to facilitate
the creation of a connected network of neurons following
dissociation and plating. The hippocampi of each embyro were
extracted and combined from all embryos. The neural tissue
was then dissociated and plated on Multichannel Systems 60
electrode arrays (8 X 8 square array with corners removed, 200
µm electrode spacing, 30 µm electrode diameter). We plated
cultures with a density of 10,000 cells per µL and we plated a
total of approximately 200,000 cells per culture. See Figure 1A for
an image of an example low density culture. We recorded from

the cultures for days in vitro (DIV) 6 through 35. See Figure 2B
for a list of the cultures and recording DIV (total number of
recordings: 435). We did not record from the cultures for the first
five DIV because activity was not generally stable during those
DIV (Wagenaar et al., 2006). We analyzed the first 59 min of each
recording, conducted at a sampling rate of 20 kHz.

For each recording, we used the wave_Clus spike sorting
algorithm to identify individual neuron action potentials
(Quiroga et al., 2004). Briefly, the wave_Clus algorithm firsts
identified putative neuron action potentials (spikes) using a
negative voltage threshold (5 standard deviations). The spike
waveforms were then wavelet transformed and the 10 most non-
normally distributed wavelet coefficients were then clustered
using superparamagnetic clustering. This clustering algorithm
utilized an annealing process and was capable of clustering

A

D E

F

B C

FIGURE 1 | Culture recording, spike sorting, and avalanche detection. (A) Image of example low density dissociated hippocampal culture plated on the

electrode array (50,000 cells, DIV 6). Low density culture produced for testing and imaging purposes. High density cultures (as used in the analysis) were difficult to

image due to overlapping cell structure. (B) Example voltage recording from a culture that was utilized in the analysis. Spike sorting identified two neurons. (C)

Average spike waveforms for neurons 1 and 2 from (B). Solid line represents mean voltage and fringe represents one standard deviation. (D) A segment of the spike

raster for all electrodes in the same culture as the electrode shown in (B). (E) Example neuronal avalanche. Once spikes were found for all electrodes with a temporal

resolution of 0.05 ms, the data were rebinned to the mean network-wide interspike interval (ISI). Adjacent periods of activity were then identified as avalanches. This

avalanche corresponds to the red vertical line in (D). This avalanche was duration 6 (6 time bins long) and size 12 (12 total neuron activations). (F) Avalanche profile for

the example avalanche shown in (E).
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B

FIGURE 2 | Basic dissociated culture properties. (A) Neuron firing rate histogram. The histogram does not appear to be log-normal, though firing rates span

multiple orders of magnitude and this distribution could result from the sum of multiple log-normal distributions and low firing rate bias in spike sorting. (B) Recording

DIVs (black squares) for all cultures. White squares indicate no recording was performed. Red squares indicate the recordings that were excluded from the analysis

due to too few avalanches. All other recordings were fully utilized in the analysis. (C) Histogram of number of recorded neurons across all recordings. (D) Histogram of

mean network-wide interspike interval (ISI) across all recordings. Each recording was rebinned to the mean ISI. (E) Histogram of number of observed avalanches in

each recording after rebinning to ISI.

non-circular groupings of points in wavelet coefficient space.
All spike sorting results were manually checked using a
custom GUI written in MATLAB for this analysis. The original
wave_Clus algorithm included a detector dead time of 1.5 ms
following a detected action potential to enforce refractory period
requirements. This dead time was removed in our analysis
because we found it biased detection of spikes from multiple
neurons. Given that all results were manually checked and
erroneous spikes were removed, we feel the removal of the dead
time was appropriate. See Figure 1B for an example voltage trace
segment with detected neuron action potentials. See Figure 1C

for example spike waveforms for this example electrode. The
spike sorting algorithm yielded spike times at a resolution of 20
kHz for all found neurons in the recordings. See Figure 2A for
the neuron firing rate histogram and Figure 2C for the histogram
of number of neurons found in each recording (total number of
neurons across all recordings: 39,529). Most recordings yielded

approximately 100 spike sorted neurons and firing rates ranged
from roughly 0.05–20 Hz. Note that we were not able to
record from all approximately 200,000 plated neurons due to
the physical limitations of the electrode array (e.g., number of
electrodes and area covered by the array) and because not all
plated neurons survive and are integrated into the network. All
of the spike sorted recordings are freely available via the CRCNS
data sharing initiative (Timme et al., 2016b).

2.3. Neural Avalanches
Neural avalanches were identified as sequences of time bins
during which at least one neuron spiked (Figures 1D–F). Prior to
neural avalanche detection, the spiking activity of each recording
was rebinned to the average network-wide interspike interval
for that recording (i.e., the interspike interval was calculated
considering all spikes for all neurons). We used the mean
network-wide ISI because it provided a convenient estimate
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for the characteristic time scale of the system. In addition to
being easy to calculate, the ISI intuitively scales with number
of neurons and neuron firing rate. This rebinning procedure
was necessary because very small bins would result in only very
small avalanches, while very large bins would result in only
very large avalanches. Most recordings had ISIs of around 7
ms, though some data sets showed much higher or lower ISIs
(Figure 2D). We feel this result highlights the need for some type
of adaptive method for setting the bin size (e.g., the ISI method
we employed), rather than simply setting a uniform bin size for all
data sets. Some data sets possessed larger avalanches and/or faster
spiking neurons in avalanches, requiring smaller bins, while other
data sets had smaller avalanches and/or slower spiking neurons
in avalanches, requiring larger bins. Following the rebinning
procedure and avalanche detection, most recordings contained
around 10,000 avalanches (Figure 2E).

2.4. Models
We employed two types of branching models in this analysis
(Haldeman and Beggs, 2005; Williams-Garcia et al., 2014). These
models were capable of producing neural avalanches that could
be analyzed using all of the methods used to analyze the real
data. First, we used a simple branching process (or Bethe lattice)
model, consisting of layers of feed-forward neurons with no
recurrent connections. Within a layer, each neuron sent two
connections to neurons in the next layer. Each neuron in a
given layer received only one connection. Therefore, each layer
contained twice as many neurons as the previous layer. For each
run of themodel, the single neuron in the first layer was activated.
Activity was spread from active neurons with a likelihood of
ptrans = 0.5. This transmission probability resulted in a model
tuned to its critical point. The model could be run infinitely, but
practical limitations meant that we were forced to stop activity
at the 104 layer. We generated one version of this model to
demonstrate the difference between complexity and criticality
(see Section 3.1).

