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Due to the important biological role of red blood cells (RBCs) in vertebrates, the

analysis of reshaping and dynamics of RBCs motion is a critical issue in physiology

and biomechanics. In this paper the behavior of RBCs within the immature capillary

plexus during embryonic development of zebrafish has been analyzed. Relying on the

fact that zebrafish embryos are small and optically transparent, it is possible to image

the blood flow. In this way the anatomy of blood vessels is monitored along with the

circulation throughout their development. Numerical simulations were performed using a

specific numerical model that combines fluid flow simulation, modeling of the interaction

of individual RBCs immersed in blood plasma with the surrounding fluid and modeling

the deformation of individual cells. The results of numerical simulations are in accordance

with the in vivo observed region of interest within the caudal vein plexus of the zebrafish

embryo. Good agreement of results demonstrates the capabilities of the developed

numerical model to predict and analyze the motion and deformation of RBCs in complex

geometries. The proposedmodel (methodology) will help to elucidate different rheological

and hematological related pathologies and finally to design better treatment strategies.

Keywords: mathematical modeling, blood flow, deformable objects, solid-fluid interation, comparison with

experimental data, caudal vein plexus, zebrafish embryo

INTRODUCTION

The process of development of an embryo and subsequent functioning of the cardiovascular system
is important for the explanation of many phenomena occuring within this system. Vertebrates have
a functional vasculature, with a heart that pumps blood and blood vessels that have a clearly defined
endothelium. However, observation of the blood vessels in living embryos is difficult either because
the embryos are developing within the uterus of the mother or because they are not transparent
enough. A fish species called teleostei, more precisely a subspecies called zebrafish (in Latin Danio
rerio), has great advantages over other species for studying vascular development. First of all,
the dimension of zebrafish is very small, since an adult zebrafish can grow to 4 cm on average.
Zebrafish are very fertile and lay a large number of eggs. The reproduction is external, outside the
mother’s body. Optical analysis of this species is also very easy. Due to its small dimensions, the
embryos can survive with only a small amount of oxygen that they receive by passive diffusion.
All the interior organs, such as eyes, brain, heart, inner ear are developed within the first 3 days
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post fertilization. The cardiovascular system is one of the first
systems that is formed during the embryonic development of
zebrafish. After only 1 day post fertilization, the zebrafish is
sufficiently developed for the blood to start circulating. Detailed
explanation of the formation of all major blood vessels in
zebrafish can be found in the literature (Isogai et al., 2001;
Ellertsdóttir et al., 2010). Even though there are certain variations
in details of the anatomy of the cardiovascular system of this fish,
the basics of the system are similar to other vertebrates. Because
of all the mentioned advantages, many papers in the literature
analyze many aspects of development of the cardiovascular
system of zebrafish, and present numerous genetic analysis
of mutation of diverse genes (Stainier et al., 1995; Weinstein
et al., 1995). The zebrafish species has also been used for many
diverse investigations, e.g., as a model to study angiogenesis
(Chávez et al., 2016) or to examine the pathophysiology of
myofibrillogenesis andmuscular dystrophies (Raeker et al., 2014)
etc. The cardiac and metabolic physiology of zebrafish was
analyzed in the literature (Gore and Burggren, 2012), as well as
development of the zebrafish heart in vivo (Hou et al., 2014).

There are also numerous studies that study the formation
of erythrocytes in vertebrates, as well as in teleostei (Swaen
and Brachet, 1899; Strawinski, 1949; Vernier, 1969). The
process of generating blood cells is known as hematopoiesis.
Zebrafish erythropoiesis begins in the mesodermal layer
during embryonic development (Kulkeaw and Sugiyama, 2012).
Zebrafish hematopoiesis undergoes two waves: primitive and
definitive. Between 12 and 24 h post fertilization, primitive
hematopoiesis starts in the intermediate cell mass (ICM), located
between the somites and yolk sac. During this primitive wave,
erythrocytes and macrophages are produced. By 24 h post
fertilization, primitive erythrocytes enter circulation and mature.
After maturation the erythrocytes retain the nucleus, elliptical
shape and express hemoglobin (de Jong and Zon, 2005; Li et al.,
2014).

