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Inherited cardiomyopathies are a common form of heart disease that are caused by

mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most

frequently affected genes. Since the discovery of the first cardiomyopathy associated

mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin

motor properties with the contractile performance of cardiac muscle. There has been

substantial progress in developing assays to measure the force and velocity properties of

purified cardiac muscle myosin but it is still challenging to correlate results frommolecular

and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are

more common than mutations that lead to dilated cardiomyopathy and are also

often associated with increased isometric force and hyper-contractility. Therefore, the

development of drugs designed to decrease isometric force by reducing the duty ratio

(the proportion of time myosin spends bound to actin during its ATPase cycle) has

been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin

is a small molecule drug proposed to decrease the duty ratio of class II myosins. We

examined the impact of this drug on human beta cardiac myosin using purified myosin

motor assays and studies of permeabilized muscle fiber mechanics. We find that with

purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase

and in vitro motility without altering the ADP release rate constant. In permeabilized

human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium

sensitivity while not changing shortening velocity or the rate of force development (ktr).

Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong

attachment to actin while not changing detachment can cause a reduction in force

without changing shortening velocity or relaxation.

Keywords: myosin, actin, muscle contraction, molecular motors, cardiomyopathy

INTRODUCTION

Inherited cardiomyopathies caused by mutations in sarcomere protein-coding genes are a
significant cause of cardiovascular diseases in people of all ages (Morimoto, 2007; Watkins
et al., 2011). Hypertrophic cardiomyopathy (HCM) is the most common form of inherited
cardiomyopathy, and the primary cause of sudden cardiac death in young adults (Maron, 2004;
Efthimiadis et al., 2014; Maron et al., 2014). The latest revised HCM prevalence is about 1 in
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200 of the general population including mutation carriers at
risk for developing a phenotype (Semsarian et al., 2015). HCM
manifests as left ventricle hypertrophy featuring cardiomyocyte
disarray and fibrosis, a thickening of the left ventricular wall
and decreased coronary artery blood flow during diastole
(Maron, 2002; Maron et al., 2006; Watkins et al., 2011; Vakrou
and Abraham, 2014). Dilated cardiomyopathy (DCM) has an
estimated prevalence of 1 in 2500 individuals, and the cases
with a genetics etiology account for ∼50% (Taylor et al., 2006;
Towbin, 2014). DCM is characterized by the thinning of one or
both ventricular walls, an enlarged left ventricular chamber, and
insufficient systolic contraction (Luk et al., 2009; Hershberger
et al., 2010; McNally et al., 2013). Restrictive, arrhythmogenic
right ventricular, left ventricular non-compaction, and other
types of cardiomyopathies have been classified as well, but are less
prevalent in the general population (Elliott et al., 2008; Watkins
et al., 2011; Towbin, 2014).

Cardiomyopathy mutations are commonly found in the
myosin heavy chain 7 gene (MYH7) encoding human β-cardiac
myosin heavy chain (M2β) (Xu et al., 2010), which is the motor
that drives contraction of the ventricular myocardium. Single
pointmutations inM2β are capable of disruptingmotor function.
Identification of disease mutations has raised expectations for
disease prediction and novel therapeutic strategies. More than
300 pathogenic mutations in M2β are distributed throughout
the whole myosin molecule, and there is no consensus about
the detailed mechanisms behind the impact of these mutations
(Moore et al., 2012). The mechanisms responsible for altering
motor functions are varied, and are likely dependent on the
locations of the mutation (Moore et al., 2012; Colegrave and
Peckham, 2014; Homburger et al., 2016).

Myosin Structure-Function
Many years of research has established that myosin is the motor
protein that converts chemical energy into mechanical work and
drives the shortening of muscle and other forms of actomyosin-
based force generation. The main components of the muscle
sarcomere are thick and thin filaments. The thick filaments
are composed of myosin molecules that form cross-bridges
that interact with thin filaments composed of actin. Myosin
consists of two heavy chains, each with two associated light
chains, an N-terminal motor domain, and C-terminal coiled-
coil tail that allows dimerization and incorporation into the
thick filaments (Figure 1). There are several proteins associated
with the thick filaments (e.g., myosin binding protein C, Titin)
involved in contractile regulation. Thin filaments contain actin
and regulatory proteins (tropomyosin and troponin complex),
which are important for mediating the Ca2+-induced activation
of the thin filaments.

Myosin ATPase Cycle
Myosin is an ATP-dependent molecular motor that cyclically
interacts with actin filaments with weak and strong actin-binding
states. Figure 2 describes the key steps in the catalytic cycle and
the proposed structural changes that occur in each step. ATP
binding to myosin causes a conformational change in the actin
binding region resulting in weak actin affinity, and formation of

the pre-power stroke state of the lever arm (recovery stroke). ATP
is hydrolyzed while myosin is dissociated from actin in a weak
actin-binding state. Myosin binding to actin with the hydrolyzed
products accelerates the release of phosphate and then ADP,
which results in force generation (power stroke). Recent work
in the Yengo lab on myosin V has shown that the lever arm
swing occurs in two steps, a fast step that gates phosphate release
and a slow step coupled to ADP release (Trivedi et al., 2015).
Studies with skeletal muscle myosin also demonstrate a rapid
movement of the lever arm prior to phosphate release (Muretta
et al., 2015). Alternatively, evidence from x-ray crystallography
suggests that the movement of phosphate from the active site
into the phosphate release tunnel is required for the movement
of the lever arm, while release of phosphate from the tunnel
into solution occurs after the lever arm swing (Houdusse and
Sweeney, 2016). Muscle fiber studies have provided evidence that
phosphate release occurs after force generation (Dantzig et al.,
1992) or is orthogonal to the power stroke (Caremani et al., 2013,
2015), while correlating the biochemical, structural, and muscle
fiber experiments remains a challenge.