Second, we used a cortical branching (CB) model that
contained 100 neurons arranged in a square lattice with periodic
boundary conditions (i.e., a torus). The model utilized a
spontaneous firing probability to randomly create activity in the
network. At each time step, each neuron had a pspont = 10−4

likelihood to activate spontaneously. Activity in the network
propagated via interactions between a neuron and its four nearest
neighbors. If a given neuron was active at time t, there was a
ptrans likelihood that it would cause a given one of its neighbors
to be active at time t + 1. We tested values of ptrans on the
interval 0.2 ≤ ptrans ≤ 0.3 with increments of 0.05. We generated
30 example models for each unique ptrans value. Each cortical
branching model was run for 3∗105 time steps. In a version of
the cortical branching model with infinite neurons, the critical
point is near ptrans = 0.25. So, we expected that the near-critical
point for the finite model we employed would also occur for
ptrans ≈ 0.25 (see Section 2.10).

In addition to the branching models, we also used a simplified
model to generate spiking activity with varying degrees of
complexity. This model consisted of 12 neurons arranged in a
feedforward chain (i.e., neuron 1 could influence neuron 2, but

not vice versa). For each run of this model, the first neuron in
the chain was either active or inactive (alternating between runs
of the model). The spiking state of the ith neuron (call it ai) was

coupled to the spiking state of the (i + 1)th neuron (call it ai+ 1)
using a parameter c such that p(ai+ 1 = ai) = 0.5(1 + c) and
p(ai+ 1 6= ai) = 0.5(1 − c). Therefore, the system produced
totally random data for c = 0 and totally ordered data for c = 1.
In this analysis, we utilized values of c = 0, 0.8, 1 to probe
different levels of complexity.

2.5. Data Randomization Methods
We utilized several randomization methods in this analysis to
probe the importance of different qualities of the data (e.g.,
neuron firing rate, avalanche profile, etc.) in the culture data
and in the cortical branching model data. See Table 1 for a
description of which features of the data are preserved under each
type of randomization. In the culture data, all randomization
was performed after rebinning. Because of this and explicit
requirements in the randomization algorithms, we insured that
the spike count for each neuron did not change as a result of
randomization in all algorithms except shuffling. We found that
accidentally failing to maintain spike count can cause erroneous
results. No rebinning was required in the cortical branching
models because the data were already binned at the appropriate
time scale when they were produced.

We utilized five randomization methods in this analysis. First,
we jittered the data by randomly moving spike times earlier or
later in the spike trains. We determined the amount by which
the spike would move using a normal distribution centered on
the original spike time. The standard deviation of the normal
distribution was 1, 10, or 100 time bins. We insured that this
process did not change the neuron firing rate (i.e., by accidentally
jittering two spikes into one bin). But, this method did alter
the neuron interspike intervals (ISIs) and the avalanche profiles.
That said, the ISIs were similar before and after jittering because
the jittering process was symmetric (i.e., there was an equal
likelihood of moving spikes forward in time by some 1t as
there was to move spikes backward in time by 1t). Furthermore,
avalanche profiles were altered more severely with larger jitter
size.

TABLE 1 | List of data features preserved under randomization for each

randomization method.

Randomization method Firing rate ISI Avalanche profile

Jitter Yes Noa Nob

Wrap Yes Yesc No

Poisson Yes No No

Swap Yes No Yes

Shuffling No No Yes

aBecause spike jittering symmetrically randomized spikes, it did not precisely preserve the

interspike intervals for each neuron, but the interspike interval distribution for each neuron

was approximately preserved.
bAs with the interspike interval, spike jittering did not precisely preserve the avalanche

profiles, but it did so approximately, especially for small jitter.
cWrapping altered only one interspike interval (at the random cut point).
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Second, we wrapped the data by cutting each neuron spike
train at a random unique point and swapping the remaining
halves. Note that this process preserved the neuron firing rate and
nearly perfectly preserved the ISIs. One ISI was altered (at the cut
point), but all other ISIs were preserved. Also, wrapping severely
altered avalanche profiles by decorrelating the neurons.

Third, we Poisson randomized the data by randomly placing
a neuron’s spikes with equal likelihood at all time points. This
process essentially converted each neuron into a random Poisson
process with firing rate matching the original data. Therefore,
this method preserved neuron firing rate, but greatly altered the
ISIs and the avalanche profiles. In one portion of the analysis, we
slightly altered the Poisson randomization procedure by moving
whole network states for each individual time bin instead of
treating each neuron separately (see Section 3.1).

Fourth, we spike swapped the data by trading pairs of spikes
between neurons. This process consisted of finding a pair of
spikes from two neurons such that the neuron identities for the
spikes could be traded without deleting spikes (i.e., neuron A
spikes at t1, but not t2, while neuron B spikes at t2, but not t1) and
then trading the neuron identities for those spikes. Every spike
was swapped at least once if a possible. Note that spike swapping
preserved neuron firing rates and the avalanche profiles because
the total number of spikes at each time bin was not altered.
However, spike swapping did not preserve neuron ISI. Bymoving
a neuron’s spikes from one time bin to another, spike swapping
disrupted spiking relationships between neurons.

Fifth, we randomized the neuron identities for spikes at every
time step. We referred to this process as “neuron shuffling” or
“shuffling.” For instance, if five neurons spike at a given time
step, we randomly assigned those spikes across all neurons with
equal likelihood. This randomization was carried out at each time
step in the recording. Note that this process did not preserve
neuron firing rate (unlike all other methods), nor did it preserve
the neuron ISIs. However, because it preserved the total number
of active neurons at each time step, it did preserve the avalanche
properties.

2.6. Critical Exponents
The study of critical phenomena in statistical mechanics provides
concepts and notation that can be readily applied to neural
avalanches (Sethna et al., 2001; Friedman et al., 2012). A neural
avalanche is characterized by its duration (number of contiguous
time bins in which at least one neuron fired) and size (total
number of active neurons). If a neural network operates near
a critical point, then the size distribution (fs(S)), duration
distribution (fd(T)), and average size given duration data (〈S〉(T))
of its avalanches can be fit to power laws (Equations 1–3).

fs(S) ∝ S−τ (1)

fd(T) ∝ T−α (2)

〈S〉(T) ∝ T1/σνz (3)

In Equations (1–3), S is the size of an avalanche and T is the
duration of an avalanche. The power-law exponents τ , α, and
1/σνz are critical exponents of the system. They are model

independent and identical for all systems in the same universality
class (Sethna et al., 2001; Friedman et al., 2012). Furthermore,
the critical exponents themselves are related via (Equation 4)
(Friedman et al., 2012).

