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It has been experimentally shown that host-microbial interaction plays a major role in

shaping the wellness or disease of the human body. Microorganisms coexisting in human

tissues provide a variety of benefits that contribute to proper functional activity in the

host through the modulation of fundamental processes such as signal transduction,

immunity and metabolism. The unbalance of this microbial profile, or dysbiosis, has been

correlated with the genesis and evolution of complex diseases such as cancer. Although

this latter disease has been thoroughly studied using different high-throughput (HT)

technologies, its heterogeneous nature makes its understanding and proper treatment

in patients a remaining challenge in clinical settings. Notably, given the outstanding

role of host-microbiome interactions, the ecological interactions with microorganisms

have become a new significant aspect in the systems that can contribute to the

diagnosis and potential treatment of solid cancers. As a part of expanding precision

medicine in the area of cancer research, efforts aimed at effective treatments for various

kinds of cancer based on the knowledge of genetics, biology of the disease and

host-microbiome interactions might improve the prediction of disease risk and implement

potential microbiota-directed therapeutics. In this review, we present the state of the art

of sequencing and metabolome technologies, computational methods and schemes in

systems biology that have addressed recent breakthroughs of uncovering relationships or

associations between microorganisms and cancer. Together, microbiome studies extend

the horizon of new personalized treatments against cancer from the perspective of

precision medicine through a synergistic strategy integrating clinical knowledge, HT data,

bioinformatics, and systems biology.

Keywords:microbiome, cancermetabolism, systems integration,metabolome, next generation sequencing (NGS),

precision medicine

INTRODUCTION

Our body is integrated by a legion of microorganisms that coexist in all our tissues and, notably,
with a symbiotic functional purpose. Furthermore, host-microbial interactions are beginning to
be recognized for their outstanding influence on well-being or the emergence of diseases such as
cancer. The advent of high-throughput (HT) technologies has allowed significant advancements in
uncovering these correlations through the diversity and abundance of microorganisms in samples

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2016.00606
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2016.00606&domain=pdf&date_stamp=2016-12-09
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:resendis@ccg.unam.mx
mailto:oresendis@inmegen.gob.mx
https://doi.org/10.3389/fphys.2016.00606
http://journal.frontiersin.org/article/10.3389/fphys.2016.00606/abstract
http://loop.frontiersin.org/people/381596/overview
http://loop.frontiersin.org/people/381353/overview
http://loop.frontiersin.org/people/381712/overview
http://loop.frontiersin.org/people/368201/overview
http://loop.frontiersin.org/people/10674/overview


Contreras et al. Microbiome-Cancer-Systems Biology

of normal and dysfunctional cohorts of human tissues associated
with complex diseases such as obesity, type 2 diabetes, and
cancer. For instance, in 2015, Mitra and co-workers reported
the characterization of the microbiota at different stages of
development of cervical intraepithelial neoplasia, and they
observed a strong association between the severity of the
disease and the vaginal microbiota diversity (Mitra et al., 2015).
Furthermore, the association of the microbiota and obesity has
also been explored, with observations of changes in the balance
and relative abundances of Bacteroidetes and Firmicutes (Ley
et al., 2006). Overall, these and other studies provide a glimpse
of the central role that the microbiome has in a variety of
biological processes in the human body such as in the regulation
of fat storage, lipogenesis, fatty acid oxidation and energy balance
(Gérard, 2016).

These findings that associate microbiome and phenotype
dysfunctional states have contributed to a change in
paradigms regarding the relationship between human body
and microorganisms, and suggest elucidating the rules by which
this interaction can confer wellness or disease. To this end, some
challenges must be overcome. For instance, the development of
new computational paradigms that contribute to the coherent
interpretation of heterogeneous HT technologies, such as Next
Generation Sequencing (NGS) and Metabolomics, and the
construction of quantitative schemes capable of influencing
clinical decisions in precision medicine.

In this review, we present the forefront of HT technologies
and conceptual schemes in bioinformatics and systems biology
for surveying the host-microbiome association and cancer
progression. We expect that our review will be used as a technical
and conceptual guide in human microbiome studies, present and
discuss the advances in the field, and establish an introspective
analysis of the next steps for linking microbiome studies and
precision cancer medicine.

CHARACTERIZATION OF THE
MICROBIOME USING
HIGH-THROUGHPUT TECHNOLOGIES

The advent of HT technologies has positively impacted the
elucidation of the metabolic and regulatory mechanisms by
which hosts and microbes interact to determine a health or
disease state in the host. In particular, NGS and techniques
related to metabolome analysis such as mass spectrometry
(MS) are valuable technologies for analyzing the microbiota
composition and exploring the genetic, functional, andmetabolic
activity of the microbial community. Moreover, the use of these
technologies enables us to explore the implications of the human
microbiome to induce functional and dysfunctional states in a
variety of human tissues. Here, we present the state of the art of
these technologies and discuss some key findings to elucidate the
relationship between the human microbiome and cancer.

Next Generation Sequencing
Sanger sequencing, the first-generation of DNA sequencing
technology developed by Frederick Sanger based on the selective

incorporation of chain-terminating dideoxynucleotides by DNA
polymerase, established the methodological principles for DNA
sequencing (Sanger et al., 1977). The Sanger sequencing
technique constituted the main part of the Human Genome
Project in 2001 and was the principle for the first automatic
sequencing machine (AB370) produced by Applied Biosystems
(Liu et al., 2012). However, limitations in throughput and the
high cost of Sanger DNA sequencing reduced the potential of
sequencing for other applications, such as for the characterization
of personal genomes and cancer whole-genome sequencing. In
fact, the cost of the Human Genome Project was estimated
to be approximately 1–3 billion dollars over a 15-year period
(International Human Genome Sequencing Consortium, 2004).
After 2004, when the International Human Genome Sequencing
Consortium published the completed sequencing process of the
human genome, different HT sequencing technologies emerged,
promoting decreasing costs and increasing potential applications
for human health (Reuter et al., 2015).

Through automated DNA sequencing instruments that
use an attractive interaction among chemistry, engineering,
software and molecular biology, dramatic improvements in
sequencing technology have allowed revolutionary advances in
our understanding of health and disease (Mardis, 2011, 2013).
The launch of the Genome Sequencer system by 454 Life Sciences
in 2005 highlighted the use of second-generation sequencing
techniques employing massively parallel analysis. The second-
and third-generation sequencing platforms, collectively known
as NGS, are characterized by high data throughput, which can
be used for a diverse range of scientific applications by changing
the sample type and the manner of its preparation.

Many commercial second-generation sequencing
platforms are now available, which follow a similar protocol:
library/template preparation, clonal amplification and massively
parallel sequencing. In terms of throughput per run, read length
and accuracy, each platform has different specific features that
make them useful for particular applications. Moreover, the
newly emerged third-generation sequencing techniques, such as
PacBio (Brown et al., 2014) and MinION (Quick et al., 2014), are
performed on a single-molecule basis with no necessary initial
DNA amplification step. These newer technologies can produce
much longer reads compared with the second-generation
sequencing platforms and have the potential to be less costly and
less time-consuming.

Several reviews have covered these major platforms in high
detail (Metzker, 2010; Mardis, 2013; Reuter et al., 2015). Of
particular interest for this review is the application of NGS as
an important tool that can provide detailed information about
the taxonomic composition and the functional capabilities of
the human microbiome for modern biomedical research. Some
platforms are not discussed in this review, including Roche-454’s
pyrophosphate Genome Sequencer and ABI’s SOLiD; instead,
we attend to the platforms most commonly used today as
technological tools in microbiome analysis as well as recent
development (Table 1).

The appropriate selection of one platform depends on the
particular aim and design of the study. Illumina’s technology
has had tremendous advances in output and reduction in

Frontiers in Physiology | www.frontiersin.org 2 December 2016 | Volume 7 | Article 606

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Contreras et al. Microbiome-Cancer-Systems Biology

TABLE 1 | Comparison of next generation sequencing systems used in microbiome analysis.

Illumina Ion torrent Pacific biosciences Oxford nanopore

Template

preparation

Amplification of adaptor-ligated

DNA fragments on a solid phase.

Amplification of adaptor-ligated

DNA fragments by emulsion-PCR.

Ligation of a double-stranded

region (the insert) onto a

single-stranded hairpin loop on

either end (SMRT-bell templates).

Ligation of DNA fragments to two

adaptors; the first adaptor is bound with a

motor enzyme and a molecular tether, and

the second one is a hairpin oligonucleotide

bound by a second protein (HP motor).

Sequencing

chemistry

Sequencing by synthesis using

reversible terminators.

Sequencing by synthesis coupled

proton detection.

Sequencing by a strand

displacing polymerase

positioned in zero-mode

waveguides (ZMWs) that

incorporates phosphate-labeled

nucleotides.

Sequencing by measuring electric current

fluctuations when bases along the DNA

strand translocate through a nanopore

under an applied electric field.

Read length MiSeq: Up to 300 bp NextSeq

500: Up to 150 bp HiSeq 2500:

Up to 125 bp

Ion PGM System: 200- or 400-base

reads Ion Proton System: Up to

200-base fragment reads Ion 5S:

200- or 400-base reads

PacBio RS II System: >20 kb MinION: Median and maximum read

lengths of ∼6 and 65 kb, respectively

Throughput

per run

MiSeq: Up to 13.2–15 Gb

NextSeq 500: Up to 100–120 Gb

HiSeq 2500: Up to 900–1 Tb

Ion PGM System: 600 Mb-1 Gb Ion

Proton System: Up to 10 Gb Ion

5S: Up to 10–15 GB

PacBio RS II System: 500 Mb- 1

Gb

MinION: ∼90 Mb

Advantages The overall error rates are below

1%. Different sequencers

optimized for a variety of

throughputs.

The sequencing process does not

require fluorescence and camera

scanning, resulting in a fast method.

Direct sequencing of DNA

without clonal amplification.

Sequencing of the DNA molecule

multiple times, increasing

accuracy.

