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Most moving animals segregate their locomotion trajectories in short burst like rotations

and prolonged translations, to enhance distance information from optic flow, as only

translational, but not rotational optic flow holds distance information. Underwater, optic

flow is a valuable source of information as it is in the terrestrial habitat, however, so

far, it has gained only little attention. To extend the knowledge on underwater optic

flow perception and use, we filmed the movement pattern of six common cuttlefish

(Sepia officinalis) with a high speed camera in this study. In the subsequent analysis,

the center of mass of the cuttlefish body was manually traced to gain thrust, slip,

and yaw of the cuttlefish movements over time. Cuttlefish indeed performed short

rotations, saccades, with rotational velocities up to 343◦/s. They clearly separated

rotations from translations in line with the saccadic movement strategy documented

for animals inhabiting the terrestrial habitat as well as for the semiaquatic harbor seals

before. However, this separation only occurred during fin motion. In contrast, during jet

propelled swimming, the separation between rotational and translational movements and

thus probably distance estimation on the basis of the optic flow field is abolished in favor

of high movement velocities. In conclusion, this study provides first evidence that an

aquatic invertebrate, the cuttlefish, adopts a saccadic movement strategy depending on

the behavioral context that could enhance the information gained from optic flow.

Keywords: cephalopods, optic flow, vision, motion vision, prototypical movements, saccades

INTRODUCTION

It is largely unknown which cues underwater species use to navigate safely through their
environment. Only recently optic flow, defined as the visual pattern elicited on the retina of a
moving observer (Gibson, 1950), has reattracted notice as possible source of information in the
underwater world (Gläser et al., 2014; Scholtyssek et al., 2014). Extending these studies, Geurten
et al. (under revision) showed that harbor seals adopt a saccadic movement strategy comparable to
terrestrial species such as insects (see e.g., Collett and Land, 1975; Zeil, 1986, 1996; Zeil et al., 1996;
Van Hateren and Schilstra, 1999; Tammero and Dickinson, 2002; Ribak et al., 2009; Boeddeker
et al., 2010; Geurten et al., 2010; Kress and Egelhaaf, 2012, 2014) or birds (Eckmeier et al., 2008;
Kress et al., 2015; Pete et al., 2015). These animals perform short rotations of the eyes, the head, or
the body depending on species. These rotations are called saccades and minimize the time during
which spatial information cannot be derived from the optic flow field as all objects irrespective
of their distance to the observer move with the same rotation velocities (Koenderink and van
Doorn, 1987). In contrast, these animals predominantly translate through their environment as
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translational movements allow the extraction of distance
information from optic flow as the closer the objects, the faster
they move.

To analyze if the saccadic movement strategy is as widespread
underwater as it is in the aerial habitat, we studied the movement
pattern of another aquatic animal, the common cuttlefish (Sepia
officinalis), which has a completely different movement pattern
and lifestyle than seals. Furthermore, their last common ancestors
are the bilaterians, which lived ≈500 Mio years ago. Cuttlefish
are benthic cephalopods which have well-developed eyes and
good vision (Budelmann, 1995; Hanlon and Messenger, 1996).
Their eyes are very mobile and show optokinetic responses as a
response to moving stimuli (Collewijn, 1970; Messenger, 1970),
and eye movements seem to precede and compensate body
movements during rotations (Messenger, 1968; Collewijn, 1970).

Cuttlefish actively prey upon fish or crustaceans which they
capture by ejecting their extensible tentacles or by jumping on
and enveloping the item with all arms, called arm attack (Sanders
and Young, 1940; Wilson, 1946; Messenger, 1968; Nixon and
Dilly, 1977; Duval et al., 1984). The latter occurs mainly with slow
moving prey. Their attacks on prey are predominantly visually-
driven with an attention, positioning, and seizure phase (Sanders
and Young, 1940;Messenger, 1968, 1977; Chichery and Chichery,
1988). During an attack, cuttlefish seem to estimate the distance
to the prey item as (1) they either retreat from or approach the
object, (2) they modify the ocular convergence depending on the
distance to the prey object (Messenger, 1968), (3) unilaterally
blinded animals or animals in which the optic commissure
and the basal lobes are divided are less accurate in seizing
prey in comparison to normal sighted animals (Messenger,
1977), and (4) they seem to possess size constancy (Messenger,
1977). Cuttlefish might gain distance and depth information by
accommodation as a change in refractive state was observed just
before the cuttlefish attacked the prey item (Schaeffel et al., 1999),
by the W-shaped pupil being a monocular in-or-out-of-focus
detector (Schaeffel et al., 1999; Mäthger et al., 2013) or by using
texture density gradients (Josef et al., 2014). Another mechanism
that would allow for visual distance estimation in a feeding and
non-feeding context, as outlined above, is translational optic
flow. As a first approach to analyze if optic flow perception
is used in cuttlefish to measure distances, we recorded the
movement pattern of a small group of six cuttlefish to analyze if
cuttlefish move their bodies saccadically in line with the saccadic
movement strategy documented for other animals.