The definitive hematopoiesis generates hematopoietic stem
cells (HSCs) that differentiate into erythrocytes, lymphocytes,
and platelets. It is also called adult hematopoiesis and it
has the capability of self-renewal and produces all mature
hematopoietic lineages (Falenta and Rodaway, 2011; Jin and
Wen, 2011). In zebrafish, the Runx1 transcription factor is
crucial for HSCs formation, which is observed at early 24 h
post fertilization. The Gata-1, transcription factor expression
is vital for primitive hematopoiesis and it is found mainly
in the lateral plate mesoderm that migrates medially during
the formation of ICM. Gata-1 positive cells are expressed
during the differentiation of ICM to proerythroblasts (Li et al.,
2014).

Using confocal microangiography (Weinstein et al., 1995) or
green fluorescent protein (GFP, Motoike et al., 2000; Lawson
and Weinstein, 2002), and relying on the fact that zebrafish are
small and very transparent, it is possible to image the blood
vessels throughout the entire depth of the zebrafish. This way
the anatomy of the blood vessels is obtained and the flow of red
blood cells (RBCs) through the blood vessel is monitored. Unlike
some other techniques used for the analysis of the vasculature,
the mentioned approach does not jeopardize in any way the fish

and the obtained images are related to the fully active blood
circulation.

Due to the important role of RBCs in vertebrates and human
organisms, the analysis of the dynamics of motion of these cells
separately is one of the most important problems in physiology
and biomechanics. Many authors have analyzed the behavior
of RBCs, both experimentally and theoretically. Behavior of
synthetic capsules has been experimentally observed (Chang and
Olbricht, 1993; Walter et al., 2000) and similar experiments were
performed with RBCs (Gaehtgens et al., 1980; Pries and Secomb,
2011). Many authors have investigated the mechanical properties
of erythrocytes, with a special focus on the characteristics of the
cellular membrane, in the past century (Skalak, 1976; Hochmuth
and Waugh, 1987), as well as in the past decade (Mukhopadhyay
et al., 2002; Kuzman et al., 2004; Li et al., 2005). A theoretical
model was used to simulate the motion of RBCs through
capillaries with variable cross-sections, in order to predict the
resistance of the vessel to the motion and deformation of RBCs in
living microvessels (Secomb and Hsu, 1996). Recently, numerical
simulations were performed on idealized arteriole-sized blood
vessels and the influence of motion of RBCs on shear stress on
the blood vessel walls was analyzed (Gambaruto, 2016). Secomb
et al. (2007) performed experiments to analyze the behavior of
human RBCs within a glass tube, that has a diameter smaller
than the diameter of the RBC. This is similar to the conditions
in human capillary blood vessels, which are also narrower than
a single RBC. In this study, they observed the capability of
an RBC to adapt to the changes in geometry during the flow
and to change its shape significantly. Numerical simulations
were also performed (Djukic and Filipovic, 2015) and compared
with experimental results presented by Secomb et al. (2007).
Through this comparison it was demonstrated that the proposed
numerical model is capable of accurately predicting the change
of shape that the RBC undergoes during its motion through
a narrow glass tube. Most of the numerical models previously
published in the literature consider only the motion of particles
and RBCs in simpler geometrical conditions, where the high
defomability of RBCs does not come to the fore. The goal of
this paper is to model the motion of RBCs through a complex
geometrical domain.

In this paper the behavior of RBCs within the caudal
vein plexus during embryonic development of zebrafish is
analyzed. The embryonic capillary plexus has its honeycomb-
like appearance due to the aggregation of many transluminal
intussusceptive pillars. The blood flow videos of observed
phenomena in the capillary plexus regions were tracked in vivo,
to isolate individual RBC movement. Subsequently, numerical
simulations were performed in geometries and under conditions
that are defined according to the experimental setup. The results
are used to predict and analyze the motion and deformation of
RBCs.

The paper is organized as follows: Section Materials and
Methods describes the methods that were used to obtain
experimental data and the numerical model that was used
in numerical simulations. Section Results presents the results
obtained in numerical simulations and the comparison with
experimental data. Numerical methods are discussed in Section
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Discussion and Conclusion, including the conclusions about
the significance of the presented results and applications of the
proposed numerical model.