Direct sequencing of DNA without clonal

amplification. Available device as

USB-powered portable sequencer.

Limitation The most common error is

substitution.

The most common error types are

insertions and deletions (indels).

Homopolymer repeats longer than

6 bp lead increasing error rates.

The predominant errors are

insertions (12%) and deletions

(2%).

Error rates estimated for insertion, deletion

and substitution are 4.9, 7.8, and 5.1%.

References Dohm et al., 2008; Reuter et al.,

2015

Rothberg et al., 2011; Liu et al.,

2012

Travers et al., 2010; Carneiro

et al., 2012

Quick et al., 2014; Ashton et al., 2015;

Jain et al., 2015; Reuter et al., 2015

costs over the last few years and, as a consequence, currently
dominates the NGS market (Dohm et al., 2008; Reuter et al.,
2015). Illumina’s sequencing technology has been widely used in
microbiome projects (Evans et al., 2014; Lambeth et al., 2015;
Yasir et al., 2015), including the Human Microbiome Project
(HMP Consortium, 2012a).

Although both the Illumina and Ion Torrent systems offer a
number of advantages in terms of utility for generating usable
sequences, its feature to obtain short read length makes them
less suited for some particular scientific questions, including
genome assembly, gene isoform detection, and methylation
detection (Rothberg et al., 2011). Single-molecule real-time
(SMRT) sequencing (third-generation sequencing platforms)
offers an available approach to overcome these limitations.
De novo genome assembly is one of the main applications of
PacBio sequencing because long reads can provide large scaffolds
(Travers et al., 2010; Carneiro et al., 2012; Rhoads and Au,
2015). In addition, using the direct sequencing protocol without
library preparation offers the advantage of requiring a small
quantity of DNA, just 1 ng for small genomes, over the other
protocols that require 400–500 ng (Coupland et al., 2012).
Moreover, SMRT sequencing methods can be used to study

molecules other than DNA, for instance ribosomes (Uemura
et al., 2010).

DNA sequencing using nanopore technology is another
alternative method for producing long-read sequence data.
The recent distribution of the MinION by Oxford Nanopore
Technologies has made it possible to evaluate the utility of
long-read sequencing using a device that resembles a USB
memory stick (Ashton et al., 2015; Jain et al., 2015). Speed,
single-base sensitivity and long read lengths make nanopore-
based technology a promising method for HT sequencing. The
MinION system has been used to sequence genomes of infectious
agents, such as the influenza virus (Wang J. et al., 2015), to
identify the position and structure of a bacterial antibiotic
resistance island (Ashton et al., 2015), and as part of a genomic
surveillance system of Ebola virus in which the sequencing
process took as little as 16–60min (Quick et al., 2016).

Rapid advances in sequencing technologies present
widespread opportunities for microbiome studies using
different platforms; however, the performance of the sequencing
should be considered for the study design. Loman et al. reported
that MiSeq had the highest throughput per run (1.6Gb/run,
60Mb/h) and the lowest error rates compared with 454 GS
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Junior or Ion Torrent PGM (Loman et al., 2012). In addition,
Clooney et al. compared Illumina HiSeq, MiSeq and Ion PGM
shotgun sequencing on six human stool samples, and found
that optimal assembly values for the HiSeq were obtained for
10 million reads per sample, whereas the MiSeq and PGM
sequencing depths were not sufficient to reach an optimal level
of assembly (Clooney et al., 2016). Furthermore, MiSeq and
PGM technologies provide a better functional categorization for
predicting core genes from assembled contigs, possibly due to
their longer read lengths (Clooney et al., 2016). Therefore, in
some cases a combination of platforms could provide a more
complete coverage of the studied genome.

The current sequencing assay protocols allow for two
types of microbiome studies: (a) marker gene sequencing
community identification, which surveys and counts microbes
using amplicon sequencing of a single marker gene that is usually
the 16S rRNA gene, and taxonomic assignment by bioinformatic
methods; and (b) shotgun metagenomic sequencing, which
surveys the entirety of all microbial DNA present in a sample
using a collection of ad-hoc bioinformatic methods for gene and
species identification purposes (Brown, 2015).

Amplicon Sequencing
Classic microbiology methods are limited to the study of
microbes that grow under specific sets of culture conditions;
however, most microbial species are difficult or impossible to
culture in vitro. For that reason, their full genetic spectrum
was unknown until the advent of HT sequencing technologies,
expanding our knowledge of themicrobial world. The similarities
and distinctions among bacterial species have become complex
(Konstantinidis et al., 2006), so that, instead of a “species,” the
term “operational taxonomic unit” (OTU) is used to characterize
and infer the phylogenetic relationships between organisms
grouped by sequence similarity (Blaxter et al., 2005; Koeppel
and Wu, 2013; Schmidt et al., 2014). Usually, the 16S rRNA
gene, which is a highly conserved gene in all prokaryotes,
is amplified to analyze prokaryotic taxonomic composition in
samples. However, this gene is approximately 1550 base pairs
long making it difficult to sequence the whole gene through HT
sequencing methods without an assembly step (Di Bella et al.,
2013).

Instead of sequencing the entire 16S gene, one or more
of its nine variable (V) regions are amplified using particular
sets of primers. The choice of which variable region to use
and amplify depends on factors related to the sample and
experiment. For instance, evidence suggests that the V1–V3
region is better for taxonomical classification of species; however,
some predictive studies show that the V3–V5 region results in
a better classification of microbiota from disease vs. healthy
specimens (Statnikov et al., 2013). Kim et al. analyzed different
variable regions and recommended targeting of the V1–V3 and
V4–V7 regions for the analysis of archaea and the V1–V3 and
V1–V4 regions for the analysis of bacteria (Kim et al., 2011).

Shotgun Metagenomic Sequencing
Although the 16S rRNA is the most frequent gene used for
studies of microbial community membership and structures, it

has some limitations. The use of a particular set of primers for
amplification of 16S and its PCR conditions can favor some
taxa over others, creating bias in abundance counts (Statnikov
et al., 2013). In addition, the 16S primers do not capture viruses
and eukaryotes. Then, the shotgun metagenomic sequencing
approach is commonly used to describe microbial communities
without the biases inherent to PCR amplification of a single
gene. In principle, shotgun sequencing provides robust estimates
to identify the whole genomes present in a biological sample,
including genome sequences of viruses and other functional
DNA elements (Brown, 2015).

Metagenomic analysis is much more challenging than
amplicon sequencing due to the consideration of whole
genomes instead of a particular gene. Indeed, hundreds of
millions of reads must be generated and analyzed for each
sample, taking advantage of very deep sequencing on the
Illumina HiSeq or similar instruments. In addition to shotgun
metagenomic analysis, metatranscriptomic analysis using direct
cDNA sequencing, which is known as RNA sequencing (RNA-
seq), allows for the analysis of all of the RNA of a sample
to determine which genes are transcribed and for monitoring
gene regulation over time, which is particularly interesting when
studying changes in the microbiota in response to perturbations
(Valles-Colomer et al., 2016).

Due to technical difficulties such as isolation of high
quality RNA from biological samples or the presence of
mRNA from the host, the application of RNA-seq to the
study of the human microbiota in cancer is still limited.
To date, a couple of interesting studies related to the
metatranscriptome and the microbiome have been published.
In 2014, Franzosa and coworkers reported the correlation
between the metagenome and metatranscriptome of the healthy
human gut microbiome. These findings showed that 41% of
microbial transcripts are in concordance with their genomic
abundances, while sporulation and some pathways of amino
acid biosynthesis are underexpressed, and methanogenesis and
ribosome biogenesis are up regulated. Interestingly the subject-
specific metatranscriptomic variation was more significant than
the metagenomic variation (Franzosa et al., 2014). In 2015,
Versluis and coworkers explored the gut metatranscriptomes for
the expression of antibiotic resistance genes. Their results showed
that resistance gene expression could be constitutive or could
have different roles other than antibiotic resistance (Versluis
et al., 2015).

After sequence data have been obtained, the next step in
the NGS pipeline is the bioinformatics analysis of the reads,
which include quality control, assembly and, finally, microbiome
profiling (Figure 1). In each step of the bioinformatic pipeline,
there are diverse computational methods that can be applied
based on the organisms, the biological question being explored,
and the technology applied to the samples. There are three
initial steps in common when the 16S rRNA gene is used for
prokaryotes, the nuclear ribosomal internal transcribed spacer
region (ITS) for fungi or shotgun sequencing: (1) data acquisition
or generation of FASTQ files (a common format for sharing
sequencing read data); (2) quality control; and (3) assembly of
the reads (Figure 1).
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FIGURE 1 | Bioinformatics workflow of microbiome profiling. The first step is the data acquisition that can be derived from any NGS technology (Illumina,

IonProton, PacBio) and generating of the FASTQ file to proceed with the analysis. In the quality control step, the aim is to clean and eliminate possible errors in data,

for example, to discard low quality score and very short reads, quimeric and adapter sequences. In addition, it is important to evaluate the presence of some

contaminants from other organisms, specific GC content bias or repeated sequences that may interfere with the assembly step. The following steps depend on the

nature of data, whether the aim is to sequence a marker gene, such as the 16S rRNA gene or ITS, or to perform shotgun metagenomic sequencing. OTU clustering is

a critical step and many algorithms and strategies have emerged to accomplish a proper classification of sequences for a more accurate determination of taxa

proportions and diversity indexes (diversity assessment). Good assemblies and alignments are an important aspect to reach correct gene predictions in the whole

genome pipeline. In the functional assignment step, we gather a biological understanding for regulation and gene pathway reconstruction, obtaining finally the

microbiome profiling.

Data Acquisition
The NGS methodologies provide data files in different formats
depending on the platform used. For instance, the Illumina
platform generates ∗.bcl binary files containing base call and
quality for each tile in each cycle, while Oxford Nanopore
Technologies provide the data in binary files in HDF5/FAST5
format, which contains a number of hierarchical groups, datasets
and attributes (Watson et al., 2014). However, to proceed with the
analysis, both data files need to be converted to FASTQ format.
The FASTQ files have four lines per sequence: sequence identifier,

raw sequence, quality score identifier and quality scores encoded
in Phred format. Phred quality scores are a measure associated
with the assurance of each nucleotide in the sequence.