Force-Velocity Properties of Muscle
The chemomechanical ATPase cycle contains two fundamental
parts, weak actin-binding states (M.ATP and M.ADP.Pi) and
strong actin-binding states (A.M.ADP.Pi, AM.ADP and A.M).
Force generation occurs in the strong binding states, during
which the myosin power stroke generates a displacement (step
size = 5–10 nm in muscle myosins) of the actin filament
(Spudich, 2014). The duty ratio is the fraction of ATPase cycle
time myosin is in the strong binding states, which determines the
number of strongly boundmyosin heads interacting with the thin
filaments at any time. Eachmyosin head is an independent motor
and produces its own intrinsic force (f). The overall isometric
force (F) is the intrinsic force (f) multiplied by the number of
force-generating myosin heads, which can be expressed as the
following equation (Spudich, 2014):

F = f × Ntotal × duty ratio

where Ntotal is the number of heads that are potentially
able to bind to the thin filaments. The maximum shortening
velocity is thought to depend on the myosin step size (unitary
displacement—duni) and the period of time myosin is attached to
actin (ton). Thus, the following equation is often used to describe
the maximum shortening velocity (Warshaw, 2004):

Vmax = duni/ton

Since these parameters can be measured with isolated myosin,
it is possible to correlate the individual properties of myosin
with the contraction parameters in muscle. However, the ton is
altered by the presence of load, as established in muscle fiber
studies (Piazzesi et al., 2002; Reconditi et al., 2004) and further
explored in single molecule mechanics studies (Sung et al., 2015;
Greenberg et al., 2016). In addition, the factors that limit Vmax

are controversial with some studies demonstrating detachment
rate (1/ton) correlates well with Vmax (Siemankowski et al.,
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FIGURE 1 | Diagram of the muscle sarcomere and the myosin molecule. A simplified diagram of the sarcomere (top panel) demonstrates the location of the

myosin thick filaments (A-band) and the actin thin filaments (I-band). A diagram of the myosin molecule (lower panel) demonstrates its overall structure. The myosin

heavy chains, light chains (essential light chain, ELC, regulatory light chain, RLC), subfragment 1 (S1) (utilized in the current study), subfragment 2 (S2), heavy

meromyosin (HMM), and light meromyosin (LMM) are labeled.

FIGURE 2 | Diagram of the myosin ATPase cycle. A simplified model of the myosin ATPase cycle shown with two structural states, the pre-power stroke and

post-power stroke states. The pre-power stroke state is represented by the smooth muscle myosin structure in the presence of ADP.ALF4 (PDB ID: 1BR4) and the

post-power stroke state is represented by the APO myosin V structure (PDB ID: 1OE9). The lever arm is shown in red and the light chain in blue. Actin is indicated by

the purple box and the individual steps in the ATPase cycle are described in the text.

1985; Nyitrai et al., 2006; Yengo et al., 2012) and other studies
demonstrating attachment rate limits Vmax (Haldeman et al.,
2014; Brizendine et al., 2015).

The in vitro motility assay is commonly used to examine the
force generating properties of purified myosin (Kron et al., 1991).
In this assay myosin is adhered to a microscope cover slip and the

sliding velocity of fluorescently labeled actin is monitored in the
presence of ATP. The sliding velocity generated by an ensemble of
myosin motors is thought to correlate to the shortening velocity
measured in muscle (Howard, 2001). In order to examine duni,
f, and ton, the single molecule laser trap motility assay is often
used (Simmons and Finer, 1994; Sivaramakrishnan et al., 2009).
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In this assay a single actin filament is strung between two beads
that are each trapped with laser tweezers and when a single
myosin molecule is brought close to the actin filament individual
displacements (duni) are measured. The single molecule laser trap
studies are typically performed at low ATP concentrations which
can create uncertainty in determining ton and correlating it with
muscle fiber studies (Tyska and Warshaw, 2002). The stiffness of
the laser trap can allow determination of the force generated by
a single myosin head (f), but due to the large compliance of the
laser trap the force can be underestimated (Spudich et al., 2011).

The Impact of Mutations in Human
β-Cardiac Myosin
Humans predominantly express the slow β-cardiac myosin
isoform in ventricles but most studies examining the impact of
mutations have been performed in mice which express α-cardiac
myosin, a faster cardiac myosin isoform (Deacon et al., 2012).
This has complicated the interpretation of the experimental data
because mutations in α-cardiac myosin have different effects
than mutations in β-cardiac myosin (Lowey et al., 2008; Palmer
et al., 2008; Witjas-Paalberends et al., 2014; Nag et al., 2015).
Other studies have examined human muscle fibers purified
from skeletal muscle biopsies or from ventricular samples
obtained from patients who had cardiac surgeries (Köhler et al.,
2002; Seebohm et al., 2009; Brenner et al., 2012; Kraft et al.,
2013; Witjas-Paalberends et al., 2014). Measurements on human
recombinant β-cardiac myosin are just beginning to be reported
and are promising for examining large numbers of different
mutations to establish structure-function relationships. Recent
studies have demonstrated that some mutations have a relatively
small impact on the key parameters mentioned above (f, V, ton,
duni) (Alpert et al., 2005; Moore et al., 2012; Nag et al., 2015).
Thus, it is still unclear how the point mutations lead to impaired
cardiac muscle function and hypertrophy.

Current Treatments
Despite the lack of a clear understanding of the molecular
mechanisms of cardiomyopathies, symptom-based inotropic
drugs are still the conventional clinical pharmacological
therapy (Maron, 2002; Spirito and Autore, 2006; Vakrou and
Abraham, 2014; Tardiff et al., 2015). β-adrenergic antagonists
(e.g., Metoprolol and Nebivolol), Ca2+ channel blockers
(e.g., Verapamil and Diltiazem), Na+ channel blockers (e.g.,
Disopyramide), antiarrhythmic agents (e.g., Amiodarone), and
angiotensin II receptor antagonists (e.g., Losartan) are currently
used in the clinic to alleviate the symptoms of HCM (Vakrou
and Abraham, 2014; Tardiff et al., 2015). For DCM patients,
angiotensin-converting enzyme inhibitors, β-adrenergic
blockers, aldosterone inhibitors, and angiotensin receptor
blockers have been used clinically (Elliott, 2000; Taylor et al.,
2006; Luk et al., 2009). An implantable cardioverter-defibrillator
has been shown as the only effective way to prevent sudden
cardiac death, and heart transplantations are usually needed for
cardiomyopathy patients with end-state heart failure (Elliott and
McKenna, 2004; Efthimiadis et al., 2014).

Additionally, inotropic drugs which directly target sarcomeric
proteins are under investigation (Malik et al., 2011; Tardiff

et al., 2015; Green et al., 2016). The thin filament has been
suggested as an ideal target site to treat cardiomyopathies
via altering Ca2+ sensitivity. Thick filaments are also being
pursued as drug targets. By changing the kinetics of individual
steps in the myosin ATPase cycle, small molecule drugs are
proposed to change the duty ratio and thus the number
of forge-generating myosin heads capable of interacting with
the thin filaments. Utilization of drugs that directly target
contractile proteins in cardiac muscle is still in its early
stages and will require detailed pre-clinical studies that can
examine their specific mechanisms of action and off-target
effects.