α − 1

τ − 1
=

1

σνz
(4)

Testing this relationship has been proposed as an important
evaluation of the critical state of the system (Friedman et al.,
2012).

2.7. Power-Law Fitting
The subject of power-law fitting in general (Burroughs and
Tebbens, 2001; Goldstein et al., 2004; Perline, 2005; White
et al., 2008; Clauset et al., 2009; Priesemann et al., 2009;
Holden and Rajaraman, 2012; Deluca and Corral, 2013) and
power-law fitting in analyses of neural criticality in particular
(Priesemann et al., 2009; Touboul and Destexhe, 2010; Klaus
et al., 2011; Dehghani et al., 2012; Alstott et al., 2014; Ribeiro
et al., 2014; Yu et al., 2014; Touboul and Destexhe, 2015) have
received a great deal of attention in the literature. We recently
introduced improved power-law fitting methodologies that
account for doubly truncated data, including software support
via the MATLAB NCC toolbox (Marshall et al., 2016). These
improvements built upon previous advances (Clauset et al., 2009;
Deluca and Corral, 2013) by utilizing an automated maximum
likelihood estimation (MLE) technique to detect power law
portions of data histograms. This method can automatically
control for data sets with sub-sampling bias in the tail of a
power-law distribution. Given the fact that neural avalanche
recordings are highly sub-sampled (i.e., a very small percentage of
neurons are recorded), this improvement is especially important
in power-law analyses of neural avalanches. We will now briefly
review this methodology (see Marshall et al., 2016 for a complete
discussion and demonstration of the fitting routine).

In neural avalanche analyses, we will be interested in fitting
the distributions of avalanche sizes and durations (see Section
2.3). Prior to fitting the distributions, we applied cuts to the
data. For a given type of distribution (size or duration), we
removed avalanches with sizes or durations less than 4 as well as
data for which less than 20 avalanches of that size or duration
were observed. These cuts were imposed in order to consider
similar portions of the data in the power-law fit analysis as
we considered in the shape collapse analyses (see Section 2.8).
Note that because the fitting method can account for doubly
truncated data, removing data from the left and right portion
of the distribution via these cuts did not bias the fitting as
would be the case with methods that do not account for double
truncation.

After the application of cuts, we fit the histogram using
the doubly truncated discrete power-law MLE. To assess if the
power-law fit was acceptable, we used the fit to generate 500
power-law distributed model data sets (with matching numbers
of avalanches). We then compared the KS-statistic between
(1) the fit and the real data vs. (2) the fit and the power-
law model data. If the real data produced a KS-statistic that
was less than the KS-statistic found for at least 20% of the
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power-law models (i.e., p ≥ pthresh = 0.2), we accepted
the data as being fit by the truncated power law because
the fluctuations of the real data from the power law were
similar in the KS-statistic sense to random fluctuations in a
perfect power-law model. However, if the converse was true,
the truncated power-law hypothesis was rejected. Note that
this method was not able to prove the data were generated
by a truncated power law (nor could any fitting algorithm),
rather it was only able to reject the truncated power-law
hypothesis.

If the truncated power-law hypothesis was rejected, we
searched for successively smaller ranges of the distributions
that could be fit by the truncated power-law using the
same methodology discussed above. We defined the ranges
logarithmically in terms of decades or orders of magnitude.
Once a range was found over which the truncated power-law
hypothesis was accepted, we ceased the search. Because the
algorithm searched through successively smaller fit ranges, the fit
ranges reported by the analysis represent the largest segment of
the data that was fit by a truncated power-law.

In addition to fitting the size and duration distributions with
truncated power laws, we also wished to fit the values of the
average avalanche sizes given duration for each data set. These
data are also hypothesized to follow a power law (see Section
2.6). However, unlike the size and duration distributions, the
average size given duration plots show power laws with positive
exponents. This is expected since long duration avalanches, while
less likely than short duration avalanches, are more likely to have
a larger size than short duration avalanches. Because the average
size given duration data is not a probability distribution, we
were unable to fit it using an MLE approach. Instead, we used
a simple weighted least squares fitting algorithm via the standard
Matlab function lscov. We only fit size given duration data for
avalanches that fell in the duration range fit by a truncated power
law using the methods discussed above.

2.8. Shape Collapse
If a neural system is in a critical state, in addition to exhibiting
power-law size and duration distributions, the mean temporal
profiles of avalanches should be identical across scales (Friedman
et al., 2012). In other words, the profiles (Figure 1F) of long
duration avalanches should have the same scaled mean shape as
short avalanches . This phenomenon is also referred to as “shape
collapse.” Specifically, the mean number of spiking neurons
(s) at time t in an avalanche of duration T is related to the
universal scaling function for the avalanche temporal profile F
via (Equation 5) (Friedman et al., 2012).

s(t,T) ∝ TγF(t/T) (5)

In Equation (5), γ is the scaling parameter that controls how
much larger in size long duration avalanches are than short
duration avalanches. Therefore, if the correct scaling parameter
γ is chosen and if the system is close to criticality, when plotted
on a scaled duration (i.e., t/T) avalanches of all durations should
produce the same mean profile when scaled via s(t,T)T−γ.

Using Equations (3), (5), and (6), it can be shown (Friedman
et al., 2012) that 1/σνz (see Equation 3) is related to the shape
collapse scaling parameter γ via (Equation 7).

〈S〉(T) =

∫ T

0
s(t,T)dt (6)

γ =
1

σνz
− 1 (7)

Because γ can be expressed in terms of the critical exponent
1/σνz, we will only quote 1/σνz in relation to shape collapses
throughout this analysis. Therefore, it is possible to measure
1/σνz using both the shape collapse and the average size given
duration. The comparison between these values—which should
be identical if the system is truly poised at a critical point—can be
an important check of the criticality hypothesis.