Quality Control
Routinely, before starting a data analysis, a primary sequence
analysis should be performed, where various data parameters
are evaluated such as the quality scores of the sequences,
global CG content, and the repeat abundance and the
proportion of duplicated reads. The main tool to perform

Frontiers in Physiology | www.frontiersin.org 5 December 2016 | Volume 7 | Article 606

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Contreras et al. Microbiome-Cancer-Systems Biology

this is the FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) or the FASTX-Toolkit, which is a collection
of command line tools. Parameters for good quality data
include a Phred quality score above 28, low percentage of
duplicated sequences, no adapter content, and GC count per
read close to the theoretical distribution. Another useful tool
for quality assessment and processing of HT DNA sequence
data is the Bioconductor’s package ShortRead (Morgan et al.,
2009).

Assembly
The assembly processing of contigs consists of searching
for overlapping reads, alignment and merging sequences to
reconstruct the entire original sequence. There are two main
approaches for genome assembly: de novo and reference guide.
In the novo assembly approach, there are currently two main
methods: Overlap-Layout-Consensus (OLC) and De Bruijn
Graph (BG). OLC methods are based on overlap graphs, and
their process has three steps: (1) searching for overlapping reads
comparing all-against-all, (2) construction and manipulation of
an overlap graph leading to an approximate read layout, and
(3) constructing the consensus sequence using multiple sequence
alignments (Miller et al., 2010). The BG method involves the
definition and alignment of K-mers, where the K parameter
denotes the length in bases of these sequences; the overlap is
between k-mers, not between reads.

In the context of obtaining the microbiome profile of a sample
using the 16S rRNA gene, three phases can be distinguished:
OTU clustering, OTU classification and diversity assessment.
The metrics for microbiota description include species richness
and phylogenetic diversity, distance matrices of samples, alfa
and beta diversity, rank abundance distributions and statistical
analysis of ordering and classification. OTU clustering is a key
step for de novo OTU construction that has an important efect
on the estimation of species abundance and diversity. There are
some recent comparisons of several of these clustering methods
(Chen et al., 2013; Kopylova et al., 2016). Alternatively, to the
direct construction of OTU clusters, more recently, DADA2
addresses the sequencing errors and its correction to properly
identify the sequence variants at the strain level (Callahan et al.,
2016). Further taxonomic assignment to the sequence table
can be accomplished via Greengenes (DeSantis et al., 2006),
SILVA (Quast et al., 2013) or a dedicated human intestinal
16S database (Ritari et al., 2015). There are different software
options to analyze this kind of data from end to end such as
QIIME or Mothur (Schloss et al., 2009; Caporaso et al., 2010;
Navas-Molina et al., 2013), MICCA (Albanese et al., 2015) or
phyloseq developed in R language (Mcmurdie and Holmes, 2013;
Heazlewood et al., 2015).

While amplification of the 16S rRNA gene is performed
to determine the diversity of and quantify the abundance of
bacteria, metagenomic shotgun sequencing aims to recover
genomes (Smits et al., 2015), describe the genomic structure and
survey the metabolic capabilities of the different microorganism
in a community. The most common strategy to reconstruct
genomes and recover global functional pathways from
metagenomic data from reads involves: (1) gene prediction,

(2) functional assignment, and (3) pathway reconstruction
(Abubucker et al., 2012).

Accurate gene prediction is critical for functional assignment.
With the intent of increasing the accuracy of prediction, some
authors recommend using algorithms that take into account
significant differences between coding and non-coding sequences
to identify open reading frames, di-codons frequency, GC
content of coding sequences, preference bias in codon usage and
patterns in the use of start and stop codons (Escobar-Zepeda
et al., 2015).

From a practical point of view, there are several packages
and suites to perform metagenomic analysis taking into account
a variety of statistical tools (Supplementary Table 1). For
instance, MetaGeneMark uses direct polynomial and logistic
approximations of oligonucleotide frequencies, and it evaluates
the dependencies between the frequencies of oligonucleotides
with different lengths and the GC%of a nucleotide sequence (Zhu
et al., 2010); Glimmer-MG, which is based on Glimmer, uses the
interpolated Markov models with variable-order for capturing
sequence compositions of protein-coding genes (Kelley et al.,
2012); FragGeneScan incorporates sequencing error models and
codon usages in a hiddenMarkov model to predict ORFs in short
reads (Rho et al., 2010); and Orphelia is a gene finder based on
the machine learning approach (Hoff et al., 2008).

A common strategy in metagenomics pipeline is the
partitioning or clustering of reads (for example, for the exclusion
of rRNA, tRNA or other specific DNA) by alignment methods
(Kopylova et al., 2012; Wood and Salzberg, 2014). This allows
taxonomy assignment and classification of reads. Improvements
in terms of speed and accuracy of these tasks have been reached
by various methods implemented in Phymm and PhymmBL
(Brady and Salzberg, 2009), LMAT (Ames et al., 2013), mOTUs
(Sunagawa et al., 2013), and more recently Kraken (Wood and
Salzberg, 2014), MetaPhlAn2 (Truong et al., 2015), and SMART
(Lee et al., 2016). For a better estimation of gene abundances,
methods that uses amachine learning approach, such asMUSiCC
(Manor et al., 2015). All these methods rely on a reduced
database search of single copy genes, wide coverage phylogenetic
markers or hidden Markov models using training sets. Others
use combined methods of genomic signatures, marker genes
and optional contig coverages (Lin and Liao, 2016). Peabody
and coworkers present a recent comprehensive evaluation of
metagenomic classification methods (Peabody et al., 2015).

Functional assignment is performed on the predicted open
reading frame or predicted proteins by sequence similarity
search to well-cured databases, using tools such as BLAST (local
alignments), FASTA (global alignment) or HMMER (hidden
model Markov profiles) when sequence identity is low. These
analyses can be performed using locally installed software;
alternatively, for users with no bioinformatic training, there
are different suites for analysis, such as MG-RAST (Wilke
et al., 2016), IMG/M (Markowitz et al., 2012; Wilke et al.,
2016), JCVI and Metagenomics Reports (METAREP) (Goll
et al., 2010; Markowitz et al., 2012; Wilke et al., 2016) or
MEGAN (Huson and Weber, 2013), MetAMOS (Treangen
et al., 2013), MOCAT2 (Kultima et al., 2016), and MetaTrans
(Martinez et al., 2016) which are software designed to simplify all
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metagenomics or metatranscriptomics pipeline; preprocessing,
assembly, annotation and analysis.

Having obtained a high quality functional annotation, the
process of metabolic pathway reconstruction is extremely useful
to identify, at a systemic level, those pathways with a primary
role in supporting the phenotype. For mapping each gene in a
metabolic pathway and analyzing missing enzymes (due to an
analogous enzyme that is performing the same function), two
different databases can be used: KEGG (Ogata et al., 1999) and
MetaCyc (Karp, 2002). For instance, KEGG has implemented
GhostKOALA as a tool for metagenomic analysis, which is based
on a non-redundant dataset of pangenome sequences (Kanehisa
et al., 2016).

Metabolomics
Host-microbiome interactions encompass an exchange of
metabolites and signaling molecules, some of them with an
essential role to establish a proper functionality in the host
and the microbial community. This crosstalk depends on a
variety of factors such as the microbiome composition and
external ambiances. Understanding the metabolic activity of
these communities and how impacts the host has been the focus
of many studies. Some of them associating metabolic biomarkers
with the development of disease.

With the aim of disentangling this complex metabolic
communication and surveying the metabolic pathways that
actively participate in the community, metabolomics–embracing
the massive quantitative measurement of intracellular or
extracellular metabolites in biological samples such as human
stool (Weir et al., 2013)–has been established as the more

suitable HT technology to characterize the phenotype and
dynamic response of living systems (Nicholson and Lindon, 2008;
Marcobal et al., 2013; Diener et al., 2016).

Metabolomic studies can be performed by using three
basic approaches: (1) fingerprinting or endo-metabolome,
searching for metabolites within the organisms under study;
(2) footprinting or exo-metabolome, analyzing metabolites from
the environment around the organism under study; and (3)
metabolome profiling, where the goal is to screen one or more
specific compounds (Patel et al., 2015). A typical metabolic
study has four basic steps: sample collection, data acquisition,
bioinformatic analyses and biological interpretation (Briefly
described in Figure 2).

Currently, two main technologies are used in metabolomics;
MS and nuclear magnetic resonance spectroscopy (NMR). MS
is a highly sensitive method for detection, quantification and
structure elucidation of hundreds of metabolites. Given the wide
spectrum of molecular weights of metabolites in samples, it is
necessary to separate metabolites to improve the sensitivity and
accuracy of detection. Thus, MS is often coupled with different
separation techniques such as gas chromatography (GC-MS),
liquid chromatography (LC-MS) and capillary electrophoresis
(CE-MS) (Gowda and Djukovic, 2014). All of these techniques
have been used for clinical studies, and each has advantages and
limitations. For instance, GC-MS has high-resolution capability,
but it requires volatile compounds or compounds made volatile
by chemical derivatization. LC-MS is a very sensitive technique,
and it has the advantage of not requiring chemical derivatization
of compounds; however, it has poor resolution. Also, the high
capacity of CE-MS to separate compounds allows its use as a

FIGURE 2 | Workflow for metabolomics analysis. Metabolomic studies involve four general steps: (1) sample collection method, which depends on the type of

tissue and must consider the type of storage, preservation and preparation of each sample, (2) data acquisition, involves sample analysis and quality control, (3)

analysis data, includes normalization and identification of metabolites using specialized software for statistical analysis, and (4) data interpretation, which must be

integrated and modeled to raise new hypotheses.
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platform for multiplexing samples (Johanningsmeier et al., 2014;
Nagana Gowda and Raftery, 2015).