Blebbistatin (Bleb) is a well-established inhibitor of class II
myosins and understanding its mechanism of action has been
an important step in developing novel inhibitors of myosin
based force generation. Bleb was first identified as a muscle and
non-muscle myosin II specific inhibitor with a mechanism of
binding to the ATPase intermediate with ADP and phosphate
and slowing down phosphate release by trapping myosin in a
weak actin-binding conformation (Straight et al., 2003; Kovács
et al., 2004; Ramamurthy et al., 2004; Farman et al., 2008).
Additionally, Bleb has been shown to inhibit striated and smooth
muscle myosins but with no effect on unconventional class
I, V, and X myosins (Limouze et al., 2004; Dou et al., 2007;
Eddinger et al., 2007). Studies of Bleb in rodent cardiac muscle
found that Bleb decreased the twitch force of isolated cardiac
trabeculae and the shortening velocity of cardiac myocytes in a
dose-dependent manner (Dou et al., 2007; Farman et al., 2008).
Since Bleb binds near the actin binding region and traps the
myosin heads in a weak actin affinity state, it is also proposed
to reduce the myosin binding-induced activation of the thin
filaments (Ramamurthy et al., 2004; Allingham et al., 2005; Dou
et al., 2007). Bleb has also been found to stabilize the helical
ordering of myosin heads, a conformation in whichmyosin heads
interact with each other but not with actin (Zhao et al., 2008;
Xu et al., 2009). This state has been referred to as the super
relaxed state (SRX) and Bleb has been shown to stabilize the
SRX by unknown mechanisms (Wilson et al., 2014). The use
of Bleb was hindered by its blue light sensitivity, phototoxicity,
and poor solubility (Sakamoto et al., 2005; Mikulich et al.,
2012), but this has been addressed by the discoveries of highly
soluble, non-phototoxic Bleb derivatives [para-Nitroblebbistatin
(pN-Bleb), and amino-blebbistatin; Képiró et al., 2014; Várkuti
et al., 2016].

In the current study we examined the impact of pN-Bleb
on human β-cardiac myosin in both expressed/purified myosin
in vitromotor assays and in humanmyocardium fiber mechanics
studies. We hypothesized that the less phototoxic pN-Bleb would
be able to inhibit the in vitro motor properties of human cardiac
myosin at the molecular and tissue levels. We proposed that
investigating the impact of this drug on human myocardium
would lead to insight into strategies for designing cardiac
myosin specific drugs. Our results provide evidence of the
mechanism of action of pN-Bleb on human β-cardiacmyosin and
suggest important considerations in designing novel drugs that
impact the force and shortening velocity properties of cardiac
muscle.
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METHODS

Reagents
ATP was prepared from powder (De La Cruz and Ostap, 2009).
2′-deoxy-ADP labeled with N-Methylanthraniloy at the 3′-ribose
position (mantADP) was purchased from Jenna Biosciences. pN-
Bleb was obtained fromAndrásMálnási-Csizmadia and dissolved
in DMSO. All motility experiments with M2β were performed
in motility buffer with pCa value of 4.5 (7mM EGTA, 20mM
Imidazole, 51mM KCl, 7mM CaCl2, 5.22mM MgCl2, pH 7.0)
and other experiments were performed in MOPS 20 buffer
(10mM MOPS, 20mM KCl, 1mM MgCl2, 1mM EGTA, 1mM
DTT, pH 7.0). The final concentrations of pN-Bleb are described
for each experiment and the final concentration of DMSOwas 1%
for the motility, ATPase, and ADP release experiments. Further
details about the solutions for the muscle mechanics studies
are given below. All concentrations listed are final unless stated
otherwise.

Construction of Expression Plasmids
The human cardiac myosin cDNA (AAA5187.1) was purchased
from Thermo Scientific. PCR amplification was used to subclone
the M2β subfragment 1 (M2β-S1) construct (amino acids 1–843)
into the pshuttle vector (a gift fromDr. DonWinkelmann). M2β-
S1 was engineered to contain an N-terminal FLAG tag sequence
and C-terminal Avi tag sequence.

Recombinant Adenovirus Based
Expression and Purification of M2β-S1 in
C2C12 Cells
The production of high titer adenovirus was performed
by a method developed in the Winkelmann laboratory
(Srikakulam and Winkelmann, 2004; Winkelmann et al., 2015).
Homologous recombination was used to produce pAdEasy
recombinant adenovirus DNA (pAd.M2β-S1) by transforming
the pshuttle.M2β-S1 into E. coli BJ5183 cells. The pAd.M2β -S1
was transformed into XL-10 Gold cells for amplification and the
pAd.M2β-S1 DNA was digested with Pac1 and transfected into
Ad293 cells to allow for virus packaging and amplification. The
Ad293 cells were grown in DMEM media supplemented with
10% fetal bovine serum. The large scale virus preparation was
performed by infecting 60 plates (145 mm diameter). The virus
was harvested with freeze thaw cycles followed by CsCl density
sedimentation. The final virus titers were typically 1010–1011

plaque forming units (PFU) per ml.
C2C12 cells grown to 90% confluence inDMEM supplemented

with 10% fetal bovine serum (typically 20–30, 145 mm diameter
plates) were differentiated by changing the media to DMEM
supplemented with 10% horse serum and 1% fetal bovine serum.
The C2C12 cells were infected with recombinant adenovirus (5
× 108 PFU/ml) diluted into differentiation media. The media
was changed after 2 days and cells were harvested on day 7. The
cells were lysed with a 50ml dounce in lysis buffer (50mM Tris,
pH 7.0, 200mM KCl, 2mM ATP, 1mM ATP, 0.5% Tween20,
0.01mg/ml aprotenin, 0.01mg/ml leupetin, 1mM PMSF) and
spun 2 × 15 min at 25K in a Ti50 rotor at 4◦C. The supernatant
was added to a 1ml anti-FLAG M2 resin column, washed with

wash buffer (10mM Tris, pH 7.5, 200mM KCl, 1mM EGTA,
1mM EDTA, 2mM MgCl2, 2mM ATP, 1mM DTT, 0.01mg/ml
aprotenin, 0.01mg/ml leupetin, 1mM PMSF), and eluted with
wash buffer containing FLAG peptide (0.167mg/ml). The eluted
M2β-S1 was subsequently ammonium sulfate precipitated and
dialyzed into MOPS 20 buffer overnight at 4◦C. M2β-S1 was
biotinylated for in vitro motility studies by incubating M2β-
S1 with BirA (10µg/ml) for 1 h at 25–30◦C, and subsequently
ammonium sulfate precipitated and dialyzed into MOPS 20
buffer overnight at 4◦C (Lin et al., 2005).