In this analysis, we used shape collapse methodologies
introduced in the NCC Toolbox (Marshall et al., 2016). These
techniques improved upon previous manual shape collapse
analyses (Friedman et al., 2012; Priesemann et al., 2013) by
performing an automated collapse. Briefly, the mean temporal
profile of all avalanches with durations longer than 3 and with
at least 20 examples were collapsed such that the normalized
variance between the mean avalanche shapes was minimized.
Note that this method replaced the subjective classification of
avalanches as exhibiting shape collapse (Friedman et al., 2012)
with a quantitative assessment of the best possible collapse.
Furthermore, we quantified the shape of the collapse by fitting the
collapsed avalanches with a quadratic polynomial and calculating
its average curvature. We did not seek to evaluate if the data
exhibited a shape collapse because no quantifiable method exists
to assess when a group of avalanches exhibits or does not
exhibit shape collapse (though see Shaukat and Thivierge, 2016
for a recent attempt to do so). Rather, we feel that it is more
appropriate to apply the shape collapse algorithm and interpret
the resulting scaling parameter and curvature.

2.9. Complexity
Neural complexity is a measure of the degree to which neurons
interact across multiple scales in a neural system. We utilized the
original definition of complexity (Tononi et al., 1994), but with
several improvements to account for sub-sampling (Marshall
et al., 2016). We will now briefly discuss complexity and how it
is defined.

We calculated the complexity in a system ofN spiking neurons
(call this systemX). The entropy of a system ofN spiking neurons
is given by Equation (8) (Cover and Thomas, 2006).

H(X) = −
∑

i

p(xi) log(p(xi)) (8)

In Equation (8), xi is a joint state of all N neurons at a given
time bin (i.e., combinations of spiking and not spiking) and the
base of the logarithm is 2 to yield information results in units
of bits. In our analysis, the probability of a given joint state of
neurons p(xi) was found by counting the number of occurrences
of a given state throughout a recording and dividing by the total
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number of states. We assumed the probability distribution p(xi)
was stationary throughout the recording.

By comparing the joint entropy of a group of neurons to the
sum of their individual entropies, it is possible to measure the
degree to which the activities of the neurons are coordinated.
This measure is referred to as the integration (the integration
has previously been referred to as the total correlationWatanabe,
1960; Tononi et al., 1994; Timme et al., 2014a).When considering
a subset of neurons, we note the jth unique set of k neurons as
Xk
j . So, X

1
j would refer to the jth neuron alone, but X3

j would

refer to the jth unique set of 3 neurons. Using this notation, the
integration of the jth set of k neurons is given by Equation (9).

I(Xk
j ) =





∑

j′∈k

H(X1
j′ )



 −H(Xk
j ) (9)

Using the integration, the complexity is given by Equation (10)
(Tononi et al., 1994; van Putten and Stam, 2001).

CN(X) =
1

N

N
∑

k= 2

[(

k− 1

N − 1

)

I(XN
1 )− 〈I(Xk

j )〉j

]

(10)

In the data analysis, the average subset integration (〈I(Xk
j )〉j) was

calculated at each possible value of k from 2 to N. For a given

value of k, we calculated 〈I(Xk
j )〉j for the lesser of either all possible

permutations of neurons or 100 randomly chosen permutations.
In Equation (10), I(XN

1 ) represents the integration of the whole
system, thus the first term in the brackets represents a linear
approximation for the expected integration across all scales of the
system given the total integration.

The complexity as expressed in Equation (10) can be difficult
to interpret. Therefore, it is helpful to evaluate the complexity
in a simple system such as a small chain model (see Section
2.4, Figure 3). Complexity requires some degree of coordinated
variability across many scales in the system. In Figure 3, we show
three types of models: a random model, a complex model, and
an ordered model. The behaviors of the models are apparent
from a brief segment of representative spike rasters (Figure 3A).
The random data contain no correlations, while the ordered data
contain no variability. The complex data show some balance
between these states. When the integration curves are plotted
(Figure 3B), the random data produce zero integration, while the
ordered data produce high integration. However, the complex
data produce a non-linear integration curve, suggesting varying
correlations across scales and non-zero complexity.

The model used to generate example results for Figure 3

was small and well defined (i.e., the precise joint probability
distributions were defined). Conversely, neural data typically
include many more variables and the joint probability

A B C

FIGURE 3 | Neural complexity. (A) Short segments of example spike rasters for three types of chain model data (see Section 2.4, c = 0 (random), c = 0.8

(complex), c = 1 (ordered)). (B) Integration curves with linear approximations for different subset sizes. Note that random data shows no integration, while ordered

data shows high integration. Complex data shows high integration that varies non-linearly with subset size. (C) Complexity values. Only the complex data shows

non-zero complexity.
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distribution must be estimated from available observations.
This reality of experimental data is likely to lead to state sub-
sampling bias (Marshall et al., 2016). Previous analyses have dealt
with this issue by making assumptions about the underlying
structure of the data (e.g., converting neural signals to Gaussian
distributions Tononi et al., 1994). We introduced a sub-sampling
detection technique that automatically finds the largest point
at which the system can be accurately sampled and calculates a
corrected complexity for this smaller subset of neurons (Marshall
et al., 2016). In this analysis, we utilized this methodology
as implemented in the NCC toolbox (Marshall et al., 2016).
Furthermore, unless otherwise noted, we only analyzed the
complexity of neural avalanches to avoid biases associated with
the number of avalanches in a recording.

2.10. Sub-Sampling
In order to account for the finite size of the samples and the
fact that the culture data samples contained different numbers
of neurons, we utilized a sub-sampling method to extrapolate
various quantities to systems with infinite size. In this analysis,
both the cortical branching model and our culture data represent
finite size systems. The cortical branching model contained
100 neurons for which we have a complete record of spiking
activity. The culture data contained at most approximately
200,000 neurons (see Section 2.2) for which we have only a
small fraction of the complete record of spiking activity (∼
100 neurons). The impact of undersampling on assessments
of criticality have been discussed previously in the literature
(Priesemann et al., 2009; Ribeiro et al., 2014). For both types
of data, we sub-sampled the measured neurons and calculated
various quantities (e.g., size distribution power-law fits). We

then plotted the resulting quantities as a function of inverse
number of neurons and performed a linear fit using weighted
least squares. The y-intercept for this fit then corresponded to
an estimate for the given parameter in an infinite or very large
system.