On the other hand, NMR spectroscopy is a technique with
high reproducibility and is able to absolutely quantify metabolites
using a single reference; because it is a non-destructive technique,
the samples can be used for re-analyses using other methods
(Nagana Gowda and Raftery, 2015). NMR spectroscopy has two
variations: 1H-NMR and high-resolution magic angle spinning
NMR (HR-MAS-NMR).

After analyzing samples, it is necessary to interpret the data.
Common analysis procedures involves data conversion, detecting
signal peaks, alignment (i.e., comparison between different
datasets to eliminate migration times shifts) (Katajamaa and
Orešič, 2007), normalization and identification of metabolites.
Processed data requires multivariate statistical analysis to find
samples or variables accounting most of the variability between
datasets and potential biological roles; therefore, methods such
as partial least square discriminant analysis (PLS-DA), principal
component analysis (PCA), hierarchical clustering analysis
(HCA) and orthogonal partial least square discriminant analysis
(OPLS-DA) are widely used. A number of free software packages
and databases for metabolic analysis are available, and these
are summarized in Supplementary Table 1. Visualizing tools
can leverage the interpretation of results, both heatmaps and
pathways are widely used to perform this task (Supplementary
Table 1).

Finally, it is important to standardized data to share it in
public databases, this could facilitate experimental replication
between laboratories and maximize the value of metabolomic
data (Fiehn et al., 2006). Additionally, the Human Metabolome
Database (HMDB) is a metabolome project, analogous to
the Human Genome Project, which aims to provide a
comprehensive database of detected and biologically expected
human metabolites. Currently, the HMDB has more than 40,000
metabolite entries (Wishart et al., 2012). The enrichment of
these valuable tools can provide a better understanding of the
characteristics of health and disease states when combined with
other clinical andmodeling approaches to fill the gap between the
genotype and phenotype relationship (Diener et al., 2016).

To study the metabolic changes in health and disease, we
can analyze the metabolites produced solely by the host, those
produced or modified by the microbiome, or the metabolites
jointly contributed from host-microbiome interactions (Guo
et al., 2015). In cancer metabolomic research, there are different
types of samples to study, including fluids such as urine, blood,
saliva, breath condensate, cerebrospinal fluid, and pancreatic
juices or tissue, and in each case require of particular method
for storing and preparing the sample for processing (Spratlin
et al., 2009). Additionally, metabolomics can help us to track
those metabolites found in our environment that can influence
the phenotype, such as diet, chemical exposure, xenobiotics,
supplements or drugs (de Raad et al., 2016). Here, we briefly
review some studies related to cancer metabolomics and host-
microbiome co-metabolism.

Cancer cells have a specific metabolic demand to proliferate,
increase their growth and sustain their malignant phenotype
(Resendis-Antonio et al., 2015). Notably, this physiological state

is represented by changes in the metabolic profile of human
tissue. The identification of thesemetabolic alterations is a crucial
point to define the phenotype, design new therapeutic targets and
explore the evolution of the disease (Locasale et al., 2009; Yun
et al., 2009; Ramirez et al., 2013).

Metabolomic studies have led us to search for new biomarkers
in cancer, and these findings have had important implications for
surveying the mechanisms of a variety of cancers such as bladder
(Rodrigues et al., 2016), breast (Jobard et al., 2014), pancreatic
(Di Gangi et al., 2015), gastroesophageal (Abbassi-Ghadi et al.,
2013), gastric (Abbassi-Ghadi et al., 2013; Chan et al., 2016), and
oral (Mikkonen et al., 2015) cancer. For instance, in the case of
gastric cancer, three potential biomarkers, 2-hydroxyisobutyrate,
3-indoxylsulfate and alanine, were identified in urine samples
using 1H-NMR spectroscopy. Revealing that those patients have
a particular metabolic profile (Chan et al., 2016).

Other more comprehensive approaches involve the study of
microbiome metabolites and their interactions with the host, i.e.,
synthesis, absorption, and potential physiological effects on the
host. There are several studies that have been able to discern
the different metabolites in the human gut microbiome and
their relationships with health and disease (Sharon et al., 2014).
Additionally, there are in vivo studies observing the effects of
the human gut microbiota on the metabolism of biofluids of
humanized mice (Marcobal et al., 2013; Smirnov et al., 2016). By
characterizing, discerning and associating metabolite levels with
genetics and external factors such as diet and the microbiome,
metabolomics can aid in diagnostics and expand the clinical
scope toward the realization of precision medicine (Beebe and
Kennedy, 2016).

For instance, Guo et al. analyzed the plasma metabolites
from healthy volunteers, identifying 600 metabolites covering 72
biochemical pathways, ranging from biosynthesis, catabolism,
gut microbiome activities, and xenobiotic metabolism.
Also, the metabolome profiles were associated with whole-
exome sequencing and clinical records to identify metabolic
abnormalities associated with disease (Guo et al., 2015). This
approach exemplifies how complementing genetic and metabolic
analysis can help to improve diagnosis and medical interventions
such as dietary changes, evaluate drug response and the discovery
of biomarkers.

ELUCIDATING THE HOST-MICROBIOME
INTERACTIONS AND CANCER
DEVELOPMENT

In the emergence of complex diseases such as cancer, the
relationship between the environmental influence, the
microbiome and cancer appearance can be very entangled.
The body offers a suitable and nutrient-rich microenvironment
to resident microbes, while the microbiome assists humans
in metabolic or immune tasks. Additionally, the microbiota
provides humans with non-nutrient essential factors, such as
vitamins, and impedes pathogens from establishing (Zitvogel
et al., 2015). Differences in microbial and possibly viral
compositions between healthy subjects and those affected by
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diseases have been identified (Blumberg and Powrie, 2012; Koeth
et al., 2013; Bultman and Jobin, 2014; Clavel et al., 2014; Tilg
and Moschen, 2014). Broadly defined, this imbalance, referred
as dysbiosis, imply deviations in the composition of resident
commensal communities from the ones found in healthy
individuals (Petersen and Round, 2014).

Most of the current research exploring the effects of
host-microbe interplay in cancer is focused on colorectal
cancer (CRC). By using genomic approaches, some studies
have compared the mucosal surface and the intestinal lumen
microbiota between healthy patients and those with CRC
(Chen et al., 2012; Kostic et al., 2012; Sanapareddy et al.,
2012). Although there is no consensus between studies, some
taxa are associated with a protective function (e.g., Roseburia)
while others are associated with potentially detrimental effects
(e.g., Fusobacterium, Klebsiella, and Escherichia/Shigella) (Jobin,
2013; Thomas and Jobin, 2015). This suggests a dysbiotic
or differential community composition correlated with CRC
development. However, among the open issues about host-
microbiome interactions in disease, we ignore the role of the
microbiome as a driver or consequence of cancer development
(Tjalsma et al., 2012).

Altered cellular metabolism and inflammation are proposed
host dependent hallmarks of cancer (Hanahan and Weinberg,
2011). Even when host-microbiome interactions might not
be considered essential for cancer appearance, or its effects
are indirect, some cancers, such as CRC, might have an
important microbial component. In vitro studies have reported
a signaling process between bacterial quorum-sensing peptides
(QSPs) and cancer cells. Bacillus derived QSPs are synthesized
when there are bacterial stressors and are able to induce tumor
cell invasiveness in a process called epithelial-mesenchymal-like
(EMT-like) process (involved in CRC metastasis) (Wynendaele
et al., 2015). The QSPs contributed both to metastatic and
angiogenesis behaviors under these settings (De Spiegeleer et al.,
2015; Wynendaele et al., 2015). Furthermore, in other kinds
of cancer, the result of microbial activities can reduce the
effectiveness of chemotherapy (Wallace et al., 2010) or influence
the development of tumors distant from the gut (Iida et al.,
2013).

Genetic and environmental factors disrupting the healthy
relationship between hosts and microbiomes can provoque
dysbiosis and promote cancer development (Figure 3). Lifestyle,
diet, and early exposure have been recognized as major players
in determining the microbiome composition. Additionally,
different metabolites produced by the intestinal microbiota
are proposed to play both cancer-promoting and cancer-
protecting roles; however, factors determining different outcomes
are not completely understood (Bultman and Jobin, 2014).
Characterizing bacterial OTUs consistently altered across studies,
and attributing to them the presence of specific diseases can
be difficult given the inter-individual variations (Zackular et al.,
2013). This suggests the need to understand what are the possible
roles of the microbiome in this process. In this regard, we will
review three major factors that can promote microbial dysbiosis
and cancer development: (1) infectious agents, (2) diet- and
microbial-derived metabolites; and (3) inflammatory mediators.

FIGURE 3 | Host-microbiome interactions implicated in cancer

development. Differences in microbial composition between healthy

individuals and those affected by cancer have been identified. Genetic and

environmental factors can disrupt the healthy condition of human microbiome

and promote microbial dysbiosis. Infectious agents are one of the main

contributors to dysbiosis and cancer development, in addition to diet, which

has been recognized as one of the major players in determining microbiome

composition. Moreover, microbes associated to cancer appear to activate

pro-inflammatory pathways on host tissues.

Infectious Agents in Cancer
Infectious agents are one of the main contributors to cancer
development. The linkage of infection with some biological
agents and carcinogenesis in humans started more than a
century ago when Francis Peyton Rous began his famous cancer
virus transmission experiments at the Rockefeller Institute, USA
(Moore and Chang, 2010). Eleven biological agents have been
identified as group 1 carcinogens by the International Agency
for Research on Cancer (IARC) (Bouvard et al., 2009). These
include Epstein-Barr virus (EBV), hepatitis B and C viruses (HBV
and HCV, respectively) Kaposi sarcoma herpesvirus (KSHV,
also known as human herpesvirus type 8, HHV-8), human
immunodeficiency virus type 1 (HIV-1), human papillomavirus
(HPV) type 16 (HPV-16), human T-cell lymphotropic virus
type 1 (HTLV-1), Helicobacter pylori (H. pylori), Clonorchis
sinensis (C. sinensis), Opisthorchis viverrini (O. viverrini), and
Schistosoma haemotobium (S. haemotobium). Although HIV
does not directly cause cancer, its infection strongly increases
the incidence of many different human cancers. Among these
cancers, those associated with the herpesviruses KSHV and EBV
are themost strongly enhanced by immunosuppression (Bouvard
et al., 2009).