MATERIALS AND METHODS

Maintenance and In vivo Imaging of
Zebrafish Embryo Experiments
Zebrafishes (Danio rerio) were maintained in a facility with the
system water at 28.5◦C with 14 h light: 10 h darkness circadian
rhythm. An endothelial specific reporter transgenic line
Tg(fli1a:eGFP)y7 was acquired from aquatic resource program
(Children’s Hospital, Boston, USA) and used for collecting
in vivo experimental data. The transgenic embryos were attained
from natural spawning with a 2:1 ratio (Female:Male) and
staged according to the standard conditions (Westerfield,
2007). The embryos were kept in standard embryo medium
(1X E3 medium) till 24 h post fertilization and screened for
GFP expression. The dechorionated embryos were mounted on
0.5% of low melting point agarose gel containing E3 medium
for imaging. The morphogenesis of the caudal vein plexus
formation along with the blood flow videos was captured
by fluorescence stereomicroscopy (Leica stereomicroscope
M205FA, Leica microsystems, Switzerland). Still images were
captured and blood flow was recorded as video files using a Leica
camera (DFC365X) and software (Leica AF600). All the animal
experiments were performed according to the guidelines of the
Swiss animal welfare act. According to the Swiss government
guidelines, experiments performed on zebrafish embryos aged
less than 48 h of post fertilized embryos are exempted from the
animal permission.

Numerical Model
The numerical model presented in this paper simulates fluid flow
at themicroscale level. Themotion and deformation of individual
RBCs is analyzed. These cells are immersed in blood plasma
and interact with the surrounding fluid, i.e., blood plasma. Cells
influence fluid flow and on the other hand, fluid causes the
deformation of cells. In the sequel of this Section, details of the
numerical model is described.

Fluid Flow Simulation
In this paper the Lattice Boltzmann (LB) method was used to
simulate fluid flow. This method was successfully applied to
modeling the motion of solid bodies through a fluid domain
(Sun et al., 2003; Dupin et al., 2007; Wu and Shu, 2010), the
motion of LDL (low-density lipoprotein) particles (Filipovic
et al., 2014) and nanodrugs (Filipovic et al., 2012) through the
bloodstream, as well as the motion of deformable circulating
tumor cells through a microfluidic chip (Djukic et al., 2015). In
the LB method, fluid is observed as a set of fictional particles
that are located within a fixed Cartesian mesh and the dynamics
of motion of these particles is studied through their mutual
collisions and further propagation in the observed domain.
Details of this method can be found in the literature (Malaspinas,
2009; Djukic, 2012).

Within the LB method, a special principle is applied for
calculation of all physical quantities, such that all macroscopic
quantities required for the simulation and all quantities obtained
as the result of the simulation are defined in the so-called
system of lattice units. This system represents all quantities
in its dimensionless form, related to the defined lattice mesh.
Hence it is necessary to determine the values of all parameters
in dimensionless form before starting the simulation. Also,
when the results are post-processed, it is necessary to tranfsorm
dimensionless quantities back to the physical quantities. In
order to perform this transformation, three relevant scale factors
are calculated—scale factor for time, length, and density. Any
other physical quantity can be expressed in terms of these
three quantities, so these three scale factors are sufficient for all
transformations. Additional details about this procedure can be
found in the literature (Djukic, 2012).

The basic quantity in the LB method is the distribution
function f , that is defined such that f (x, t) represents the
probability of a particle to be located within an element in space
dx around point x, in moment in time t, where x denotes the
particle position vector. When the LB method is implemented,
the equation that represents the entire numerical scheme is
most commonly separated into two steps—a collision step and
a propagation step. Two values of distribution function are
defined—f ini and f outi , and they represent values of the discretized
distribution function before and after collision.

The mentioned steps can be described using following
equations:
Collision step:

f outi (x, t) = f ini (x, t) −
1

τ

(

f ini (x, t) − f
(0)
i (ρ,u)

)

+

(

1−
1

2τ

)

Fi (1)

Propagation step:

f ini
(

x+ ξi, t + 1
)

= f outi (x, t) (2)

These two steps are repeated in a series of iterations, whereas each
of these two steps must be applied to all particles, i.e., nodes of the
mesh, before the next step starts.

In the above equation, τ represents the relaxation time, Fi
represents the discretized external force term, ρ represents the

fluid density, u represents the fluid velocity, f
(0)
i represents

the equilibrium distribution function, ξi represent vectors
defining the abscissae of the lattice structure and index i
represents the component of the distribution function that is
calculated. The abscissae for the three-dimensional isothermal
flow of incompressible fluid used in this paper (denoted by
D3Q27) are shown in Figure 1. This practically means that
an overall of 27 different components (i = 1, . . . , 27) of the
distribution function are calculated and these components are
used to precisely define the possible directions of motion of
fictional fluid particles in three-dimensional space.
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FIGURE 1 | Lattice structure D3Q27, that contains an overall of 27

different components of the distribution function. Arrows denote the

possible directions of motion of fictional fluid particles.