The specific sub-sampling routine we utilized is as follows
(Figure 4): We randomly sub-sampled each system 30 times at
evenly spaced systems sizes from 40% of the recorded system
size to the full recorded system size. We then calculated the
relevant values of interest for the sub-sampled system (e.g., size
distribution power-law fits). These analyses were identical to
those performed in the whole recorded system as described above
with the exception of the power-law MLE fits. We found that the
power-law fit search algorithm was unstable under sub-sampling.
So, for sub-sampling the power-law MLE fits, we utilized the fit
value for all avalanches that survived the minimum size/duration
and minimum occurrence cuts. Next, we plotted the values vs.
the inverse neuron number for the given sub-sample. We fit
these data using a linear weighted least squares fit. The number
of neurons for each sub-sample was used as the weight for the
fitting. This fitting procedure was applied to all sub-samples in
all analyses with the exception of the complexity data from the
cortical branching model. We used a different fitting method
for these data because they exhibited a discontinuity in the
complexity trend. For those data, we fit the 10 largest sub-
samples as described above. Progressively smaller sub-samples
were added and fit until the newest point produced a fit residual
that was larger than the mean residual plus 3 standard deviations
of the residuals. Following the fitting, in all cases the y-intercept
(i.e., 1/N = 0) was interpreted as an estimate for the quantity of
interest in an infinite or very large system.

A B

D

C

FIGURE 4 | Sub-sampling algorithm. (A–C) Power-law fits for avalanche size distributions for a full example cortical branching model (A), a sub-sampled version of

the same model with 68 neurons (B), and a sub-sampled version of the same model with 40 neurons (C). (D) Scatter plot of power-law fit exponents vs. inverse

sub-sample size. A weighted linear least squares fit produces an extrapolation of the value for infinite system size at the y-intercept. Highlighted data points

correspond to fits from (A–C) via color coding.
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We performed the sub-sampling analysis in non-randomized
cortical branching model and culture data. In the cortical
branching model data, we performed the sub-sampling analysis
for all quantities under study except the branching ratio (see
Section 2.11). In the culture data, we applied the sub-sampling
analysis to only the critical exponents (see Section 2.6). We
limited the sub-sampling analysis in the culture data because
we found the sub-sample values for other quantities (e.g.,
complexity) were not well fit by a linear function and require
more advanced fitting techniques.

Note that the sub-sampling method we employed was not
finite size scaling (Cardy, 1988). This is because finite size
scaling is concerned with evaluating the relationship between
the behavior of quantities in finite versions of systems with
the behavior of those quantities in the infinite version of those
systems. For instance, only an infinite system can exhibit a
true critical point where correlation lengths diverge to infinity.

In finite systems, the correlation length may show a peak at
a temperature near the critical point for the infinite system,
but the correlation length will not diverge to infinity and the
peak temperature in the finite system will most likely differ
from the critical temperature in the infinite system. Finite size
scaling provides tools to link finite system behavior with infinite
system behavior. This is necessary in practice because some
infinite systems are easier to analyze analytically than their finite
versions, while, for other systems, the infinite systems are very
difficult to analyze analytically, but their finite versions are easy
to simulate.

2.11. Branching Ratio and Susceptibility
The branching ratio has previously been used to quantify the
stability of neural activity (Haldeman and Beggs, 2005; Wilting
and Priesemann, 2016). In its most basic form, the branching
ratio is simply the time average number of active neurons at time

A

D

E

F

B C

FIGURE 5 | Neural complexity and criticality are not trivially related. (A) Bethe Lattice or branching model. Activity spread from layer to layer starting at the

leftmost neuron. The likelihood to transmit activity along a connection was ptrans = 0.5, yielding a critical model system. (B) The avalanche sizes in the model were

power-law distributed, as expected. (C) The avalanches exhibited shape collapse, as expected. (D–F) Analysis of small avalanches (stopped on or before the 8th

layer). (D) The small avalanches exhibited power-law distributed sizes and non-zero complexity. (E) Randomizing the neuron identities (“neuron shuffling”) at each time

bin preserved avalanche size distribution, but removed complexity. (F) Randomizing the order of the network states (“Poisson” randomization applied to whole

network states) preserved complexity, but disrupted the avalanche size distribution.
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t + 1 (A(t + 1)) divided by the number of active neurons at time
t (A(t)):

Bbasic =

〈

A(t + 1)

A(t)

〉

t

(11)

If a system is near the critical point, the activity in the network
will be stable (Bbasic ≈ 1). If the system is sub-critical, the activity
in the network will die off quickly when it appears (Bbasic < 1). If
the system is super-critical, the activity in the network will expand
quickly (Bbasic > 1).

We utilized a recently introduced improvement to the
branching ratio calculation methodology that accounts for
system sub-sampling (Wilting and Priesemann, 2016). We have
added the function brestimate to the NCCMATLAB toolbox

to carry out this calculation (Marshall et al., 2016; Timme, 2016)
and we will briefly review the methodology here.

At the heart of the method introduced by Wilting and
Priesemann is examining activity at various delays (k) in the
system and observing how the ratio of activity changes with delay.
First, we calculated the slope rk of the linear regression between
A(t + k) and A(t):

A(t + k) = rk ∗ A(t) (12)

This fitting was performed using least squares fitting with
the standard MATLAB function polyfit. Next, Wilting and
Priesemann showed that the slope of these regressions is directly

A

B

C

FIGURE 6 | Example cortical branching model distributions and shape collapse. (A) Size distributions for three example models with low (left), near critical

(center), and high (right) transmission probabilities. (B) Duration distributions for three example models with low (left), near critical (center), and high (right) transmission

probabilities. In (A,B), note that the low transmission probability distributions curve downwards, while the high transmission probability distributions curve upwards.

This behavior is indicative of sub-critical and super-critical systems. Automatically detected truncated fit regions marked in black (see Section 2.7) (C) Example shape

collapses. Note that all three transmission probabilities qualitatively appear to exhibit shape collapse. Quadratic fit of shape collapse shown in black (see Section 2.8).
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related to the branching ratio via:

rk ∼ Bknew (13)

We fit the rk slope values with an exponential function using
non-linear least squares fitting with the standard MATLAB
function lsqcurvefit to obtain the branching ratio Bnew.