Specific infections represent major cancer risk factors with an
estimated 2.1 million (16.4%) of the 12.7 million new cases in
2008 attributable to infection. This fraction is substantially higher
in less developed regions of the world (23.4% of all cancers) than
inmore developed regions (7.5%). Themost important infectious
agents are H. pylori, hepatitis B and C viruses and HPV, which
together are responsible for 1.9 million cases of gastric, liver and
cervix uteri cancers, respectively (de Martel et al., 2012). A better
understanding of the role of infectious agents in the etiology of
cancer is an essential element for precision medicine, because
such cancers are theoretically preventable by proper vaccination
or early treatment of infection (IARC Working Group on the
Evaluation of Carcinogenic Risks to Humans, 2012).
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The IARC estimates that one in five cancer cases worldwide
are caused by infection, with most being caused by viruses
(Bouvard et al., 2009). The first human tumor virus, Epstein-
Barr virus, also known as human herpesvirus 4 (HHV-4), was
described in 1964 in cell lines fromAfrican patients with Burkitt’s
lymphoma (Epstein et al., 1964). EBV is invariably associated
with the non-keratinizing type of nasopharyngeal carcinoma
(NPC), which represents 80% of NPC cases, and new evidence
points to a role for EBV in 5–10% of gastric carcinomas. EBV
infection is observed to occur mostly in the upper middle
portions of the stomach rather than in the lower part of the
stomach (Shah and Young, 2009).

Chronic infection with Hepatitis B virus (HBV) and hepatitis
C virus (HCV) is known to cause hepatocellular carcinoma
(Song et al., 2016). Several epidemiological studies suggest that
HCV may be involved in the pathogenesis of several B-cell
lymphoproliferative disorders. In particular, sufficient evidence
is available to indicate that chronic infection with HCV can also
cause non-Hodgkin lymphoma (Hermine et al., 2002). Evidence
of HTLV-1 infection was initially found in at least 90% of
adult T-cell leukemia and lymphoma (ATLL) cases; subsequently,
HTLV-1 infection became part of the diagnostic criteria for
ATLL (Oh and Weiderpass, 2014). KHSV is a causal factor for
Kaposi sarcoma and, more recently, MCV, a novel member of
the polyomavirus family, has been identified. There is some
evidence that MCV has an important role in the development
of Merkel cell carcinoma, a rare skin cancer arising in elderly
and chronically immunosuppressed individuals (Shuda et al.,
2008).

It is very well established that infection with specific types of
HPV can cause cervical cancer. Global epidemiological studies
identified HPV 16, 18 and a few others as major risk factors for
cervical cancer (zur Hausen, 2009). In addition, there is strong
epidemiological evidence for the involvement of HPV infection
in the carcinomas of the cervix, penis, vulva, vagina, anus, upper
aerodigestive tract, and head and neck. The majority of HPV-
related head and neck cancers are located in the oropharynx
(Hettmann et al., 2015). Multiple meta-analyses support the
discovery of a higher HPV detection rate in regions associated
with high risk for esophageal squamous cell carcinoma (ESCC),
compared to low-risk areas. Additionally, a potential role of
HPV in the rise of esophageal adenocarcinoma (EAC) was
proposed recently; however, future studies are required (Xu et al.,
2015).

The prevalence of H. pylori infection varies widely by
geographic area, age and socioeconomic status. In less developed
regions, it may reach 80%, while, in more developed regions, the
prevalence is 40% or less (Brown, 2000). H. pylori infection is
limited to the distal part of the stomach, and chronic infection
is associated with non-cardia gastric carcinoma. H. pylori yields
various virulence factors that may dysregulate host intracellular
signaling pathways, controlling the immune response associated
with the induction of carcinogenesis. Of all virulence factors,
cagA (cytotoxin-associated gene A), and its pathogenicity island
(cag PAI), and vacA (vacuolating cytotoxin A) are the major
pathogenic factors (Ahn and Lee, 2015). H. pylori can modulate
the immune response through activating growth factors and

cytokines (Amedei et al., 2009). For instance, the H. pylori
secreted peptidyl prolyl cis, trans-isomerase, HP0175, is one
of bacterial antigens recognized by sera of H. pylori infected
patients, that is able to activate both epidermal growth factor
receptor and NF-κB pathway, and drives gastric T helper 17
(TH17) responses in patients with distal gastric adenocarcinoma
(Amedei et al., 2014).

Regarding helminth infections, chronic infections with
the liver flukes C. sinensis and O. viverrini are associated
with cholangiocarcinoma. Liver fluke antigens stimulate both
inflammatory and hyperplastic changes in the infected bile
ducts, which undergo severe pathological transformations. The
relative risk for this adenocarcinoma is estimated to be 7.8 for
individuals infected with O. viverrini and 7.7 for those infected
with C. sinensis (IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans, 2012). Approximately 5–10% of
cholangiocarcinoma is caused by chronic C. sinensis infection
in endemic areas, which are located in China, Korea, Thailand,
Laos, Vietnam, and Cambodia (Oh and Weiderpass, 2014). On
the other hand, S. haematobium is a parasitic flatworm associated
with bladder cancer that infects millions of people, mostly in the
developing world. In in vitro models exposed to total antigens
Botelho et. al. found increased cell proliferation, decreased
apoptosis, up-regulation of the anti-apoptotic molecule Bcl-
2, down-regulation of the tumor suppressor protein p27, and
increased cell migration and invasion (Botelho et al., 2010).

Infectious agents can be direct carcinogens, such as the HTLV-
1 and the KSHV, which express viral oncogenes that directly
contribute to cancer cell transformation, or indirect carcinogens
by causing chronic inflammation, which eventually leads to
carcinogenic mutations in host cells, such as H. pylori, the major
cause of gastric carcinogenesis. In addition, carcinogenesis would
result from the interaction of multiple risk factors including
those related to the infectious agent itself (virulence factors,
variants, or subtypes), host-related factors (gene polymorphisms
and immune system status) and environmental aspects (smoking,
chemicals, ionizing radiation, immunosuppressive drugs, or
another infection that may lead to reactivation of latent
oncogenic viruses such as EBV or KSHV) (IARCWorking Group
on the Evaluation of Carcinogenic Risks to Humans, 2012).
Further studies should be conducted to elucidate in detail the
contribution of these additional factors to the development of
cancers associated with infectious agents.

Diet and Microbial-Derived Metabolites in
Cancer
Microbiome-derived metabolites are gaining recognition for
their potential participation in cancer development (Louis et al.,
2014). Clearly, diet is a major source for the production of
those metabolites and has to be taken into account along
with microbiome composition and activities. For example, high
fat and high protein consumption is characteristic of modern
western diets (Hughes et al., 2000; Albenberg and Wu, 2014),
and this particular dietary composition is currently recognized
as a risk factor for cancer occurrence (Bouvard et al., 2015;
Gallagher and LeRoith, 2015). In this section, we will present
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some example in vitro and in vivo studies of microbiome-
derived metabolites related to cancer development, and explore
its possible application as biomarkers.

Secondary Bile Acids
In the liver, enzymatic oxidation of cholesterol generates bile
acids (BA) that function as detergents that facilitates digestion
and absorption of lipids; while also acting as signaling molecules
related to metabolic homeostasis (de Aguiar Vallim et al.,
2013). The presence BAs in the colon promotes its subsequent
conversion to secondary bile acids (SBA) by means of bacterial
enzymes. Species with 7-α-dehydroxylating enzymes, can convert
the host’s BA into SBA (Ou et al., 2013) and those can act as
carcinogens (Bernstein et al., 2005).

In vitro studies have shown that 1-h exposure to SBAs
Deoxycholic Acid (DCA) or Lithocholic Acid (LCA) causes
extensive DNA damage at physiological concentrations in a
dose-dependent manner (Booth et al., 1997). Moreover, those
compounds induced the production of reactive oxygen species
(ROS) by acting as detergents on membrane enzymes, such as
phospholipase A 2, resulting in the formation of prostaglandins
and leukotrienes (Bernstein et al., 2005).

Pro-cancerous activity derived from SBA has also been
described in vivo. In a mouse model, treatment with a carcinogen
at the neonatal stage and posterior feeding under a high fat-diet
induced the appearance of hepatocellular carcinoma, showing
a senescence-associated secretory phenotype (SASP) in hepatic
stellate cells (Yoshimoto et al., 2013). The level of DCA produced
by enteric bacteria was increased under these conditions, and
OTU analysis revealed an increase in DCA-producing bacteria
belonging to Firmicutes from Clostridium cluster XI (Yoshimoto
et al., 2013).

Human studies indicate that African Americans have a higher
incidence of and higher mortality from CRC than other ethnic
population in the USA (O’Keefe et al., 2007). In a search
for possible mechanisms, microbiome compositions between
African Americans and native Africans were analyzed; the former
group were enriched in Bacteroides spp., whereas the later was
dominated by Prevotella spp. (Ou et al., 2013). This reflected the
differences in bacterial enrichment between western and fiber-
rich diets. Additionally, genes coding for SBA and fecal SBA
concentrations were higher in African Americans, whereas short-
chain fatty acids were higher in native Africans (Ou et al., 2013).
This scenario suggests that similar genetic backgrounds differ
in phenotype and proclivity to develop a certain disease, and
this difference is mainly driven by diet and different microbiome
conformations.