M2β-S1 purity was assessed by coomassie stained SDS-
polyacrylamide gels and protein concentration was determined
by Bradford assay using BSA as a standard. Similar results were
obtained by measuring the absorbance and using the predicted
extinction coefficient (ε280 = 1.38 × 105 M−1·cm−1). Skeletal
muscle heavy meromyosin (Sk HMM) was prepared from rabbit
psoas muscle as described (Swenson et al., 2014). Actin was
purified from rabbit skeletal muscle using an acetone powder
method (Pardee and Spudich, 1982). The actin concentration
was determined by absorbance at 290 nm (ε290 = 2.66 × 104

M−1·cm−1). A molar equivalent of phalloidin was added to
stabilize F-actin.

In vitro Motility Assay
We performed in vitro motility assays (Kron et al., 1991) using
the recombinantly expressed/purified M2β-S1 and purified Sk
HMM. The M2β-S1 experiments were performed in conditions
(buffer and temperature) that were similar to the muscle
mechanic studies described below. The actin filament sliding
assay was performed as previously described (Trivedi et al.,
2013; Swenson et al., 2014) except for the method of adhering
the myosin to the surface in the case of M2β-S1. Microscope
cover slips were coated with 1% nitrocellulose in amyl acetate
(Ladd Research). The surface was coated with streptavidin
(0.1mg/ml) and blocked with BSA (1 mg/ml) before the
addition of biotinylated M2β-S1 (loading concentration was
0.48µM). Unlabeled sheared actin (2µM) followed by an ATP
(2 mM) wash was used to prevent interactions with dead heads.
Actin labeled with ALEXA (GFP filter; excitation/emission:
500/535 nm) was visualized by fluorescence microscopy. An
activation buffer with 1% DMSO or pN-Bleb (0.1, 1, 5, 10,
20, 50µM) was added to the flow cell to initiate motility.
Activation buffer contained the following: 0.35%methylcellulose,
2.5 mM phosphoenolpyruvate, 20 units·ml−1 pyruvate kinase,
0.1mg·ml−1 glucose oxidase, 5mg·ml−1 glucose, 0.018mg·ml−1

catalase, and 4.8 mM ATP. The slide was promptly viewed
using a NIKON TE2000 microscope equipped with a 60×/1.4
NA phase objective and a Perfect Focus System. Images were
acquired at intervals (appropriate for each condition) for periods
of time (3–15 min) using a shutter controlled Coolsnap HQ2
cooled CCD digital camera (Photometrics) binned 2 × 2.
Temperature was maintained at 22–24◦C and monitored using a
thermocouple meter (Stable Systems International). Image stacks
were transferred to ImageJ for analysis via MTrackJ (Meijering
et al., 2012). The average velocity was determined by tracking
actin filaments manually for each condition using ImageJ.

Frontiers in Physiology | www.frontiersin.org 5 January 2017 | Volume 7 | Article 659

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Tang et al. Inherited Cardiomyopathies and Cardiac Myosin

In vitro Steady-State ATPase Activity
Steady-state ATP hydrolysis by M2β-S1 or Sk HMM (100 nM)
in the presence of actin (40µM) was examined by using the
nicotinamide adenine dinucleotide (NADH)-linked assay (De La
Cruz et al., 2000; Dosé et al., 2007, 2008; Quintero et al., 2010)
in MOPS 20 Buffer with a final MgATP concentration of 1mM.
The assay was performed in an Applied Photophysics stopped-
flow (Surrey, UK) in which the NADH absorbance at 340 nm
was monitored continuously for 200 s. The data at each actin
concentration represents an average of 2 protein preparations.

Determination of IC50
We plotted the relative ATPase or sliding velocity data as
a function of pN-Bleb concentration which allowed us to
determine the IC50 by fitting the data to the following equation:
Relative activity= 1/{(1+[pN-Bleb]/IC50)}.

Transient Kinetic Measurements of
ADP-Release
We examined the ADP release rate constant of M2β-S1 in
the presence of actin. A complex of M2β-S1, actin, and
mantADP (0.375, 1, and 10µM, respectively) was mixed with
saturating ATP (1mM) and the mant fluorescence (excitation
290 nm/emission 395 nm long pass filter) was monitored in the
stopped-flow. The fluorescence transients were fit with custom
software provided with the instrument or Graphpad Prism.

Human Tissue
Myocardial samples were obtained at the University of Kentucky
from patients who had end-stage heart failure using the protocol
described by Blair et al. (2016). Briefly, through-wall sections of
the distal anterior region of the left ventricle were obtained from
explanted hearts and dissected transmurally (sub-epicardial,
mid-myocardial, sub-endocardial). The experiments described
in this manuscript were performed using a total of 24 sub-
endocardial samples from 4 patients. All procedures were
approved by the University of Kentucky Institutional Review
Board and patients gave informed consent.

In situ Preparations and Experimental
Set-Up
Permeabilizedmulticellular preparations were obtained using the
mechanical digest protocol described by Haynes et al. (2014).
Multicellular preparations with a mean length 1047 ± 232µm
were attached between a force transducer (resonant frequency,
600Hz; model 403, Aurora Scientific, Aurora, Ontario, Canada)
and a motor (step time 0.6 ms; model 312B, Aurora Scientific)
and stretched to a sarcomere length of 2.24µm in a solution
with a pCa (=−log10[Ca2+]) of 9.0. The cross-sectional area was
5.07 ± 2.47 × 10−8 m2 (estimated assuming a circular profile).
Experiments were conducted at 22◦C using SLControl software
(Campbell and Moss, 2003).