MATERIALS AND METHODS

Experimental Animals
The experiment was conducted with six cuttlefish (S. officinalis)
individuals at the Marine Science Center, Rostock, Germany.
The cuttlefish hatched in captivity in January 2015 at the Max-
Planck-Institute for Brain Research, Frankfurt, Germany, and
were thus half a year old when their movement pattern was
recorded. The animals were kept in accordance with current
maintenance protocols for cephalopods (Andrews et al., 2013;
Smith et al., 2013; Fiorito et al., 2014, 2015) in line with
the Directive 2010/63/EU. Approval (6712GH00113) was given

by local authorities (Staatliches Amt für Umwelt und Natur
Rostock) according to §42 of the German law on nature
protection.

One up to two cuttlefish individuals shared one compartment
of a 3000 l sea water aquarium system. Water quality was
regularly controlled, and salinity and temperature were adjusted
to 32 g/kg and 21◦C, respectively. The bottom of the aquarium
was covered with small pieces of corals or sand, which allowed
the cuttlefish to burry themselves. The tank was artificially
illuminated (daylight spectrum) with a natural day–night-cycle
of 12 h/12 h. The day cycle included a phase of dawn and dusk of
1 h. To ensure a balanced diet, the animals were fed one to three
times a day with Palaemon sp., deep frozen fish or fish pieces
from Osmerus eperlanus, Sprattus sprattus, or Clupea harengus or
shrimp (Pandalus borealis).

Experimental Procedure
For 4 days, during which the movement pattern of cuttlefish was
recorded, cuttlefish were housed together in a large compartment
(150 × 51.5 × 85 cm) in a group of six individuals to maximize
the time at least one individual was visible in the field of view
of the camera. Within the field of view of the camera, a red
PVC board (50 × 50 cm) was placed on the bottom of the
compartment. The cuttlefish were lured onto the board with
Palaemon sp. that were inserted in fasteners. The fasteners could
be moved with fine thread not causing water disturbances at
the water surface that would have lowered the quality of the
recordings. The cuttlefish attacked the lure and removed the
prey from the nut. Filming cuttlefish on the red board increased
the contrast of the otherwise cryptically colored animals, which
facilitated video analysis. To additionally facilitate video analysis,
the luminance of the region of interest was increased with
external lamps that were switched on only during filming.

The movement pattern of the cuttlefish was filmed with a
black-and-white high speed camera (Photon focus DR1-D1312-
200-G2, Lachen, Switzerland) with an objective with a focal
length of 16–100mm (Varifocal SC-VZ-16100M, SpaceCom,
Tokyo, Japan) at 200 frames/s. The camera was installed 50 cm
above and orthogonal to the water surface. We are confident
that we can adequately describe the movements of the cuttlefish
from video recordings from above as we moved the prey items
mainly close to the bottom avoiding large vertical movements
and as the movement of cuttlefish with their benthic lifestyle
(Russell-Hunter, 1979) is predominantly two-dimensional. This
assumption is supported by only small vertical movements
amounting to 5.7 ± 4.7% quantified on the basis of the maximal
difference in dorsal mantle length of the cuttlefish.

Video Analysis
The video recordings were analyzed with the help of the
software ivTrace Image Analysis (https://opensource.cit-ec.de/
projects/ivtools). We analyzed all video sequences obtained and
only omitted those video recordings with obvious interactions
between cuttlefish individuals. On the recordings, the center of
mass of the cuttlefish body was tracked over time. Additionally,
the orientation of the cuttlefish body and its coordinates in a two-
dimensional space were determined. Using these parameters, the

Frontiers in Physiology | www.frontiersin.org 2 January 2017 | Volume 7 | Article 660

https://opensource.cit-ec.de/projects/ivtools
https://opensource.cit-ec.de/projects/ivtools
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Helmer et al. Saccades in Cuttlefish

movement of the cuttlefish could be described as thrust, slip, and
yaw movement defined as for-/backward movement, movement
to the side, and rotations around the body axis (Figure 1
insets). Velocities of these three movement directions were
calculated from the change in position and orientation between
subsequent frames. Movements with velocities exceeding 3000◦/s
or 7000mm/s were classified as artifacts and were consequently
excluded from the analysis.