Short Chain Fatty Acids
Consumption of dietary fiber stimulates saccharolytic
fermentation by diverse gut microbes that produce short-
chain fatty acids (SCFA), mainly acetate, propionate, and
butyrate (Holmes et al., 2012). Bacteroidetes produce high levels
of acetate and propionate, whereas Firmicutes bacteria produce
high amounts of butyrate. Acetate and propionate are found
in portal blood and are eventually metabolized by the liver
or peripheral tissues (Honda and Littman, 2012). Butyrate is

considered a pleiotropic metabolite, functioning as the primary
energy source for colonocytes, reducing oxidative stress and
inhibiting inflammation (Hamer et al., 2008).

Some anticancer activities have been attributed to butyrate.
By functioning as an inhibitor of histone deacetylase (HDAC),
butyrate induces hyperacetylation of core histone proteins (H3
and H4) when compared with other SCFA. Among its effects as
an HDAC inhibitor, butyrate can induce in vitro S-phase arrest
of colorectal adenocarcinoma cells and inhibit its growth by
inducing apoptosis and the expression of the cell cycle regulators
p21 and cyclin B1 (Hinnebusch et al., 2002).

Interestingly, those effects depend on cell status, i.e., normal
vs. cancer. In the former, butyrate stimulates proliferation
(functioning as an energy source); while in cancerous cells,
butyrate inhibits proliferation and induce apoptosis (Comalada
et al., 2006). Donohoe et al. analyzed these context-dependent
effects from the perspective of theWarburg effect (Donohoe et al.,
2012). Due to the Warburg effect, cancer cells primarily depend
on aerobic glycolysis instead of oxidativemetabolism for survival.
In this context, butyrate is not used as an energy source and
its accumulation is allowed inside the nuclei, inhibiting HDAC
in cancer cells. Experimental inhibition of the Warburg effect
in cancerous colonocytes induced cell proliferation, suggesting
that the Warburg effect is necessary for observing the butyrate
antiproliferative effect (Donohoe et al., 2012).

On the other hand, CRC-prone mice revealed a paradoxical
effect of butyrate on colonic cancer cells. By using a mouse model
with mutations in the adenomatous polyposis coli (APC) and
DNA mismatch repair (MMR) genes (as commonly observed in
humans), Belcheva et al. observed an anomalous proliferation of
colonic epithelial cells and formation of polyps (Belcheva et al.,
2014). Furthermore, using antibiotics or lowering carbohydrates
in diet reduced the development of tumors. This indicates
an involvement of microbial metabolism and diet in cancer
development under this particular host’s genetic background. The
authors identified butyrate as a causative of disease onset, and the
sole administration of butyrate was sufficient to increase polyp
number and epithelial cell proliferation. Given the apparently
paradoxical effects of butyrate on cancerous phenotypes, there
is a potential therapeutic modification of bacterial activities with
antibiotics and/or diet modifications for cancer patients in order
to improve the outcome.

Proteins and Red Meat Diet-Associated Compounds
When carbohydrates get depleted from the proximal colon,
protein fermentation can occur in the distal colon (Windey
et al., 2012). This activity is mainly driven by colonic bacteria
and results in the production of noxious metabolites such as
ammonia, amines, phenols and sulfides. Western diets, provide
metabolites like fats, heme and heterocyclic amines, and those
are suggested to play a role in CRC development (Windey et al.,
2012).

Amino acids fermented by colonic bacteria include lysine,
arginine, glycine, and the branched chain amino acids (BCAA)
leucine, valine, and isoleucine. This generates a diversity of end
products including ammonia, SCFA, and branched-chain fatty
acids (BCFA) valerate, isobutyrate, and isovalerate. Microbial
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metabolism of amino acids can also produce biogenic amines by
decarboxylation of amino acids (Windey et al., 2012; Neis et al.,
2015).

Bacterial metabolism of aromatic amino acids results in the
production of phenolic and indolic compounds that are excreted
as p-cresol. In vitro studies in epithelial colonic cells have shown
detrimental effects and genomic DNA damage by ammonia,
sulfides, p-cresol and phenolic compounds (Pedersen et al., 2002;
Attene-Ramos et al., 2010; Windey et al., 2012). Hydrogen sulfide
also inhibits cellular respiration, at least in part by acting as an
inhibitor of cytochrome c oxidase, which participates in the final
step to produce ATP. These noxious effects have been associated
with Inflammatory bowel disease and cancer (Medani et al.,
2011).

Additionally, epidemiological and experimental studies have
shown that red meat induces more genetic damage than
white meat (Toden et al., 2007). By studying the characteristic
compound of red meat, heme molecules, Ijssennagger et al.
reported that the colon microbiota facilitates, heme-induced
epithelial injury and hyperproliferation as a result of the activity
of hydrogen sulfide-producing and mucin-degrading bacteria.
They observed that the microbiota facilitates heme-induced
hyperproliferation by opening the mucus barrier. Bacterial
hydrogen sulfide can reduce the S-S bonds in polymeric mucin,
thereby increasing the mucus layer permeability for mucin-
degrading bacteria and cytotoxic micelles (Ijssennagger et al.,
2015). Antibiotic treatment prevented the heme-induced cell
damage and diminished the expression of cell cycle genes.

It has been shown that a small set of metabolites can
modify host physiology; however, numerous metabolites in
humans have not been investigated (da Silva et al., 2015).
Therefore, further research to categorize new metabolites;
transport mechanisms and characterize the biotransformation
processes by the microbiome, is a top priority to identify
biomarkers such as compounds, specific taxonomic components
or metagenomic-enriched functions. Integrating these studies
with epidemiological, clinical or nutritional data can provide
clues for the search for these biomarkers.

Microbiota-Mediated Inflammation in
Cancer
The symbiotic nature of the intestinal host-microbial relationship
poses health challenges. The immune system has developed
adaptations to contain the microbiome while preserving
the symbiotic relationship (Hooper et al., 2012). However,
opportunistic invasion of host tissue by resident bacteria has
serious health consequences including inflammation. Chronic
inflammation and inflammatory factors, such as reactive oxygen
and nitrogen species, cytokines, and chemokines, can contribute
to tumor growth and spread (Garrett, 2015).

Increasing evidence indicates that colonizing microbes can
drive cancer development and progression by direct or indirect
effects on host tissues (Gagliani et al., 2014). Pattern recognition
receptors (PRR) recognize specific conserved microbial patterns
(bacterial cell walls, nucleic acids, motility apparatuses). The
most studied PRR related to CRC belongs to the group of

intracellular Nod-like receptors (NLR) and Toll-like receptors
(TLR). Following microbial sensing, these PRR engage a
complex set of signaling proteins that shape the host immune
and inflammatory response (Jobin, 2013). Some NLR family
members, such as NOD-2, NLRP3, NLRP6, and NLRP12 may
play a role in mediating CRC (Garrett, 2015). Mice deficient
in NOD-2 showed a proinflammatory microenvironment that
enhanced epithelial dysplasia following chemically induced
injury (Couturier-Maillard et al., 2013), and those deficient in
NLRP6 showed enhanced inflammation-induced CRC formation
(Hu et al., 2013).

Activation of TLR results in feed forward loops of activation of
NF-κB. Microbes associated with cancer appear to activate NF-
κB signaling within the tumor microenvironment. NF-κB was
more activated (increased nuclear translocation of the p65 NF-
κB subunit) in tumors with a high Fusobacterium nucleatum (F.
nucleatum) abundance in human colorectal cancer (Kostic et al.,
2013). NF-κB is a master regulator of the inflammatory response,
and it acts in a cell type-specific manner, activating survival
genes within cancer cells and inflammation-promoting genes in
components of the tumor microenvironment. NF-κB activation
is prevalent in carcinomas and is mainly driven by inflammatory
cytokines within the tumor microenvironment (Didonato et al.,
2012). The FadA adhesin of F. nucleatum has also been shown to
bind to E-cadherin, activate β-catenin signaling and differentially
regulate the inflammatory and oncogenic responses in the
colon tissue from patients with adenomas and adenocarcinomas
(Rubinstein et al., 2013). In vitro studies have also revealed that
the Fap2 protein from F. nucleatum can help tumor cells evade
the immune system by binding the inhibitory receptor TIGIT in
natural killer cells and inhibiting their cytotoxic activities (Gur
et al., 2015). These observations of tumor zones enriched in
Fusobacterium indicate that the local microbiome conformation
is not random and can play an important role in the pro-
cancerous phenotype.

The immune system within the tumor microenvironment
is not restricted to the innate cells, which present infectious
agents to cells of the adaptive immune system for responding
selectively and specifically to them. Some adaptive immune
responses can be protumorigenic; for instance, upon contact
with specific bacteria, CD4+T cells can produce cytokines that
promote tumor progression (Gagliani et al., 2014). IL-23, is a
cytokine mainly produced by tumor-associated myeloid cells
activated bymicrobial products such as flagellin, promotes tumor
growth and progression and development of a tumoral IL-17
response (Grivennikov et al., 2012). Enterotoxigenic Bacteroides
fragilis, which secretes B. fragilis toxin, causes inflammation in
humans and triggers colitis and strongly induces colonic tumors
in multiple intestinal neoplasia (Min) mice. The enterotoxigenic
B. fragilis induces STAT3 signaling characterized by a selective
TH17 response for colonic hyperplasia and tumor formation (Wu
et al., 2009). TH17 cells produce other cytokines besides IL-17,
such as IL-22, another cytokine linked to human colon cancer by
activation of STAT3 (Jiang et al., 2013).

Notably, inflammation can be associated with other malignant
phenotypes that can synergistically act as risk factors for
cancer development. For instance, obesity can also generate
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overrepresentation of bacterial species that produce pro-
carcinogenic metabolites, such as SBAs (Louis et al., 2014).
Dysbiosis present in obese individuals alters the gut epithelial
barrier, making it more permeable to microbial products that
activate immune cells in the lamina propria; and reach the liver
via the portal circulation, this contributes to the production of
proinflammatory cytokines, such as TNF and IL-6 (Font-Burgada
et al., 2016). Barrier deterioration was shown to be a major
contributor to colorectal tumorigenesis by microbial products
that trigger tumor-elicited inflammation (Grivennikov et al.,
2012).