The equilibrium distribution function is defined using the
following equation:

f
(0)
i (ρ,u) = ωiρ

(

1+
ξi · u

c2s
+

1

2c4s

(

ξi · u
)2

−
1

2c2s
u2
)

(3)

The discretized external force term is defined as:

Fi = ωiρ

(

ξi − u

c2s
+

(

ξi · u
)

ξi

2c4s

)

· g (x, t) (4)

where g represents the external force field.
Macroscopic quantities necessary to describe the fluid flow

at the macroscale level, such as density, pressure, velocity, are
evaluated in terms of the calculated components of distribution
function.
Density is calculated as:

ρ =
∑

i

fi (5)

The expression for velocity is given by:

u =
1

ρ

∑

i

ξifi = u−
g

2
(6)

Pressure is calculated in terms of the fluid density, in the
considered node of the mesh, and this relation is given by:

p = c2sρ (7)

where cs represents a constant related to the LB method. For the
D3Q27 lattice structure that is used in this paper, this constant is
equal to c2s = 1

3 .

Modeling the Deformation of the RBC
RBCs or erythrocytes are highly differentiated cells that contain
a cellular membrane that surrounds the inner structure of the
cell. In this study, an approximation is introduced, that assumes
that the entire internal structure can be represented as an
incompressible Newtonian fluid, because it is considered that the
influence of the membrane is crucial for the deformation of the
entire cell. The cellular membrane is composed of two layers of
lipids and a thin skeleton of interconnected proteins (Evans and
Skalak, 1980). Due to its structure, RBCs are highly deformable
(Shiga et al., 1990; Maeda and Shiga, 1993). In this paper it
is considered that the membrane of the RBC has negligible
thickness and is interconnected with a predefined number of
points. The discretization of the mesh that is used to model
the membrane of the RBC is performed such that the entire
membrane is divided on a defined number of triangles. During
the simulation, the reaction force for every element and for every
node of the triangular mesh is calculated. The resulting reaction
force represents the resistance of a particular node to the defined
external deformation.

There are four parameters that influence the behavior of the
RBC, and these are: volume within the membrane, surface area
of the membrane, surface strain of the membrane, and bending
of the membrane. In this paper the membrane of the RBC
is observed as a hyperelastic material, where the relationship
between stress and strain can be defined using a strain energy
density function. This also implies that the membrane of the RBC
is incompressible and isotropic. Several hyperelastic material
models have been developed and applied to model the surface
strain of the RBC membrane, such as the Mooney-Rivlin and
neo-Hookean material models (Ramanujan and Pozrikidis, 1998;
Barthès-Biesel et al., 2002; Sui et al., 2008). However, Skalak
et al. (1973) analyzed the mentioned models and came to the
conclusion that thesemodels are not able to simulate the behavior
of RBCs accurately enough. They proposed a newmaterial model
for the membrane of the RBC which has been used in this study.

The strain energy density function in the Skalak material
model of the deformable membrane is defined in terms of two
invariants of the Cauchy-Green deformation tensor:

WS =
ks

12

(

I
′2
1 + 2I′1 − 2I′2

)

+
kα

12
I
′2
2 (8)

where I′1 and I′2 represent the modified invariants, as is proposed
in the literature (Skalak et al., 1973). The following equations are
used to define the modified invariants, in terms of the principal
stretches λ1and λ2:

I′1 = λ2
1 + λ2

2 − 2 (9)

I′2 = λ2
1λ

2
2 − 1 (10)

The surface elastic shear modulus and area dilation modulus are
denoted by ks and kα , respectively. These two parameters are
defined for the particular type of deformable body, in this case
for the RBC.
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Using the strain energy density function, it is possible to derive
the equation that defines the stress-strain relationship:

σij =
1

J

[(

−
ks

3
+

kα

3
I1 (I2 − 1)

)

Bij

−

(

−
ks

3
+

kα

3
(I2 − 1)

)

BikBkj

]

(11)

where σij represents the Cauchy stress tensor, B is the left
Cauchy-Green deformation tensor, J is the determinant of
the deformation gradient and I1 and I2 are tensor invariants
expressed in terms of the Cauchy-Green deformation tensor.