The subsequent analysis steps were conducted with the help
of custom written programs in Matlab (The Mathworks, Natick,
Massachusetts, USA). The velocity of yaw, thrust, and slip
movements of the body were determined by calculating the angle
covered or the distance moved by the body between two frames.
To convert distances moved from pixel into mm, the size of the
red board, which was placed on the bottom of the tank, was taken
as scale.

Furthermore, a cluster analysis was conducted to describe
the prototypical movement pattern of cuttlefish. Therefore, the
velocity data was z-scored (normalized to a 0 mean and a
standard deviation of 1) to account for numeric differences
between rotational and translational speeds. For every frame on
which the animal had moved a three-dimensional velocity vector
consisting of thrust, slip, and yaw velocity was then fed into a
hierarchical agglomerative clustering routine (MatLab Statistics
Toolbox). As the whole data set was too large to be clustered
at once, it was split up into 2% chunks that were clustered
sequentially (Hastie et al., 2009a; Murtagh and Contreras, 2012).
We used the squared Euclidean distance and “Ward criterion” to
build hierarchical clusters. This first step of analysis rendered a
possible number of clusters between 2 and 50. We subsequently
clustered the complete data set again with the k-means algorithm
(MacQueen, 1967; Milligan and Cooper, 1987; Hastie et al.,
2009b). We clustered all classes between 2 and 20. For 20–50
classes, only every fifth class was analyzed because we rarely
saw stable cluster combinations with these large numbers of
classes (Geurten et al., 2010, 2014; Hofmann et al., 2014). To
determine the number of classes that represent our data best, we
used the quality and stability criteria described in Braun et al.
(2010).

Statistical Analysis
We employed Fisher’s permutation tests (Fisher, 1954) on
the differences between the medians of different experimental
groups, which were refined by various authors (see e.g.,
Crowley, 1992; Ernst, 2004). We corrected the p-values
with the Benjamini–Hochberg false detection rate procedure
(Benjamini and Hochberg, 1995; Groppe et al., 2011) using
the Matlab implementation of Benjamini and Hochberg’s
procedure by David M. Groppe (https://de.mathworks.com/
matlabcentral/fileexchange/27418-fdr-bh).

RESULTS

Altogether 202 videos including 256,830 single frames could be
analyzed. Figure 1A illustrates a characteristic trajectory of a
cuttlefish moving over a time frame of ≈10 s. The black line
connecting the dots describes the movement of the center of

mass of the body over time, whereas the short lines represent
the yaw orientation of the body. During the first phase of
the movement, the cuttlefish was moving forward positioning
itself with the moving prey item. This phase ends when the
cuttlefish jumped on the prey item at the upper tip of the loop.
The seizure of the prey was accompanied by fast thrust and
slip movements (Figures 1C,D). In the last phase, it retreated
from the point of prey capture with a fast back- and sideward
movement (Figures 1C,D).

It is evident from this example trajectory that the body
was not necessarily aligned with the swimming direction. This
phenomenon was also generally revealed by the ψ-angle analysis
(Figures 2A,B) that describes the angle between the body long
axis and the movement direction. Only during a phase at the
beginning of the movement and in a short retreat phase after prey
capture of the example trajectory (Figure 1), a clear alignment
of body and the direction of movement could be observed. In
general, during hunting trajectories, there was a clear bias to ψ-
angle of either 0◦ or 180◦ (Figures 2C–F). This emerged from
the cuttlefish’s preference to align prey and body axis during
the phases of the attack (Messenger, 1968) and moreover to use
its fast siphon jet propulsion to approach prey and to leave the
place where it has just caught its prey on the fastest way. Siphon
propulsion was used significantly more often during attacks than
during normal cruising (p < 0.001 Fisher’s permutation test;
Benjamini Hochberg false detection rate correction; Figure 2G).
A pronounced biphasic distribution of theψ-angle was especially
prominent during failed attempts to catch a prey item. After
an unsuccessful tentacle strike, the animal moved backward to
aim for its target a second time (Figure 2D). In contrast, the
180◦ ψ-angle component is largely missing if the cuttlefish has
unsuccessfully tried to seize the prey with an arm attack as they
did not retreat in this situation but continued to follow the prey
item (Figure 2F).