INTEGRATIVE ANALYSIS AND THE
CHALLENGES IN SYSTEMS BIOLOGY

Given that cancer can be produced by a myriad of genetic
and environmental factors, understanding its mechanisms and
designing optimal treatments calls for computational schemes
capable of integrating heterogeneous HT data to move toward
personalized and predictive medicine. Among these factors, the
microbiome composition in patients constitutes an important
component to induce carcinogenesis or other dysfunctional states
in human tissues (Thomas and Jobin, 2015).

An explanation of how the microbiome contributes to the
physiological state in the host emerged by noticing that microbes
are metabolic partners, for which the nutritional habits of the
host can induce the dysregulation of biological processes and
consequently alter the phenotypic state. For instance, foods
enriched in phosphatidylcholine, choline or carnitine, such as
red meat and fatty foods, can be metabolized by gut microbes to
produce trimethylamine. The liver enzymes can further produce
trimethylamine-N-oxide (TMAO), and this metabolite has
proatherogenic properties (Koeth et al., 2013). Knowledge about
the microbiome composition and levels of its derived metabolite
TMAO predicted the probability of suffering a cardiovascular
problem, by means of platelet hyperresponsiveness. Even more,
the thrombosis potential was transmissible as a microbiome-
dependent trait (Zhu et al., 2016). In the case of type 2 diabetes,
fasting plasma concentrations of branched chain (BCAA) and
aromatic amino acids were higher in people who developed
diabetes, and this signature was predictive of developing the
disease for more than a decade later (Wang et al., 2011).
Interestingly, a metagenomic signature identified in fecal samples
from patients with diabetes was the enrichment in metabolic
pathways for transport of BCAA and oxidative stress (Qin et al.,
2012). It to expect in the near future, that identification of cancer
biomarkers, microbiome signatures and its implementation in
mechanistic models will also aid in predicting cancer risk and
prognosis.

Thus, microbiota metabolism is a cornerstone for maintaining
human and microbial symbiosis, whose involvement in signaling
transduction and transcriptional regulation is capable of
inducing wellness or disease in the human body (Chubukov
et al., 2014). More importantly, the heterogeneous composition
observed in individual microbiota provides evidence for
the usefulness of personalized studies in terms of genetic

backgrounds, lifestyle, nutrition and environmental factors. Even
though these findings are currently supported with experimental
evidence, the understanding of how a community of organisms
consume and interchange their metabolic and cross-signaling
products and how this dynamical behavior influences the
phenotypic state of the human host is still an open question.

To decode this bewildering complexity and uncover their
underlying mechanisms, combined strategies with available
data coming from different HT technologies and conceptual
schemes from systems biology have been employed. Currently,
in systems biology, some paradigms have been suggested to reach
this combined description, including genome scale metabolic
reconstructions and constraints-based modeling (Bordbar et al.,
2014). The implementation of this paradigm has made it possible
to explore the metabolic phenotypes of isolated microorganisms
and has successfully contributed to areas such as in vitro
microbial evolution and organisms with biotechnological and
therapeutic applications (Resendis-Antonio et al., 2007; Bordbar
et al., 2014). More fundamentally, these schemes have served as
a guide to characterize the metabolic activity of human tissues
and explore the metabolic phenotypes in cancer (Resendis-
Antonio et al., 2010; Lewis et al., 2012). Remarkably, genome
scale metabolic reconstruction and computational modeling
have extended the scope. Currently, it is possible to model
the metabolic interaction between different tissues in the
human body (Bordbar et al., 2011), and new approaches are
currently pointing toward the integration of models for human-
microbiome interaction to explore the metabolic activity in
a community of microorganisms (Heinken and Thiele, 2015;
Shoaie et al., 2015). Notably, these approaches pave the path
toward quantitative models able to predict the metabolic
profile in a community of microorganisms and exploring the
mechanisms by which their metabolic products could drive the
development of cancer.

Although this is a titanic enterprise, systems biology is
a cornerstone in precision medicine for moving toward: (1)
the coherent interpretation of heterogeneous HT data; (2)
identification of potential biomarkers in cancer; and (3) the
optimal design of personalized treatments in clinical trials (Wang
R.-S. et al., 2015). Among the immediate challenges needing
to be overcome to materialize those aims, the development
of integrative conceptual schemes of HT data is important.
Nonetheless, its capacity to provide meaningful biological insight
will be the proof of concept. The development of methods for a
coherent interpretation of data is particularly important in cancer
studies where massive genome characterization of a variety of
cancers have been reported (Cancer Genome Atlas Network,
2015). The accumulation of enormous quantities of molecular
data has led to the emergence of systems biology as a set of
principles that underlie the base functional properties of living
organisms, evaluating and interpreting interactions between
molecules (Kristensen et al., 2014). From a systems biology
perspective, the use of genomic technologies and computational
procedures may provide molecular approaches to early disease
detection and opportunities for identifying high-risk individuals,
thus contributing to opportune diagnosis (Stewart et al., 2015).
In terms of cancer and the microbiome, the computational
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platform from systems biology should be able to integrate
HT data such as metagenome and metatranscriptome data for
building hypotheses of host-microbiota metabolic activity, and
eventually evaluate its role in cancer development (Bäckhed
et al., 2012). The hypothesis generated using this approach can
be contextualized with the nutritional information of patients,
genetic variability, immune status or clinical record. As stated
before, integrating microbiome analysis and host data has the
potential to predict the disease outcome and has recently been
explored in microbiome-related diseases.

Studying the microbiome variation over time offers an
exceptional window to understand the properties leading to
health and disease states. To date few longitudinal microbiome
studies have been conducted on humans, mainly using 16S rRNA
sequencing and observing changes in microbial diversity for over
a year (Caporaso et al., 2011; David et al., 2014). Results from
whole shotgun metagenomics over time are consistent with 16S
studies, indicating both small taxonomic and functional variation
over time in the absence of perturbations (Voigt et al., 2015).
Although those whole shotgun metagenomic studies are scarce,
it is expected that price reduction on sequencing will promote
their application. From early exposition at birth to adulthood,
factors such as diet, immunological tolerance, environment and
microbe-microbe interactions can account preferred taxonomic
compositions (Wu et al., 2011; Costello et al., 2012; Nutsch et al.,
2016). Despite these factors can include an stochastic component,
robustness is observed in tissue-specific microbiome identities
maintained over time (Caporaso et al., 2011). Notably, when the
community suffers a perturbation, taxonomically related bacteria
are preferred as substitutes and subject-specific proportions are
maintained within the same taxa (David et al., 2014).

Understanding the principles that rule the microbiome
dynamics is an important challenge for system biology,
nonetheless new paradigms capable to integrate data bases (Hood
et al., 2014; Integrative HMP Research Network Consortium,
2014), empirically dissected patterns (Caporaso et al., 2011;
David et al., 2014), and computational models (Stein et al., 2013;
Mcgeachie et al., 2016) can aid to reach this enterprise. An
hypothesis to explore in future is the idea of early warning signals
that could link the dynamical microbiome behavior preceding the
progression of a human disease (Faust et al., 2015). The advance
in this aim will have a strong impact to translate basic knowledge
into precision medicine.

In summary, systems biology suggests that human diseases
are fundamentally a system issue at which our phenotype
(functional or dysfunctional) is an emergent property that results
from host-microbiome interactions. Understanding how this
property emerges at a molecular level is valuable to reach one
of the aims in precision medicine: the desire for more effective
treatments in cancer based on personalized genetic background
and lifestyle. In this context, HT technologies and biochemical,
physiological and clinical data can be organized and evaluated
using a network approach that can be useful for predicting disease
expression or response to therapies (Loscalzo and Barabasi,
2011). Finally, addressing these aims will contribute positively to
understanding the biological mechanisms in human diseases, and
providing the right treatment for the right patients at the right

moment with clinical strategies based on genomic, proteomics,
metabolomics, and taking into account the behavioral and
environment background information of individual patients. All
these schemes aim to improve diagnostic power.

TOWARD THE CLINICAL APPLICATIONS
OF HOST-MICROBIOME INTERACTIONS
IN CANCER

The development of diagnostic tests using biomarkers to be
applied for early detection is likely a key aspect for precision
medicine. For example, the immunosignature approach leverages
the response of antibodies to disease-related changes and can
be used for the simultaneous classification of multiple cancers
(Stafford et al., 2014). In addition, researchers have evaluated the
potential of the fecal microbiota for early-stage detection of CRC
and as a screening tool to differentiate between healthy, adenoma,
and carcinoma clinical groups (Zackular et al., 2014). Using
metagenomic sequencing, it is possible to identify microbiome
signatures able to distinguish CRC patients from tumor-free
controls (Zeller et al., 2014).

Conversely, germ-free status and treatment with antibiotics
has been shown to lead to a reduction of the numbers of
tumors in genetic experimental models of CRC, suggesting the
use of antibiotics to knock out cancer-promoting gut microbes
(Schwabe and Jobin, 2013; Thomas and Jobin, 2015). For
instance, cefoxitin treatment resulted in complete clearance
of enterotoxigenic Bacteroides fragilis, a microbe that causes
IL17A-dependent colon tumors. Bacteroides fragilis eradication
reduced tumorigenesis and decreasedmucosal IL-17A expression
(DeStefano Shields et al., 2016). Nonetheless, clinical studiesmust
be developed to probe the clinical effectiveness and the potential
effect on the whole human microbiome.

Other players must be taken into account in shaping the
microbiome. From environmental studies, it has been established
that bacteriophages shape bacterial community structure and
function via predation and gene transfer (Chibani-Chennoufi
et al., 2004). In contrast to antibiotics, lytic phages are fairly
specific, usually only targeting a subgroup of strains within
one bacterial species, for treating bacterial human diseases.
For instance, when a bacteriophage cocktail was used to treat
Shigella sonnei in a mouse model, bacteriophage administration
significantly reduced Shigella colonization without deleterious
side effects and distortions in the gut microbiota (Mai et al.,
2015). Taking this into account, using bacteriophages has been
proposed to target specific strains of bacteria that are implicated
in cancer, while leaving the rest of the microbiome unchanged
(DeWeerdt, 2015).