In Equation (11), the tensor invariants are used, because
this is more appropriate for the numerical calculation of the
reaction force caused by the change of surface strain, which is
calculated using the finite element method (Kojic et al., 2008).
The remaining three components of the reaction force are
calculated as proposed by Dupin et al. (2007).

The total reaction force of the deformable body caused by
the deformation is calculated in each node, as a sum of forces
calculated for all four types of deformation.

Fi (t) = FSi + FVi + FAi + FBi (12)

In the above equation, FS
i
represents the reaction force due to the

surface strain of the membrane, FV
i
represents the reaction force

due to the change of volume within the membrane, FA
i
represents

the reaction force due to the surface area of the membrane
and FB

i
represents the reaction force due to the bending of the

membrane.

Modeling the Interaction between Fluid and RBC
The immersed boundary method (IBM) presented by Peskin
(1977) was used to model the interaction between the immersed
RBC and surrounding fluid. This method was successfully
applied for modeling the dynamics of motion of both rigid bodies
(Feng and Michaelides, 2004; Wu and Shu, 2010; Djukic, 2012),
and deformable objects (Krüger et al., 2011; Murayama et al.,
2011; Djukic et al., 2015) immersed in fluid. The IBM observes
the solid as an immersed object inside the fluid domain, where
the boundary between the object and the surrounding fluid is
assumed to be easily deformable, with high stiffness (Wu and
Shu, 2010). The fluid affects the object, i.e., the membrane of
the RBC through a force that deforms the membrane. Due
to the deformation, an internal reaction force appears in the
membrane and this force defines the effect of the RBC on
the surrounding fluid. The fluid flow is simulated using the
Navier-Stokes equations and the effect of the immersed object is
introduced through an external force field in the fluid domain.

Since the discretization of the RBC membrane and fluid
domain do not exactly overlap, the influence of various points
from each mesh has to be taken into consideration when
calculating quantities relevant for the simulation. Thus, an
interpolation scheme has to be applied.

Interpolation is performed using the Dirac delta function, that
is approximated as follows:

δ (x− XB (t)) = Dijk

(

xijk − Xl
B

)

= δ

(

xijk − Xl
B

)

· δ

(

yijk − Y l
B

)

· δ

(

zijk − Zl
B

)

(13)

where Dijk is used to define the Dirac function at a specific
point of the fluid domain, indexes i, j and k denote the currently
considered point in the fluid mesh,Xl

B (t), l = 1, 2, . . . ,G are the
coordinates of the l-th point of the mesh that is used to model the
RBC membrane and G is the number of points in this mesh.

The value of function δ (r) is defined in the literature (Peskin,
1977):

δ (r) =

{ 1
4h

(

1+ cos
(

πr
2

))

, |r| ≤ 2
0, |r| > 2

(14)

where h denotes the distance between two points of the fixed fluid
mesh (in this case, since the LB method is used for fluid flow
simulation, h = 1) and r is the distance between the considered
points in the fluid and the mesh representing the membrane of
the RBC.

As already mentioned, in fluid flow simulations the effect of
the immersed object is introduced through an external force, that
acts on the fluid surrounding the membrane. Due to the applied
interpolation scheme, the reaction force at one point of the RBC
membrane is transferred to several points of the fluid mesh. This
force can be expressed as:

g
(

xij, t
)

=

G
∑

l= 1

Fl (t)Dij

(

xij − Xl
B (t)

)

(15)

where Fl (t) is the force with which the l-th point of the mesh
representing the membrane of the RBC opposes the effect of the
surrounding fluid. Calculation of this force is explained in detail
in Section Modeling the Deformation of the RBC.

The velocity of all points in the mesh representing the
membrane of the RBC is interpolated over the surrounding
points in fluid mesh, and it is calculated using the following
equation:

ulB

(

Xl
B, t
)

=
∑

i,j

u
(

xij, t
)

Dij

(

xij − Xl
B

)

(16)

Applying the Euler Forward method on Equation (16), the new
positions of points in the mesh representing the membrane of
the RBC are obtained:

t+△tX
l
B = tX

l
B + ulB△t (17)

This way, the deformation of the RBC membrane at every
time step is calculated. Using the obtained deformation, the
reaction forces due to the new deformation of the membrane
are calculated. These forces cause a change in the external force
field in the fluid domain, thus causing an effect of the immersed
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object to the fluid. Fluid on the other hand, again causes new
deformation of the RBC membrane. This process is repeated
in each iteration, until the defined condition is satisfied or the
defined number of iterations is reached.