Because of finite size effects in our cortical branching model
and break down in correlation between activity across long
delays, we limited delays such that 1 ≤ k ≤ 8. We also limited
the activity values considered for the linear regression fits to
0 ≤ A(t) ≤ 5 for the cortical branching model and to 0 ≤

A(t) ≤ 10 for the culture data. Note that because the branching
ratio calculation we used accounted for sub-sampling, we did not
apply the sub-sampling correction routine to the branching ratio
calculation (see Section 2.10).

We also calculated the susceptibility of the cortical branching
model and the cultures (Williams-Garcia et al., 2014):

χ = var

(

A(t)

Nneurons

)

(14)

The susceptibility quantifies the degree to which fluctuations
in the state of each element of a system propagate to its
neighbors. If the system is near the critical point, it will show
high susceptibility because changes in the network are sustained
over long distances. Conversely, if the system is sub-critical or
super-critical, fluctuations will either quickly die out (producing
consistently low activity) or saturate the network (producing
consistently high activity), respectively. In those cases, the effects
of activity changes in one element of the network will be minimal
and the susceptibility will be small.

3. RESULTS

3.1. Complexity and Criticality are Not
Identical
To ensure that complexity and criticality were not trivially
related, we used a simple branching or Bethe Lattice model
tuned to the critical point (see Section 2.4, Figure 5A). Using
the full model, we found the power-law distributed avalanche
sizes (Figure 5B) and shape collapse (Figure 5C). We then
limited our analysis to only the avalanches that stopped on or
before the 8th layer (“small avalanches”). We performed this
truncation because the number of neurons grows exponentially
with network layer. This growth severely impacted sub-sampling
in the complexity calculation. In the original small avalanches,
the sizes of the avalanches were power-law distributed and
a non-zero complexity was observed (Figure 5D). We then
performed two types of randomizations. First, we randomized
the neuron identities in the avalanches (neuron shuffling).
This operation preserved the avalanches and their power-law
size distributions, but removed the complexity (Figure 5E).
Conversely, when we randomized the order of the network
states, but preserved neuron spiking states at each individual
time bin (Poisson randomization for the whole network
state), the complexity was preserved, but the distribution of
avalanche size changed dramatically (Figure 5F). This difference
in behavior under randomization highlights the differences
between criticality and complexity analyses. Complexity only
focuses on instantaneous correlations between specific neurons,
whereas criticality analyses only focus on the time order of the
total number of active neurons.

3.2. Cortical Branching Model
The cortical branching model (see Section 2.4) produced neural
avalanches that were similar to the culture data (see Section
3.3 below). The model produced size and duration distributions

A B C D

FIGURE 7 | Cortical branching models exhibit peaks in complexity and susceptibility, and branching ratios close to 1 near the infinite model critical

point. (A,B) Complexity and susceptibility peaked near ptrans = 0.25 indicating that both were maximized in critical systems. Note that complexity (A) also showed

divergent behavior for high transmission probabilities. This behavior was due to finite recording length bias (Figure S2). (C) Shape collapse curvature did not peak near

ptrans = 0.25, though this was not expected. This indicates that low transmission probability avalanches were more curved and high transmission probability

avalanches were more flat. (D) The branching ratios (Equation 13) of the networks were near 1 (critical state) near the transmission probabilities that showed peak

complexity (A) and susceptibility (C). In all sub-figures, the black line represents the average value and the red fringe represents ± one standard deviation.
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that were fit by truncated power-laws after applying minimum
size/duration and occurrence cuts (Figures 6A,B, see Section
2.7). In the size and duration distributions, note that the low
transmission probability models produced distributions that
curved downwards, whereas the high transmission probability
models produced distributions that curved upwards. The model
with a transmission probability near the infinite system critical
transmission probability (ptrans = 0.25) produced the straightest
size and duration distributions. This behavior is typical of a
sub-critical (ptrans < pcrit), critical (ptrans ≈ pcrit), and super-
critical (ptrans > pcrit) system. The cortical branching model
also produced shape collapses (Figure 6C, see Section 2.8).
Interestingly, the shape collapses qualitatively appear to be of
high quality for all transmission probabilities.

Now we will examine the combined behavior of all cortical
branching models across transmission probabilities (0.2 ≤

ptrans ≤ 0.3) after sub-sampling (see Figure S1 for example sub-
sampling fits).When we plotted the complexity and susceptibility

vs. the transmission probability, we found both peaked near
ptrans ≈ 0.265 (Figures 7A,B). Given that complexity and
susceptibility showed maxima near the critical transmission
probability for an infinite system (ptrans ≈ 0.25), and
susceptibility has been shown to be maximized near criticality
(Williams-Garcia et al., 2014), this result is strong evidence
that neural complexity is also maximized near criticality.
Furthermore, the branching ratio was found to be closest
to 1 near this same transmission probability (Figure 7D).
A branching ratio of 1 indicates sustained levels of activity
necessary for a system to be operating at a critical point, as
opposed to branching ratios below one which indicate a system is
sub-critical or above one which indicate a system is super-critical.

In addition to the peak in the complexity near ptrans ≈

0.265 (Figure 7A), we also found that the complexity was
increasing near the boundary for the tested range of transmission
probabilities (i.e., near ptrans = 0.3). This secondary peak or
divergence was due to a bias in the complexity calculation.

A B

C D

FIGURE 8 | Power-law exponents in culture data. (A) Size distribution critical exponent (τ ) values for all culture recordings analyzed. (B) Duration distribution

critical exponent (α) values for all culture recordings analyzed. (C) Average size given duration data critical exponent (1/σνz) values for all culture recordings analyzed.

(D) Shape collapse critical exponent (1/σνz) values for all culture recordings analyzed. In all subfigures, the quoted critical exponent value is mean ± standard

deviation. Also, histogram bin sizes optimized using methods established in Terrell and Scott (1985).
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We found that longer recordings produced higher complexity
values (Figure S2). Because we analyzed only the avalanches
and higher transmission probabilities produce longer avalanches,
high transmission probability models possessed effectively longer
recordings. When this effect was controlled by analyzing all time
bins in a recording, the secondary peak decreased with longer
recordings relative to the primary peak (Figure S2).

We found that the shape collapse curvature did not peak
near the critical point (Figure 7C). However, the curvature is
not an indication of the quality of the shape collapse, just the
overall shape. The fact that the average absolute curvature was
not near zero indicates that the avalanches did not collapse to a
line. Furthermore, the curvature results indicate that sub-critical
avalanches were more curved than super-critical avalanches. This
result seems reasonable if we assume super-critical avalanches
were longer, more sustained, and therefore flatter.