Para-Nitroblebbistatin Preparation and
Incubation of Samples
Separate sets of solutions with pCa values ranging from 9.0
to 4.5 and pN-Bleb concentrations of 0, 1, 10, or 50µM were

generated. The final percentage of DMSO in every experimental
solution was 1.33%. Half of the preparations were used to
assess tension-pCa relationships. Each of these preparations was
initially tested in control solutions (0 pN-Bleb) with pCa values
ranging from 9.0 to 4.5. The preparation was then immersed
for 5min in a pCa 9.0 solution containing 1, 10, or 50µM
pN-Bleb. Additional measurements were then performed using
solutions containing the chosen pN-Bleb concentration and pCa
values ranging from 9.0 to 4.5. The other half of the preparations
were used to assess force-velocity relationships. These samples
were only tested in pCa 4.5 solutions with 0 pN-Bleb (control)
and then a chosen experimental pN-Bleb concentration. These
experimental designs ensured that each preparation could act
as its own control and minimized the progressive decline
in contractile force (experimental run-down) that occurs
when permeabilized preparations are subjected to repeated
activations.

In situ Mechanical Measurements
Multicellular preparations were activated in solutions with pCa
values ranging from 9.0 to 4.5. Once tension reached steady-state,
the preparations were rapidly shortened by 20%, held for 20 ms,
and then re-stretched to their original length. All experiments
were performed at a sarcomere length of 2.25µm. The rate of
tension recovery (ktr) was then calculated by fitting the portion
of the force record immediately after the re-stretch with a single
exponential function of the form F(t) = A + B (1-exp(-ktrt)),
where F(t) is the force at time t, and A and B are constants.

Ca2+ sensitivity (pCa50) values were calculated by fitting the
steady-state force data to a modified Hill equation of the form F
= Fpas + FCa ([Ca2+]n/([Ca2+]n + [Ca2+50]n)). In this equation,
Fpas is the force measured in pCa 9.0 solution, FCa is Ca2+

activated force, n is the Hill coefficient, and [Ca2+50]n is the
free Ca2+ concentration required to develop half the maximum
Ca2+-dependent force.

To measure shortening velocity and power, the multicellular
preparations were allowed to shorten for 80 ms against pre-
set loads that ranged from 0 to 100% of the maximum tension
measured in pCa 4.5 solution. The shortening velocity in each
trial was calculated from the slope of a straight line fitted to a plot
of fiber length against time during the final 50 ms of the force
clamp. The mean force was also determined during this time.
The resulting data were then fitted using a hyperbolic equation
of the form (F+a) (V+b) = (F0+a) b, where F is the force
developed at a shortening velocity of V, F0 is the isometric force
and a and b are constants with dimensions of force and velocity
respectively. Vmax was determined by extrapolating the force-
velocity curve to zero load. Power values (P) were calculated
as the product of force and velocity. Power-force curves were
calculated by fitting the individual data points with a curve of the
form P= F b (((F0+a)/(F+a))−1). Maximum power was defined
as the maximum value of this curve.

Statistics for In situ Muscle Mechanics on
Human Samples
Data were analyzed using linear mixed models. These are
statistical hypothesis tests that are similar to ANOVA procedures
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but which allow for the fact that multiple samples were analyzed
from each heart (Haynes et al., 2014). This increases the statistical
power of the hypothesis test in this type of experimental design.
Compound symmetry was assumed for the covariance structure
and post-hoc analyses were performed using Tukey–Kramer
corrections. P < 0.05 were considered significant. Data are
reported as mean± SEM.

RESULTS

We have examined the impact of pN-Bleb on the motor
properties of recombinantly expressed human β-cardiac myosin
subfragment 1 (M2β-S1) and the force and velocity properties
of human myocardium. When possible, we performed the
motor function assays and muscle mechanics studies under
very similar conditions (temperature and buffer) to allow
comparison of the impact of the drug on muscle fiber mechanics
and isolated myosin motor performance. We also examined
the impact of pN-Bleb on the heavy meromyosin fragment
of chicken skeletal muscle myosin (Sk HMM) with in vitro
motility and actin-activated ATPase assays, which allowed a
comparison of the specificity of pN-Bleb for these two myosin
isoforms.

In vitro Motility of M2β-S1 and Sk HMM
The in vitro motility assay was utilized to examine the impact
of pN-Bleb on the motile properties of purified M2β-S1 and
Sk HMM. The sliding velocity produced by M2β-S1 in the in
vitro motility assay (motility buffer at 22◦C) was determined
in the presence of varying concentrations of pN-Bleb or 1%
DMSO by examining 2 separate protein preparations at a loading
concentration of 0.48µM (Figure 3). Our previous density-
dependent in vitro motility studies with M2β-S1 demonstrated
that this motor density (0.48µM loading) was saturating
(Swenson et al., 2016). The presence of 1% DMSO had a minor
impact on in vitro motility (the average velocity was 1398 ± 19
and 1261 ± 22 nm/s in the absence and presence of 1% DMSO,
respectively). The data from 2 preps was pooled together (60
filaments) to determine the average sliding velocity at each pN-
Bleb concentration. There was an 85% inhibition of the sliding
velocity in the presence of 50µM pN-Bleb (Figures 3A,B) and
the IC50 (13.3± 0.14µM) was estimated from the concentration
dependence (Figure 3C). The in vitro motility of Sk HMM was
performed in MOPS 20 buffer at 24◦C, since it was difficult to
obtain results in the higher ionic strength motility buffer that was
utilized with M2β-S1. We found that the IC50 for Sk HMM (1.6
± 0.3µM) was indicative of a higher specificity of the drug for Sk
HMM compared to M2β-S1.

Actin-Activated ATPase Activity of M2β-S1
and Sk HMM
We examined the impact of pN-Bleb on the actin-activated
ATPase of purified M2β-S1 and Sk HMM. We examined the
ATPase activity in MOPS 20 buffer, since the higher ionic
strength of the motility buffer was not feasible for examining
actin-activated ATPase. The ATPase assay with M2β-S1 was
performed at 22◦C in the presence of 40µM actin and

FIGURE 3 | Impact of pN-Bleb on in vitro motility. The sliding velocity in

the in vitro motility assay was examined with M2β-S1 in the (A) absence (1%

DMSO) and (B) presence of 50µM pN-Bleb. The average sliding velocity was

determined by examining 60 filaments from two different protein preps. The

velocities were binned and fit to a Gaussian function to determine the mean ±

SEM velocity in the presence and absence of pN-Bleb (195 ± 4.65 and 1334

± 16.79 nm/s, respectively). (C) The average sliding velocities were plotted as

a function of pN-Bleb concentration, which allowed determination of the IC50

for M2β-S1 (13.3 ± 0.1µM) and Sk HMM (1.6 ± 0.2µM).

demonstrated that pN-Bleb inhibits actin-activated ATPase in a
dose-dependent manner (Figure 4A). The determined IC50 was
similar to that determined in the in vitro motility assay (12.3
± 1.8µM). We also performed ATPase assay experiments with
Sk HMM in similar conditions (MOPS 20 buffer and 25◦C) and
found the IC50 (0.4 ± 0.1µM) indicated a higher specificity for
Sk HMM compared to M2β-S1.
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FIGURE 4 | Impact of pN-Bleb on ATPase Activity and ADP-release.