RESULTS

In this paper it is considered that the RBC of the zebrafish has
an elliptic shape, according to the previous investigations of the
zebrafish cardiovascular system (Watkins et al., 2012). Themodel
of the RBC membrane that is discretized into a triangular mesh
and that is used in simulations presented in this paper is shown in
Figure 2. The cross-section of RBC along the plane that is parallel
to x0z plane and that contains the center of gravity of the RBC is
also shown in Figure 2.

Because of the structure of RBCs and all the conditions
to which they are exposed during its motion through the
circulation, four types of resistance to deformation are defined.
This was discussed in Section Modeling the Deformation of the
RBC. Values of the parameters that define these reactions to
deformation have been measured in the literature (Dao et al.,
2003; Bagchi et al., 2005). For modeling the behavior of RBCs in
this paper, the values are taken to be equal to the ones proposed
by Dupin et al. (2007).

The parameter of resistance to the change of volume is
equal to KV = 50pNµm−1. The parameter of resistance to
the local change of membrane area is equal to KAl = 1.67 ·

10−1pNµm−1, while the parameter of resistance to the global
change of membrane area is equal to KAt = 1.67pNµm−1. The
parameters that were used to define the Skalak material model
of cellular membrane are equal to ks = 0.75 · 103pNµm−1

and kα = 75 · 103pNµm−1, according to the literature (Skalak
et al., 1973). The parameter of resistance to the bending of the
membrane is equal to KB = 10−1pNµm−1.

Simulations using the proposed numerical model were
performed for two cases of motion of an individual RBC in the
caudal vein plexus of a living zebrafish whose circulation was

FIGURE 2 | Discretized model of the membrane representing the red

blood cell that is used in numerical simulations (left) and the

cross-section of the discretized model of the RBC along the plane that

contains the center of gravity of the RBC (right).

observed 32 h post fertilization, for an overall time period of 11 s.
The geometry of the fluid domain is created directly from the
microscopic experimental images. The width of the vein plexus
is equal to 100µm. The bounding walls of the fluid domain (the
vessel walls) and the intussusceptive pillars are modeled using
the Bounce-back approach (Ginzbourg and d’Humières, 1996;
Gallivan et al., 1997). This practically means that all particles that
collide with the walls, return to the fluid domain with the same
velocity, which imposes that the velocity at the walls is equal to
zero. In the observed part of the capillary plexus blood is flowing
from left to right. The outflow boundary condition is defined at
the right boundary wall. This means that normal derivatives at
the boundary of the relevant quantities are set to be equal to zero.
The left boundary wall of the simulation domain is used to define
the inlet velocity of the blood. The velocity profile at the inlet
at the beginning of the simulation is defined according to the
profile in Poiseuille flow. The value of velocity that is prescribed
at nodes that are located on the left boundary of the latticemesh is
calculated using experimental data. The blood flow videos of the
capillary plexus region were used to track motion of individual
RBCs using imaging techniques. By analyzing themotion of these
RBCs, their velocity is calculated and this value is used to define
the velocity of the blood flow at the inlet. The maximum value of
velocity at the inlet that was used in numerical simulations was
equal to 60µm/s.

Figure 3 shows the results for the first considered initial
position of the RBC, for several moments in time. On the left the
microscopic images of the caudal vein plexus are shown, whereas
the considered RBC is denoted by a red line, highlighted in a blue
circle. Yellow dotted lines mark the boundaries of the vessel and
the pillars within the vessel. On the right the results obtained
using numerical simulations are shown. In the middle only the
shapes of the considered RBC are isolated for easier comparison
(the shape obtained in numerical simulation is denoted by blue
color and the shape obtained from the microscopic image is
denoted by red color). The case of motion of the RBC that
is shown in Figure 3, exhibits the attachment of the RBC to
the vascular wall and its subsequent rolling. Figure 4 shows the
comparison of results, for the second considered initial position
of the RBC, for several moments in time. In this case, the
bending and hanging of the RBC on the vascular pillars as well
as flowing away and restoration of the original form of the RBC
are shown. The shapes obtained in experiments and numerical
simulations are also quantitatively compared. The values of area
of the cross-section of the RBC along the plane that is parallel to
the direction of motion and that contains the center of gravity
of the RBC are compared. Table 1 shows the percentage error,
that was obtained in numerical simulations, compared to the
values that were calculated using experimental data, for the first
initial position of the RBC. Table 2 shows the percentage error
of the calculated areas of the cross-section of the RBC that was
obtained in numerical simulations, compared to the values that
were calculated using experimental data, for the second initial
position of the RBC. As it can be seen from the isolated shapes of
the considered RBCs and the values of errors given in Tables 1, 2,
the results obtained using numerical simulation agree well with
experimental results.
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FIGURE 3 | Comparison of experimental results with results obtained using numerical simulation, for the first initial position of the RBC;