3.3. Dissociated Cultures
In the supplemental, we present an example power-law fit, shape
collapse, complexity calculation, and sub-sampling analysis of the
culture data (Figures S3–S7).

We calculated the critical exponents using theMLE power-law
search algorithm (for size distributions, duration distributions,
and average size given duration data), using the full shape
collapse analysis, and using sub-sampling methods (Figure 8)
(Marshall et al., 2016). We found lower values of τ and α using
the sub-sampling analysis, as well as lower errors (Figures 8A,B).
The values of 1/σνz showed little change between sub-
sampling and the analysis of the full system (Figures 8C,D).
The exponents found using the sub-sampling method agreed
best with previously reported values for the critical exponents
in neural avalanches (Mazzoni et al., 2007; Pasquale et al., 2008;
Friedman et al., 2012). Note that the values of 1/σνz found
using distinct methods (average size given duration fits and shape
collapse) agree within error. Furthermore, note that the critical
exponents satisfy the general relationship given in Equation (4)
using both the search algorithm and the sub-sampling method.
However, we also found that randomized data satisfied the critical
exponent relationship, though with different exponent values
(data not shown). This result casts doubt on the importance of
the critical exponent relationship as a marker for critical systems.

We calculated the branching ratio for the culture recording
data using both the basic method and new method introduced
by Wilting and Priesemann (2016) (Figure 9, see Section 2.11).
Using the new method, we found most recordings produced
branching ratios slightly below 1 (i.e., slightly sub-critical). Using
the previous basic method, we found most recordings produced
branching ratios that were substantially less than 1 and much
more varied. The result that the majority of the data sets
produced branching ratios near 1 is strong evidence that the
cultures were operating near a critical point.

When we compared complexity and several markers of
criticality in the full data sets (see Section 2.10) between
randomized culture data and real culture data, we found that all
metrics decreased substantially after randomization (Figure 10).
The complexity and susceptibility decreased most under the
strongest forms of randomization (e.g., Poisson randomization)

FIGURE 9 | Culture data branching ratios were near 1 after

sub-sampling correction. The branching ratios of the culture recordings

were found to be close to 1 after correcting for sub-sampling using the new

method established by Wilting and Priesemann (2016) (Equation 13), with

most data sets being slightly sub-critical. The basic branching ratio calculation

method (Equation 11) produced branching ratios that were more widely varied

and strongly sub-critical. Histogram bin sizes optimized using methods

established in Terrell and Scott (1985).

(Figures 10A,B). Notably, the complexity did not decrease under
spike swapping (see below). We also found a correlation of 0.23
between the complexity and the susceptibility of the recordings
(see Figure S8). The shape collapse curvature decreased under
randomization indicating that avalanches shape collapses became
flatter (Figure 10C). In total, these results are consistent with the
hypothesis that these neural systems were operating at or near a
critical point and that complexity is maximized near the critical
point.

Next, we examined the size and duration fit ranges, as
well as the associated fit exponents measured using all of
the data (Figure 11) (see Section 2.10). We found that the
fit ranges decreased for strong forms of randomization (e.g.,
Poisson randomization), but showed slight increases for 10
bin jittering (Figures 11A,C). We believe this may be due to
errors associated with determining the characteristic time scale
for the system. We found a correlation of 0.296 between the
complexity and the size fit ranges of the recordings and a
correlation of 0.197 between the complexity and the duration fit
ranges of the recordings (see Figure S9). We also found that the
power-law fit exponents increased under randomization because
randomization tends to remove large or long avalanches and
produce a shorter and steeper distribution of avalanche sizes or
durations (Figures 11B,D).

Surprisingly, we found that the complexity did not change
substantially under spike swapping (Figure 12A), but the
complexity did decrease somewhat under shuffling (Figure 12B).
Furthermore, we found strong correlations between complexity
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A

C

B

FIGURE 10 | Markers of criticality decreased under randomization in culture data. (A) Complexity decreased under randomization, with the exception of spike

swapping (see Figure 12). (B) The susceptibility decreased under randomization. (C) Avalanche shape collapse curvature decreased under randomization, indicating

that the shape collapses became flatter. Note that the susceptibility and shape collapse curvature were not expected to change under spike swapping or shuffling

because those randomization methods preserved avalanche profiles. Box Plots: minimum value, 25th percentile, median, 75th percentile, maximum value. Rank Sum

Test: (p < 0.05) 1 star, (p < 0.01) 2 stars, and (p < 0.001) 3 stars. Multiple comparisons correction performed using false discovery rate control (Benjamini and

Hochberg, 1995; Benjamini and Yekutieli, 2001; Groppe et al., 2011).

in the real data and complexity in the spike swapped data
(Figure 12A), as well as between complexity in the real data
and the complexity in the shuffled data (Figure 12B). Recall that
spike swapping preserves avalanche profiles and individual firing
rates, but disrupts neuron/spike pairing to some extent, this result
implies that precise spiking relationships between neurons did
not strongly contribute to complexity in these neural systems.
The fact that complexity decreased under shuffling indicates that
neuron firing rates (which are not preserved by shuffling) did
affect complexity in these neural systems.

4. DISCUSSION

4.1. Main Findings
In this work, we have produced evidence that complexity
and criticality are related in neural systems. We found that
complexity in a critical model was maximized near the critical
point for the model. We found branching ratio values that
indicated the cultures were operating near a critical point.
We found critical exponents that agreed well with previous
studies and expected values, as well as markers of criticality
(shape collapse, power-law fitting, and susceptibility) that were
not preserved under randomization. Furthermore, we found
that complexity tracked well with these established markers
of criticality in the culture data indicating that complexity is

maximized near the critical point. Finally, we found that the
complexity was primarily dependent upon neuron firing rate and
avalanche profiles, but not precise spiking relationships between
neurons.

4.2. Complexity and Criticality
The hypothesis that complexity and criticality are related in
neural systems seems intuitive. Systems that operate at the critical
point contain correlations that range across all scales. Similarly,
complexity measures the strength of correlations across across all
size ranges in a system. Though, as we discuss above, complexity
and criticality are not trivially related. So, the evidence we
produced that complexity and criticality are related in a neural
system is noteworthy.