(A) The actin-activated ATPase in the presence of 40µM actin was

determined as a function of pN-Bleb concentration, which allowed

determination of the IC50 for M2β-S1 (12.3 ± 1.8µM) and Sk HMM (0.43 ±

0.11µM). The data at each pN-Bleb concentration represents the average ±

SD from two separate preparations. (B) The ADP-release rate constant was

determined in the presence and absence of pN-Bleb by mixing a complex of

acto-M2β-S1.mantADP with excess ATP and monitoring the mant

fluorescence decrease. The fluorescence transients displayed represent the

average of 4–5 transients and are fit to a single exponential function.

ADP Release Rate Constant of M2β-S1
The ADP release rate constant is thought to be an important
determinant of the time period that myosin is attached to
actin during the ATPase cycle (Siemankowski and White, 1984;
Siemankowski et al., 1985). Therefore, we utilized mant labeled
ADP to monitor the release of ADP from acto-M2β-S1 in MOPS
20 buffer at 22◦C, which was identical to the conditions of
the actin-activated ATPase assay. The fluorescence transients
were fit to a single exponential function which allowed us to
determine the ADP release rate constant (Figure 4B). The results
demonstrate that the ADP release rate constant measured with
mantADP is very similar in the presence and absence of 50µM
pN-Bleb (208.9± 5.1 and 228.6± 6.5 sec−1, respectively).

Muscle Mechanics of Human Myocardium
We performed a series of mechanical tests to determine how
pN-Bleb impacted the Ca2+-dependence of contractile force
and tension-recovery kinetics, and the shortening velocity
and power output measured at maximum Ca2+activation.

Figure 5 shows representative experimental records (top 2 rows)
for the force-velocity/force-power measurements and curves
calculated from these records (bottom 2 rows; Experimental
details are provided in Section Methods and in the Figure
legend). These measurements yielded data quantifying isometric
force (Figure 6A), maximum power (Figure 6B) and maximum
shortening velocity (Figure 6C). Summary data for ktr, the rate
of tension recovery, are shown in Figure 6D. As described
in Section Methods, these values were obtained by measuring
how quickly force recovered toward steady-state after a large
shortening/re-stretch perturbation (raw traces not shown).
The statistical hypothesis tests showed that 50µM pN-Bleb
reduced both isometric force (Figure 6A) and maximum power
(Figure 6B) by ∼50% but did not produce significant changes
in either maximum shortening velocity (Figure 6C) or ktr
(Figure 6D). Isometric force normalized to cross-sectional area
is lower for chemically permeabilized humanmyocardial samples
than it is for some other types of muscle preparations, which we
have demonstrated previously (Haynes et al., 2014).

Tension-pCa curves were generated in additional experiments
and are plotted in Figure 7A. As shown during the force-
velocity measurements, pN-Bleb reduced isometric force in
a dose-dependent manner. pN-Bleb also reduced the Ca2+-
sensitivity (pCa50 values; Figure 7B) and the Hill coefficient
(Figure 7C). However, these effects were only significant at the
50µM concentration which suggests that effects of pN-bleb on
Ca2+ activation are relatively modest.

DISCUSSION

Directly targeting human cardiac myosin with small molecule
allosteric regulators has been proposed as a therapeutic strategy
for several forms of heart failure (Malik et al., 2011; Tardiff
et al., 2015; Green et al., 2016). We demonstrate the impact
of a myosin inhibitor, which is a modified version of the well-
studied Bleb, on human cardiac muscle myosin at the molecular
and tissue levels. Although, this drug is not specific for cardiac
myosin since it has been demonstrated to inhibit several other
muscle and non-muscle myosins, it still serves as a model to
examine mechanistically how inhibition of cardiac myosin can be
accomplished and how this will impact muscle performance. We
find that pN-Bleb reduces the in vitro motility of cardiac myosin
likely because it decreases the myosin duty ratio by inhibiting
the transition into the strongly bound states. In muscle mechanic
studies we find that pN-Bleb has no impact on shortening velocity
or the rate of force development while the decrease in steady-state
force, Ca2+ sensitivity, and power are also indicative of a reduced
duty ratio.

The Motor Properties of M2β in the
Presence of pN-Bleb
The in vitro motility results in the current study demonstrate a
pN-Bleb concentration-dependent reduction in sliding velocity.
We also observed a similar concentration-dependent reduction
in the actin-activated ATPase, which suggests the drug inhibits
a similar step in the ATPase cycle in both assays. In light of
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FIGURE 5 | Force-velocity measurements with human myocardium.

Representative mechanics experiments measuring force-velocity and power.

Panels show raw force and raw length traces superposed (top two rows) and

force-velocity and force-power curves (bottom two rows) for a single

representative preparation measured under control conditions (left column, 0

pN-Bleb) and in the presence of 50µM pN-Bleb (right column). The symbols

showing force, power, and shortening velocity are drawn in the same color as

the raw traces from which they were calculated. As described in the Section

Methods and by Haynes et al. (2014), these data were obtained by first

activating the preparation in pCa 4.5 solution and then allowing it to shorten

against loads ranging from 0 to 100% isometric force in successive trials. The

shortening velocity was calculated for each trial from the slope of the muscle

length against time trace. Similarly, the mean force during shortening was

calculated from the force record. Each single trial thus yielded a single data

point on the force-velocity plot. Power values were calculated as the product

of force and velocity.