The example trajectory moreover shows that there are periods
during which the body showed a constant orientation over
time (Figure 1B). However, changes in orientation were fast and
short, which is characteristic for saccadic turns (Figures 1B,E).
During this example movement, six saccades marked by red
circles in Figure 1E could be detected. Saccades were generally
defined as short rotations reaching velocities of≥125◦/s. Figure 3
characterizes all 136 saccades documented in the video material.
During these saccades, the body reaches a mean rotation velocity
of 168± 44.6◦/s (Figure 3A). Generally, saccades vary in velocity
between 125 and 343◦/s, and the body rotates with a mean
yawing angle of 20.6 ± 16.2ms (Figure 3B). The angles covered
by the body from frame to frame ranged between 9 and 85◦.
Thrust velocity is on average faster during saccades than during
translational bouts (154–124 mm/s; Figure 3C), as are slip
and yaw velocities increased (slip: 28–66mm/s, yaw: 24–88◦/s;
Figures 3D,E). This shows that translational and rotational
velocities do not coincide, but that fast rotations are segregated
from other movements in line with a saccadic movement
strategy. Cuttlefish saccades range in duration from 110 to 720ms
with a mean duration of 237 ± 98ms (Figure 3F). In contrast,
cuttlefish perform translations lasting 3.7 ± 3.5s ms on average
(Figure 3G). Thus, translational bouts are significantly (N = 202,
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FIGURE 1 | (A) Example trajectory of a moving cuttlefish. The cuttlefish moved in forward direction from the lower left corner to the upper tip of the loop where it

captured a small crab (indicated by a cross). It then moved backwards up to the upper right corner. The lines mark the long axis of the cuttlefish, the dots indicate the

center of mass of the cuttlefish body over time (in s) which is depicted in gray scale from light gray representing the start of the movement to dark gray end of the

movement. The position of the center of mass is plotted every 100 ms. The scale for dimensions is 50mm. (B–E) Parameters of the cuttlefish’s movement with (B) the

yaw angle (in ◦), (C) the thrust and (D) slip velocities (mm/s), and (E) yaw velocity (in ◦/s). In (E) saccades, defined by velocities ≥125◦/s (dashed lines), are marked by

red circles. Vertical lines mark the end/start of the phases attention, positioning, seizure and retreat as indicated above the figures.

Frontiers in Physiology | www.frontiersin.org 4 January 2017 | Volume 7 | Article 660

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Helmer et al. Saccades in Cuttlefish

FIGURE 2 | Context dependent analysis of the ψ-angle distribution and

usage of siphon jet propulsion. Cuttlefish trajectories were categorized

according to the following contexts: successful tentacle strikes (n =71

trajectories), failed tentacle strikes (n = 13), successful arm attacks (n = 31),

failed arm attacks (n = 7), cruising sequence with prey in the animals’ vicinity

(n = 43), and cruising sequences without prey (n = 37). (A–F) The angle

between the body long axis and the movement direction (ψ-angle) is plotted

as a rose plot. A ψ-angle of 0◦ codes for a forward movement, whereas a

ψ-angle of 180◦ describes a backward movement. The ψ-angle distribution

occurring in all trajectories is depicted in (A), Panels (B–F) show the ψ-angle

(Continued)

FIGURE 2 | Continued

distribution for different contexts. ψ-angle obtained from trajectories in which

(B) no prey animals were present, (C) successful or (D) failed tentacle strikes,

or (E) successful or (F) failed arm attacks were documented. In (G), the

frequency with which siphon jet propulsion occurred during different behavioral

contexts is plotted. There is no significant difference when comparing different

types of attack and their outcome. However, the frequency of jet propulsion

differs significantly between cruising and attacks and between the presence of

prey items or their absence. Significance was determined using Fisher’s exact

permutation test and corrected via Benjamini–Hochberg false detection rate

procedure (see Section Statistical Analysis). *p < 0.05, **p < 0.01, and

***p < 0.001.

p< 0.001, Fischer’s exact permutations test) longer than saccades
(Figure 3H).

The cluster analysis yielded the best stability and quality for 12
clusters. In those clusters (Figure 4), the two movement types of
cuttlefish (Russell and Steven, 1930) are apparent: the first type
of movements is elicited by a complex movement of the fins with
an average movement velocity of 138 m/s, the second by the jet
expelled from the siphon during which the cuttlefish reached
velocities of 430 m/s, which they predominantly use during
hunting (Figure 2G). These movement types go along with two
different strategies. Whereas, during fin motion, rotations and
translations are clearly separated (cluster 2, 3, 11, 12, Figure 4),
rotations and translations are coupled during jet propulsion
(cluster 4–6, Figure 4). Overall forward movements, however,
dominate over back- and sideward movements as also revealed
by the ψ-angle analysis (Figures 2A–F).