left—microscopic image of the zebrafish, with denoted considered RBC; middle—isolated shapes of the considered RBC (red—experiment;

blue—simulation); right—results obtained using numerical simulation. Colors on the images obtained using numerical simulations denote the intensity of the

blood velocity, according to the scale bar at the bottom of the Figure. The blood flow through capillary plexus of the living zebrafish was observed 32 h post fertilization.
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FIGURE 4 | Comparison of experimental results with results obtained using numerical simulation, for the second initial position of the RBC;

left—microscopic image of the zebrafish, with denoted considered RBC; middle—isolated shapes of the considered RBC (red—experiment;

blue—simulation); right—results obtained using numerical simulation. Colors on the images obtained using numerical simulations denote the intensity of the

blood velocity, according to the scale bar at the bottom of the Figure. The blood flow through capillary plexus of the living zebrafish was observed 32 h post fertilization.
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TABLE 1 | Comparison of experimental results with results obtained using

numerical simulation; the percentage error of the area of the

cross-section of the RBC obtained in numerical simulation, compared to

the value of area calculated from experimental data, for the first initial

position of the RBC.

Time point Percentage error

Initial moment 1.741

After 8ms −1.882

After 18ms 2.801

After 28ms −2.012

After 40ms 5.405

TABLE 2 | Comparison of experimental results with results obtained using

numerical simulation; the percentage error of the area of the

cross-section of the RBC obtained in numerical simulation, compared to

the value of area calculated from experimental data, for the second initial

position of the RBC.

Time point Percentage error

initial moment 4.264

After 5ms 1.835

After 15ms −4.016

After 21ms 0.000

After 25ms 7.288

After 35ms 5.694

DISCUSSION AND CONCLUSION

Several approaches that deal with the numerical modeling of
the behavior of RBCs in the fluid domain are presented in
the literature. Pozrikidis (1995) applied the Boundary Element
Method (BEM) to model the motion of RBCs. This method was
also used by other authors (Kraus et al., 1996; Lac et al., 2004).
Ramanujan and Pozrikidis (1998) extended this approach and
considered various material models to define the relationship
between the reaction force and deformation of the particle.
Eggleton and Popel (1998) used the Immersed Boundary Method
(IBM) to model the influence of solid on fluid and vice versa. Sui
et al. (2008) improved this approach by adding the refinement of
the mesh, in order to be able to model the motion more precisely,
with higher mesh density near the particle. Discrete particle
methods have also been applied tomodel this type of phenomena.
Boryczko et al. (2003) modeled the solid using classic continuum
mechanics, while the fluid was modeled as a cluster of particles.
On the other hand, based on research published in the literature
(Koshizuka et al., 1995), Tsubota et al. (2006) modeled both
fluid and solid as a cluster of particles, analyzed their mutual
interactions and subsequently modeled the motion of RBCs
through the blood plasma. Simulations of a larger number of
RBCs and their mutual interactions have been analyzed in several
papers (Liu et al., 2004; Dupin et al., 2007; Doddi and Bagchi,
2009). However, in most of the mentioned papers, only the
motion of particles and erythrocytes in simpler geometrical
conditions has been considered. Under these conditions the

feature of erythrocytes to drastically change its shape does not
come to the fore. The goal of this paper was to present a model
that simulates the motion of RBCs through complex geometrical
domains, more precisely through real physical domains obtained
experimentally by recording the blood flow through the caudal
vein plexus of living zebrafish.