the previous studies on Bleb, it is likely that pN-Bleb traps
cardiac myosin in a weakly bound state that reduces the rate
of actin-activated phosphate-release. We find that pN-Bleb does
not alter the ADP-release rate constant which typically correlates
with the time myosin is attached to actin and is an important
determinant of maximum velocity and duty ratio. Thus, pN-Bleb
acts by stabilizing the weakly bound conformation and in the

in vitro motility assay the reduction in myosin heads that
productively attach to actin and produce force creates a situation
similar to what is observed at low motor densities. When
the number of force generating heads in the motility assay
decreases, it is proposed that the period of time between myosin
attachments becomes rate-limiting (Uyeda et al., 1990; Harris and
Warshaw, 1993). Interestingly, we did not observe a reduction
in shortening velocity in the human cardiac muscle mechanics
studies. These results may reflect the structural organization in
muscle which has many myosin heads in close proximity to the
actin thin filament and thus is not as sensitive to this type of
inhibition. The original theory of muscle contraction outlined
by Huxley (1957) proposed that unloaded shortening velocity
was independent of the number of cycling myosin crossbridges.
Furthermore, it has been demonstrated that only 1–4 myosins
per thick filament are required to sustain maximum velocity
(Fusi et al., 2016). The reduction in steady-state force and power
is consistent with the proposed mechanism of reducing the
myosin duty ratio and therefore the number of myosin heads
available to generate force. Thus, the mechanism of inhibition
utilized by this drug is advantageous because at moderate doses
it does not change the kinetics of contraction while it does
effectively reduce steady-state force and power. In patients
that are hyper-contractile this mechanism may work well since
it could normalize the force velocity relationship and power
without altering the systolic contraction time and relaxation
kinetics. It is also important to consider the impact of this type of
inhibition on shortening velocity in the presence of load since this
is the more physiologically relevant situation in the heart. From
the force-velocity experiments (Figure 5) it is clear that pN-Bleb
alters shortening velocity in the presence of load and thus the
systolic contraction time could be impacted. We did not directly
measure the impact of pN-Bleb on the phosphate release rate
constant and this measurement as well a detailed examination of
all of the transient kinetics steps in the M2β-S1 ATPase cycle will
be important to examine in future studies.

Interestingly, the specificity of pN-Bleb for skeletal muscle
myosin was nearly 10-fold higher than human cardiac myosin
based on the measured IC50 in the motility assay and 30-
fold higher based on ATPase assays. The ATPase IC50 value
we determined for skeletal muscle myosin was similar to that
reported in the literature (Képiró et al., 2014). These results
demonstrate that the binding affinity of pN-Bleb for cardiac
myosin may be weaker than skeletal myosin or that the structural
state that favors pN-Bleb binding is more significantly populated
in skeletal. Limouze et al. (2004) determined the specificity of
Bleb for many different muscle and non-muscle myosins and
found considerable variability. Further high resolution structural
studies are necessary to evaluate the structural details of the Bleb
binding pocket whichmay be a useful site for rationally designing
myosin inhibitors.

Impact of pN-Bleb on Human Myocardium
The muscle mechanics data clearly demonstrate that pN-Bleb
reduced isometric force in a dose-dependent manner. However,
the effects of pN-Bleb on Ca2+ sensitivity need to be interpreted
with care. Although, the pCa50 values and Hill coefficients were
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FIGURE 6 | Impact of pN-Bleb on permeabilized myocardium muscle mechanics. Left-hand panels show raw data measured in pCa 4.5 solution plus 1.33%

DMSO. Right-hand panels show data measured in pCa 4.5 solution plus 1.33% DMSO and either 1, 10, or 50µM pN-Bleb. These values are normalized to the

control (zero pN-Bleb) data measured for that preparation to improve statistical power. Post-hoc tests show the results of a linear mixed model statistical analysis as

described in the main text. Each point shows data from a single preparation obtained from one of 4 hearts. (A) The maximum force was impacted by pN-Bleb in a

dose-dependent manner. (B) The maximum power was reduced in the presence of pN-Bleb. (C) The maximum velocity and (D) rate of force development (ktr) were

unchanged by pN-Bleb.

significantly reduced by a pN–Bleb concentration of 50µM, the
lower concentrations of pN-Bleb did not produce marked effects.
It’s also unclear whether isometric force was completely saturated
in a pCa 4.5 solution in the presence of 50µMpN-Bleb (note that
the tension-pCa curve did not reach a flat plateau in Figure 7A).
These data could indicate that a high concentration of pN-Bleb
desensitizes the thin filaments by reducing the myosin duty
ratio. However, the low Hill coefficients and decreased pCa50
values measured in the presence of 50µM pN-Bleb could also be
explained by a progressive reduction in force development during
the experiments. Dou et al. (2007) showed that the effects of Bleb
on force development in mouse papillary muscle and trabeculae
were time-sensitive and that force took almost 30 min to stabilize
after application of the drug. Similar time-dependent effects in
human myocardium might produce tension-pCa data similar to
those shown in Figure 7A.

Considerations of Thin Filament Regulation
Our results are consistent with the hypothesis that there is a
correlation between the myosin duty ratio and Ca2+ sensitivity

and that this relationship can be tuned with small molecule
drugs that alter the myosin duty ratio. It is well established that
strong-binding cross-bridges have a positive feedback regulation
on thin filament Ca2+ sensitivity, which stabilizes the Ca2+

bound state of troponin C (Kobayashi et al., 2008). Therefore,
changes in the number of strong binding cross-bridges on thin
filaments, determined by duty ratio, could impact the thin
filament Ca2+ sensitivity. Thus, changes in duty ratio could
explain the disrupted myofilament Ca2+ sensitivity observed in
studies of M2β mutations. Mutations in M2β can increase or
decrease duty ratio (proposed to occur in HCM and DCM,
respectively) by altering the kinetics of individual steps in the
ATPase cycle and perturbing isometric force generation and thin
filament Ca2+ sensitivity. While it seems clear that HCM and
DCM mutations in tropomyosin and the troponin complex are
Ca2+ sensitizing and desensitizing, respectively (Sommese et al.,
2013; Spudich et al., 2016), it remains controversial how M2β
cardiomyopathymutations impact thin filament Ca2+ sensitivity.
The reduced Ca2+ sensitivity and Hill coefficient of the human
myocardial samples was observed in the presence of pN-Bleb,
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FIGURE 7 | Impact of pN-Bleb on Ca2+ sensitivity and isometric force. (A) Three panels showing tension-pCa plots for samples of chemically permeabilized

human myocardium activated in solutions with pCa values ranging from 9.0 to 4.5. The control (gray) data points show force values measured in the presence of

1.33% DMSO. The red, green, and blue data points show force measured in 1.33% DMSO plus 1, 10, or 50µM pN-Bleb. All force values are normalized to the force

measured in pCa 4.5 solution in DMSO with 0 pN-Bleb. Different preparations were used to test each drug concentration. (B) The Ca2+ sensitivity represented by

pCa50. Bars show mean ± SEM pCa50 values measured in the presence of 1, 10, or 50µM pN-Bleb. Post-hoc tests show the results of a linear mixed model

statistical analysis as described in the main text. (C) The Hill coefficient results are displayed as in (B).

but the difference is only significant at 50µM concentration.
Therefore, our results suggest the strategy of altering the Ca2+

sensitivity by altering the myosin duty ratio may be feasible.