In addition, with diet being a key determinant shaping
the gut microbiome, dietary interventions and probiotics that
promote the development of microorganisms providing health
benefits are an attractive way to prevent or treat diseases
such as cancer. Dietary interventions, such as a curcumin-
supplemented diet increased survival and entirely eliminated
tumor burden in a mouse model of colitis-associated colorectal
cancer. The beneficial effect of curcumin on tumorigenesis was
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associated with the maintenance of a more diverse colonic
microbial ecology (Mcfadden et al., 2015). Furthermore, dietary
intervention with polyphenol extracts modulate the human
gut microbiota toward a more healthy profile increasing the
relative abundance of bifidobacteria and lactobacilli (Marchesi
et al., 2015). The beneficial effects of natural polyphenols
and their synthetic derivatives are extensively studied in
context of cancer prophylaxis and therapy (Lewandowska et al.,
2016).

In terms of reducing gastrointestinal inflammation and
preventing CRC, beneficial roles of probiotics have been
demonstrated. Moreover, a novel probiotic mixture suppressed
hepatocellular carcinoma growth in mice; shotgun-metagenome
sequencing revealed the crosstalk between gut microbial
metabolites and hepatocellular carcinoma development (Li
et al., 2016). Probiotics shifted the gut microbial community
toward certain beneficial bacteria, including the genera Prevotella
and Oscillibacter, which are producers of anti-inflammatory
metabolites (Li et al., 2016; Figure 4).

Another area of clinical implications of themicrobiome relates
to its influence on the host’s immune system response against
pathogens and cancer (Abt et al., 2012; Belkaid and Hand,
2014). For instance, using antibiotics, the reduction of intestinal
microbes ablated the effect not only of the immunotherapy
directed to TLRs but also the effectiveness of platinum
chemotherapy (Iida et al., 2013). Another type of immunotherapy
against cancer relies on immune-checkpoint blockers (ICB). Both
Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) and Programmed
Death-1 (PD-1) are receptors that dampen T cell responses,
and blocking these receptors with antibodies is approved for
patients with advanced melanoma to enhance its recognition and
elimination (Rotte et al., 2015). In vivo studies have shown that
CTLA-4 blockade reduces tumor growth in specific pathogen-
free mice but not in germ-free mice. This effect relied on the
presence of the gut intestinal microbiota and the activation of
both CD4+ TH1 cells and dendritic cells (DCs). Moreover, in
melanoma patients who responded to anti-CTLA-4 treatment,
the abundance in the stool of Bacteroides thetaiotaomicron and

FIGURE 4 | Modulation of human microbiome composition as potential treatment in cancer. The use of HT sequencing technologies can provide detailed

information about the taxonomic composition and the functional capabilities of microbial communities found in humans. Using these technologies, it is possible to

identify those communities that are present or absent in a health condition comparing with cancer condition. The access to microbiome data, and its analysis by

bioinformatics tools, allows establishing integrative models using a systems biology approach, which offers an opportunity to propose potential strategies for

treatment in cancer. The evidence suggests that diet, bacteriophages, probiotics, prebiotics and antibiotics can modulate human microbiome to reduce microbial

dysbiosis, eliminate pathogenicity in cancer condition, and promote beneficial effects leading a health condition.
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B. fragilis correlated with the response to therapy. This protective
effect can be transferred to mice by a fecal microbial transplant
(FMT) (Vétizou et al., 2015). In addition, Sivan et al. found that
differences in the gut intestinal microbiome composition in mice
of the same strain can alter the response to PD-1 blockade, with
stool samples enriched in Bifidobacterium spp. having a robust
CD8+ T cell tumor infiltration andDC activation. The protective
effect was also transferred between mice by means of FMT (Sivan
et al., 2015).

Those results indicate an important modulatory role of
both the microbiota activities and composition on the immune
response to cancer. Importantly, the effectiveness of treatment in
those experiments depended on the integrity of the gut intestinal
microbiome, but its effects extend to the systemic level. From a
translational point of view, the manipulation of the microbiome
composition by means of probiotics, prebiotics or even FMT can
have therapeutic benefits in cancer treatment.

INFORMATION MANAGEMENT IN
PRECISION MEDICINE

Analysis of massive amounts of data generated by HT technology
and personal clinical records requires computational capacities
to handle this data, and, as a consequence, unveil the biological
information of interest. Data collection, storage, and handling,
and privacy policies of personalized genome data becomes a
central issue that must be solved. Information management
faces different challenges that can be classified into three
aspects: storage, structural organization, and safety. The storage
problems have been solved by the buying or leasing of space
in the cloud hosting systems of large technology companies
that simultaneously have been developing applications for data
analysis. The structural organization involves the appropriate
classification of personal records and HT data and the
development of an efficient and optimized mechanism to look
for the desired information through heterogeneous sources of
biological databases.

Finally, given the social, ethical and legal implications of
personalized information, it should be stored in a protected way.
To this end, the management system can include protocols for
prevention and protection, access control and a plan of action to
prevent the loss of information when some event endangers the
integrity and security of the data (https://www.whitehouse.gov/
sites/whitehouse.gov/files/documents/PMI_Security_Principles_
and_Framework_FINAL_022516.pdf).

PERSPECTIVES

Compositional and functional alterations of the human
microbiome have been related to the development of complex
diseases such as cancer, type 2 diabetes and obesity. As previously
mentioned, host-microbiome interactions play a major role
in determining the metabolic phenotype in the host, and,
more importantly, their particular composition can serve as a
potential measurement for establishing wellness and monitoring
the evolution of diseases. This notion has not only changed

our paradigm of how our body works, like a superorganism,
but also unveiled the outstanding role that microorganisms
play in establishing wellness or disease states. Although
outstanding breakthroughs have been accomplished to discover
its connection, new conceptual schemes able to integrate
innovative HT technologies and computational modeling are
required to improve our measurements and elucidate their
fundamental mechanisms.

For instance, single-cell genomics has the potential to
assemble the genomes of viruses and microorganisms that are
at low frequencies, thus contributing to a better characterization
of the biological samples (Gawad et al., 2016). There has been
extraordinary progress in single-cell DNA and RNA sequencing
for cancer research, specifically regarding evolution, diversity
of cells in tumor progression, and intra-tumor heterogeneity
depending on spatial localization of single cancer cells in tissue
sections (Crosetto et al., 2015; Navin, 2015; Gawad et al.,
2016). In the context of host-microbiome interactions, using
the spatial information of the surrounding microbiome state
and measurements of intra-tumor genetic heterogeneity might
have prognostic utility for predicting which patients will be
more likely to show poor response to therapy, higher probability
of metastasis, or poor overall survival (Burrell et al., 2013;
Murugaesu et al., 2013; Almendro et al., 2014). These and
other HT technologies permit us to characterize the microbiome
composition and open the possibility of therapeutic applications
with a focus on precision medicine: the notion of a precision
medicine with treatments applied at the right time, at the right
dose, and for the right patient.

Precision medicine based on powerful HT technologies
for characterizing patients, such as genomics, proteomics and
metabolomics, and computational tools for analyzing large sets of
data will integrate the discovery of biomarkers and the electronic
medical records to provide evidence for the improvement
of clinical practice. The big challenge of data analysis of
HT technologies is the development of new computational
algorithms to improve the integration of the information from
different platforms. In this context, deep learning and machine
learning have been proposed as good alternatives to perform
these tasks (Eddy, 2009; https://arxiv.org/pdf/1603.06430.pdf).
In addition, ambitious projects in precision medicine need to
leverage important resources, such as research cohort biobanks
for longitudinal research studies, and an efficient bioinformatics
system that aids in the translation from biomedical research
to molecular targeting and identification of biomarkers that
correlate with the disease state. Intensive investigations are being
conducted to illustrate how microbiome profiles, taking into
account relationships with the host, could be used as biomarkers
to revolutionize prognostication in cancer.

However, the interindividual variations in microbiome
composition can potentially influence cancer evolution and
the effectiveness of treatment. Cross sectional studies in large
cohorts showed no evidence of a “core” of OTUs shared among
healthy subjects (Huse et al., 2012). This highlights geography,
ancestry, diet and age as crucial factors shaping the microbiome
composition (Yatsunenko et al., 2012). On the other hand, at
the metagenomic level, several functions or pathways are more
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consistent across individuals than taxonomic composition (HMP
Consortium, 2012b; Knights et al., 2014). These evidence suggests
both a robustness in functions and membership redundancy in
the microbiome.

Harnessing the microbiome to improve cancer diagnosis and
treatment is challenging given this interindividual variation. As
we are still uncovering the mechanisms behind the emergent
phenotypes from host-microbiome interactions, profiling the
microbiome composition and its functional properties (i.e.,
metatranscriptomics and metabolomics) can provide more
insight on the significance of different compositions in different
states (Shade and Handelsman, 2012; Shafquat et al., 2014).
Nonetheless, identifying conserved or consistently altered
functions of the microbiome can also be elusive. A comparison
of functional alterations at the metagenomic level revealed some
overlapping, but no universal biomarkers between cohorts with
type 2 diabetes (Qin et al., 2012; Karlsson et al., 2013). Thus,
characterizing microbiome biomarkers should take into account
the specific traits of the populations under study.

Finally, precision medicine faces many other challenges that
will be addressed not only from a scientific point of view
but also from a social and ethical point of view, including
the proper distribution of the benefits of these technologies
across most regions of the world and the development of

reliable computational platforms that allow data to be stored
confidentially, private and protected. Likewise, coordination with
ethics committees and regulation will also be necessary for the use
of information without the risk of infringement of the patient’s
rights and to understand and regulate the legal, social, and
economic implications.
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