Perhaps the most surprising result of our study was that
complexity in the neural data was relatively unchanged by spike
swapping. Spike swapping preserved the firing rate of each
neuron and the avalanche temporal profiles (i.e., the number
of active neurons in each time bin), but altered the times at
which specific neurons spiked. The fact that spike swapping
did not substantially alter the complexity indicates that identity
of the neurons spiking at any given time (and, therefore, the
precise spiking relationships between neurons) were not relevant
to the complexity. We found this result surprising and counter-
intuitive.
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A B

C D

FIGURE 11 | Markers of criticality decreased under randomization in culture data. (A) The size power-law fit range decreased under randomization, with the

exception of the 10 bin jittering. (B) The size power-law fit exponent τ increased under randomization indicating the size distribution became steeper. (C) The duration

power-law fit range decreased under randomization, with the exception of the 10 bin jittering. (D) The duration power-law fit exponent α increased under

randomization indicating the duration distribution became steeper. Note that the fit results were not expected to change under spike swapping or shuffling because

those randomization methods preserved avalanche profiles. Box Plots: minimum value, 25th percentile, median, 75th percentile, maximum value. Rank Sum Test:

(p < 0.05) 1 star, (p < 0.01) 2 stars, and (p < 0.001) 3 stars. Multiple comparisons correction performed using false discovery rate control (Benjamini and Hochberg,

1995; Benjamini and Yekutieli, 2001; Groppe et al., 2011).

A B

FIGURE 12 | Complexity is independent of precise spiking relationships in culture data, but dependent on firing rate. (A) Comparison of complexity in real

data and complexity in spike swapped randomized data for each culture data set. Note the strong correlation between the complexity values and the fact that most

cultures fell near the equality line. This indicates that spiking relationships (which are disrupted to some extent by spike swapping) did not strongly affect complexity.

(B) Comparison of complexity in real data and complexity in shuffled data for each culture data set. Note that the complexity values were strongly correlated, but

complexity in the real data tended to be greater than the complexity in the shuffled data.

We believe the answer to this question rests in the firing rates
of the neurons and the avalanche profiles. Shuffling preserved
avalanche temporal profiles, but it did not preserve neuron firing
rate (unlike spike swapping). When we performed shuffling,
the complexity of the system decreased substantially, as we had
expected. Furthermore, when we Poisson randomized the data

(which disrupted avalanche profiles, but preserved individual
neuron firing rates), the complexity of the system decreased
substantially, as we had expected as well. Therefore, we found that
avalanche profiles and neuron firing rates must be preserved to
maintain complexity, but precise spiking relationships need not
be preserved. We believe these requirements can be understood
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as follows. The avalanche profiles contain time bins with many
more spikes than would be expected by chance. Furthermore,
some neurons possessed many more spikes than other neurons
(recall, the firing rate distribution spanned several orders of
magnitude). So, even under spike swapping, it was more likely
than chance that two neurons with high firing rates would fire
during time bins with large amounts of activity. So, though spike
swapping randomized which neurons spiked in any given time
bin, the avalanche profiles and the firing rates of the neurons
still imposed structure on the spiking relationships. Thus,
complexity was still present. That having been said, we did not
expect to find complexity values essentially unchanged by spike
swapping.

We can express these results in terms of entropy using the
definition of neural complexity (Equations 9 and 10). Spike
swapping preserved individual neuron entropy by preserving
individual neuron firing rates. Also, by preserving the avalanche
profiles, spike swapping preserved the joint entropy terms in
Equation (9) to some extent. Shuffling did not preserve individual
neuron entropy because it does not preserve individual neuron
firing rates, though it did preserve joint entropy values to some
extent by preserving avalanche profiles. Poisson randomization
preserved individual neuron entropy because it preserved
individual neuron firing rates, but it did not preserve joint
entropy values because it did not preserve avalanche profiles.
Therefore, we see that both individual neuron and joint entropy
values are necessary to preserve complexity.

These results provide the interesting conclusion that
complexity in neural systems is driven by neuron firing rates
and avalanche profiles. We believe this result should be further
investigated. In particular, we hope to conduct additional studies
in other neural systems to see if this result holds universally,
or if it may be due to the particular circumstances of our
analysis.

4.3. Limitations of this Analysis
While our study represents a significant advance in many
respects, there are three noteworthy improvements that can
be made in future studies. First, we used the network-wide
interspike interval (ISI) to rebin the recordings prior to our
analysis. While we feel the ISI is a reasonable estimate for the
characteristic time scale of the system that scales well with
network size and neuron firing rates, perhaps better estimates
could be found. In the future, we hope to investigate other
rebinning and analysis methods to see if bin size significantly
affects the results reported herein.

Second, our use of neuronal cultures allowed for large amount
of data to be gathered, which greatly strengthened the statistics of
the analysis. However, we used an array with only 60 electrodes
and large electrode spacing. In the future we hope to analyze data
from larger and more dense electrode arrays (e.g., Litke et al.,
2004; Ito et al., 2014; Timme et al., 2014b, 2016a). Furthermore,
in vivo studies of neural criticality are possible (e.g., Priesemann
et al., 2009, 2014; Hahn et al., 2010; Shew et al., 2015). In the
future, we hope to analyze in vivo data to see if the relationships
between criticality and complexity we found in this analysis
are found in those systems as well. Those studies would also

permit research into possible relationships between criticality,
complexity, and phenomena that can only be studied in vivo, such
as behavior.

Third, one means of testing the criticality hypothesis in neural
systems that we did not investigate here is attempting to tune
the system through sub-critical, critical, and super-critical states
(Beggs and Timme, 2012). From a thermodynamics perspective,
the critical point occurs at a phase transition. In the case of
a neural system, the critical point would occur at a transition
between ordered and disordered phases. So, in a conceptually
similar experiment to adjusting the temperature and pressure
of water to tune it through liquid and gas phases to find
its critical point, it may be possible to tune a neural system
through different phases to locate the critical point and test the
criticality hypothesis. Recent research has indicated that balanced
inhibition and excitation control the critical state the neural
system (Shew et al., 2009, 2011). In this work we did not carry out
this type of experimental manipulation in the culture data. We
did carry out a similarmanipulation in a branchingmodel. In that
model, we showed that complexity peaked near the critical point
and we thereby demonstrated an important connection between
criticality and complexity. In the future, we hope to conduct
experiments similar to those in Shew et al. (2009, 2011) to see
if complexity also peaks near the critical point in a real biological
system.
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