Considerations of Thick Filament
Regulation
Regulation at the level of the thick filament can occur by
formation of the SRX and drugs that alter the stabilization of
this state could be utilized to enhance or depress force generation
in cardiac muscle. The SRX has been identified as a state in
striated muscle in which myosin heads are folded back on
the backbone of the myosin thick filament (Hooijman et al.,
2011). In addition, cryo-EM (Wendt et al., 2001; Craig and
Woodhead, 2006; Zoghbi et al., 2008), and X-ray diffraction
(Linari et al., 2015) studies have also demonstrated the presence
of the folded back state of myosin in various muscle types from
different species. The SRX provides a protective mechanism
for maintaining a pool of quiescent myosin heads that have
slow ATP hydrolysis (Fusi et al., 2015). Regulatory light chain
phosphorylation, ablation of myosin binding protein C, and
mechanical stress may impede the formation of the SRX (Linari
et al., 2015; Kampourakis et al., 2016; McNamara et al., 2016).
It has been proposed that cardiomyopathy associated mutations
in myosin and thick filament associated proteins could disrupt
contractile properties by altering the formation of the SRX,
which ultimately impacts the number of cross-bridges capable of
generating force (Kampourakis et al., 2016). Since the previous

work on the parent drug suggests that Bleb may stabilize the SRX
(Zhao et al., 2008; Xu et al., 2009;Wilson et al., 2014), the decrease
in steady-state force and Ca2+ sensitivity in the presence of pN-
Bleb in the current study could be at least partially attributed to
stabilization of the SRX.

Comparison to Other Small Molecule
Regulators
Currently, other drugs are being pursued that directly enhance or
depress the activity of humanM2β. OmecamtivMecarbil (OM) is
a cardiac myosin allosteric modulator that is currently in Phase II
clinical trials to treat systolic heart failure (Cleland et al., 2011;
Greenberg et al., 2015; Teerlink et al., 2016). OM is specific
to cardiac myosin with no effect on smooth or skeletal muscle
myosin (Malik et al., 2011). While many studies have been done
to investigate the impact of OM on muscle fibers in different
animal models, the molecular mechanisms of how OM impacts
cardiac myosin still remain unclear (Malik et al., 2011; Mamidi
et al., 2015; Nagy et al., 2015; Utter et al., 2015). Steady state and
transient kinetics have been examined to investigate the detailed
mechanism of the impact of OM on purified porcine cardiac
myosin (Liu et al., 2015). The kinetic analysis demonstrated
that OM shifts the ATP hydrolysis equilibrium constant toward
products and favors phosphate release, while the ADP release rate
constant is unchanged. These changes translate to an increase
in the number of force-generating cross-bridges bound to the
thin filament in the presence of OM (Liu et al., 2015), which
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is consistent with the enhanced force production observed in
muscle mechanic studies. The increase in the number of strongly
bound force-generating heads in the presence of OM may exert
an internal drag on the thin filaments that decreases sliding
velocity. The internal drag could also slow the ADP release rate
constant by a strain-dependent mechanismwhich would slow the
detachment rate and thus the sliding velocity. Consistent with
this hypothesis, the presence of OM dramatically inhibited the
sliding velocity of porcine HMM (15- to 20-fold decrease) as
measured in the in vitro motility assay in several studies (Wang
et al., 2014; Liu et al., 2015; Winkelmann et al., 2015). OM
has been found to slow force development as well as activation
and relaxation kinetics but increase myofilament Ca2+ sensitivity
in isolated cardiomyocytes from rodent models (Mamidi et al.,
2015; Nagy et al., 2015; Utter et al., 2015). Further study is
necessary to determine themechanism of howOM slows filament
sliding in muscle mechanics and in vitro motility studies as well
as how the impact on motor properties influences the contractile
performance of the heart.

Another recent study identified a novel cardiac myosin
inhibitor, MYK-461, which is proposed to suppress cardiac
myosin motor function by decreasing duty ratio. MYK-461
reduces the overall ATPase activity of cardiac myosin in a dose
dependent-manner (with a 90% maximal inhibition; Green et al.,
2016). Transient kinetic experiments suggested that MYK-461
slows down the phosphate release step without changing the ADP
release rate constant. Myofibril studies showed that the presence
of 1 µM MYK-461 reduced maximal tension by 70%. Oral
administration of MYK-461 decreased fractional cardiomyocyte
shortening in wild-type and HCM-mutant mice, but importantly
prevented the development of an HCM phenotype in the mutant
mice. Therefore, MYK-461 normalizes the hyper-contractile
properties of cardiac muscle by decreasing the power output,
and suppresses the development of ventricular hypertrophy in
mice carrying heterozygous human mutations (R403Q, R453C,
R719W) in M2β (Green et al., 2016).

CONCLUSIONS

We find that a M2β-S1 inhibitor (pN-Bleb) that acts by reducing
strong actin binding without altering detachment kinetics may
be advantageous for reducing the myosin duty ratio. The impact
of the drug on muscle fiber studies demonstrates that this
type of inhibition reduces steady-state force, power, and Ca2+

sensitivity which may help treat hyper-contractile patients. The

maximum shortening velocity is not very sensitive to this type
of inhibition in a muscle fiber while it is quite sensitive when
examined in the motility assay with purified M2β-S1. Thus, it
is important to consider the unique structural organization of
muscle and how this may cause differences when comparing
the in vitro motility and muscle mechanic studies. The ability
to develop motility assays that better mimic a muscle fiber
and retain the structural organization of the thick and thin
filaments as well as the key regulatory proteins will be extremely
helpful in future studies. The exciting new drug, MYK-461,
which appears to act in a similar fashion to pN-Bleb, was
successfully used to treat HCM in a mouse model. Further
studies are necessary to determine if treatment of HCM with
drugs that reduce the myosin duty ratio will be successful for
a variety of HCM mutations. In addition, it will be interesting
to determine if drugs that increase the myosin duty ratio, such
as OM, can be used to treat patients with mutations that cause
hypo-contractility.
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