Two initial positions of the RBC within the caudal vein
plexus were analyzed. The shapes of the RBC during its motion
obtained in numerical simulations agree well with shapes that
were extracted from experimental data. The standard deviation
of numerical values obtained from the experimental values of
the area of the observed cross-section of the RBC is equal to
6.91% for the first considered initial position of the RBC. For
the second considered initial position, the standard deviation
is slightly greater and is equal to 11.1%. As it can be observed
from Tables 1, 2, most values of the obtained error were less than
5%. The greatest error was obtained for the last two moments
in time, for the second initial position of the RBC (last two
rows in Table 2). These higher values are caused by the fact
that in the numerical model a relatively simple approach was
used to simulate the intussusceptive pillars. Namely, the pillars
were treated as boundary walls, and the RBC was bounced-
back from the pillars, just like the fluid particles. If a more
detailed interaction between the pillar walls and the RBC was
implemented, then this error would be additionally reduced.
This will be the main direction of future improvements of the
numerical model.

The modeling of oxygen transport and metabolism in organs
is significant for the understanding of the functioning of organs
and cellular functions from the physiological aspect and the
understanding of ischemic and hypoxic conditions. The process
of oxygen transport consists of several stages: passage of oxygen
molecules through the membrane of the RBC, motion of oxygen
together with the RBC through the blood plasma, passage
through the vascular wall and arrival to the mitochondria. As
stated in the literature, the delivery of oxygen to the tissue
is determined mainly by three factors: capillary blood flow,
hematocrit, and arterial pressure of oxygen (Li et al., 1997;
Dash and Bassingthwaighte, 2006). However, oxygen usage on
a cellular or tissue level cannot be measured directly. In order
to quantitatively explain phenomena that occur during oxygen
transport, it is necessary to use mathematical models and
numerical simulations, which have been quite successful in the
study of many complex biological systems (Wolkenhauer, 2013).

There have been several methods proposed in literature
that mathematically describe the transport of oxygen. Dash
and Bassingthwaighte (2006) concluded in their study that a
significant decrease in blood flow can cause acute hypoxia
and prevent cells from functioning normally. Beyer et al.
(2002) proposed a convection-diffusion-reaction mathematical
model that simulates the transport of oxygen from RBCs to
mitochondria, where they treated RBCs and blood plasma as two
separate flows. Li et al. (1997) analyzed oxygen transport at the
regional level with imaging techniques using tracer 15O-oxygen
for positron emission tomography. They observed that with a
decrease of capillary blood flow, oxygen delivery by flow to the
tissue can become inadequate. Also, when they analyzed tracer
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kinetics, the initial statement was confirmed—when the capillary
blood flow or hematocrit or arterial pressure of oxygen were
reduced, the retention of tracer oxygen was prolonged, and the
fraction of tracer oxygen in the outflow of the observed blood
vessel was reduced.

Amore extensive model of O2/CO2 transport and exchange in
the microcirculation, that covers all aspects and all phenomena
that happen during this process has yet to be developed. In all
previously mentioned models, blood is assumed to consist of
two continuous coexisting phases and RBCs are only one “layer”
within the blood. The entire microvessel is most commonly
described as a tube, where the RBCs are assumed to be
located within the central column, while the surrounding region
represents blood plasma. The velocity of RBCs and blood plasma
can be different within the observed domain and this way the
motion of RBCs relative to the blood plasma is taken into
consideration. On the other hand, because oxygen is mostly
transported through the body within the RBCs, in the form of
oxyhemoglobin, the time taken for the transmitted nonextracted
oxygen to arrive to the targeted location mainly depends on the
velocity of the RBCs. Thus, the aspect of motion of individual
RBCs within the blood vessel has to be considered. The method
proposed in this paper can be connected to the previous methods
modeling the transport of oxygen and can give valuable insights
about the motion of RBCs through complex domains of living
microvessels.

The numerical model presented in this paper can also be
used to analyze erythroid diseases, where disruption of RBC
morphology and mechanics occurs. These diseases include
hereditary spherocytosis, hereditary elliptocytosis, sickle cell
disease etc. The changes in RBCs in these cases have been
studied in the literature (Diez-Silva et al., 2010; Fisseha and
Katiyar, 2012; Du et al., 2015) and the presented numerical

model can be used in combination with these findings to
provide additional insight into the mentioned phenomena.
The numerical model presented in this paper is capable
of simulating the microcirculation, including the complete
simulation of dynamics of motion of individual cells. Most
numerical models that have been presented in literature so
far are limited to simulations in geometrically simple blood
vessels. Due to the accuracy of the obtained solutions that was
demonstrated through the comparison of the numerical results
with experimental results, the proposed model and the developed
software can be used for simulations of the complex motion of
viscoelastic bodies, such as RBCs, in capillaries with complex
geometry.
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