DISCUSSION

The results of this study revealed that cuttlefish employ a saccadic
movement strategy. We analyzed body movements as a first
approach as eye movements could not be resolved on our
recordings. However, we assume that the eyes of cuttlefish also
move saccadically in support of the saccadic body movements.
Evidence supporting this hypothesis stems from previous studies
(Messenger, 1968; Collewijn, 1970; Chichery and Chichery,
1987, 1988) in which it was shown that cuttlefish perform eye
movements, ocular saccades in particular, in compensation of
body rotations. During the saccades, only the rotation direction
and velocity is perceptible from the optic flow field. This
information could be useful for the animal’s positioning as it
is directly available in contrast to information from statocysts
(Budelmann et al., 1973; Budelmann, 1979), which have a longer
latency. If and how the optic flow information is integrated
into the signal of the statocysts has to be analyzed in future
studies.

We did not observe directed movements of the head in
relation to the mantel cavity, similar to the head stabilization
of birds (Pratt, 1982; Wohlschläger et al., 1993). Although,
a closer investigation of the mantel orientation might reveal
further stabilization strategies, the most obvious place for
further gaze stabilization would be the moveable eyes of
S. officinalis. In conclusion, by performing body saccades
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FIGURE 3 | Detailed analysis of saccades of cuttlefish. The mean course of saccades in cuttlefish (N = 136) is depicted as mean yaw velocity (in ◦/s) in (A) and

as mean yaw angle (in ◦) in (B). White curves indicate the median. The blue shaded area depicts the 95% confidence interval of the median. Saccades to the right

(positive values) and to the left (negative values) are displayed separately. In general, saccades are short events that last for 217.5ms on average. During a saccade,

the body reached a mean rotation velocity of 152◦/s (±SD) and covered a mean rotation angle of 18.8◦. (C–E) Frequency (in %) of translations (gray bars) and

saccades (colored lines) during (C) thrust, (D) yaw, and (E) slip movements. While the distribution of thrust velocities is rather similar during translations and saccades,

sideways and yaw velocities are faster during saccades. (F) Frequency (in %) with which saccades of different durations occurred (binned in 0.1s). (G) Frequency (in

%) with which translational bouts of a specific duration (in s) occurred. (H) Boxplots for the duration (in s; logarithmic scale) of saccades and translational bouts with

the boxes indicating the quartiles, the red line indicating the median, and the 1.5 interquartile distance is shown by the whiskers. Outlying data points are marked with

red crosses. The notches in the boxes exhibit the 95% confidence interval of the median. Saccades are significantly longer events than translations (p < 0.01).

most likely in combination with eye movements, cuttlefish
reduce the time of rotations as rotations complicate the
extraction of distance information from optic flow. Thus,
this study most likely adds a mechanism to the already

reported distance/depth estimation mechanisms in cuttlefish
(Schaeffel et al., 1999; Mäthger et al., 2013; Josef et al., 2014).
Distance estimation from optic flow offers the advantage that
it provides distance information for much larger distances than
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FIGURE 4 | Prototypical movements of the common cuttlefish. Normalized thrust, slip and yaw rotation velocity (thrust and slip were normalized to their

maximum, yaw on its absolute maximum) for the 12 clusters as well as frequency as percentage of total events (N = 256,628) and mean duration of the behavioral

element. PM2-6 are thrust dominated, PM7-8 describe slight sideways movements, and PM9-12 are characterized by an increase of rotational yaw movements. Blue

arrows denote yaw rotations to the left or right, green arrows denote slip movements to the left or right, orange arrows denote thrust movements to the front or back.

the alternative mechanisms. Moreover these data add to the
overall picture that all moving animals irrespective of their eye
type, mode of locomotion, visual environment including the
medium, in which they operate, use optic flow to guide their
movements.

In contrast to terrestrial species as well as to harbor seals,
cuttlefish show a context dependent strategy as revealed by the
cluster analysis. During fin motion, cuttlefish move at relatively
low speeds and clearly separate their body movements into
saccades and translations. This behavior corresponds to the
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saccade movement strategy documented in terrestrial species
(see e.g., Collett and Land, 1975; Schilstra and Hateren, 1999;
Blaj and van Hateren, 2004; Eckmeier et al., 2008; Ribak et al.,
2009; Geurten et al., 2010, 2014; Kress and Egelhaaf, 2012)
as well as in the harbor seal (Geurten et al., under revision).
In contrast, the cuttlefish abolishes optic flow analysis to gain
distance information when it moves its body at high velocity with
the pulsed jet of its siphon. Thus, cuttlefish seem to trade their
swimming velocity and the extraction of distance information
form optic flow depending on the context. Siphon movements
predominantly occurred shortly before and after a prey capture
event. In this situation, the cuttlefish seem to primarily focus on
speed to catch the prey item and to leave the location of prey
capture. Especially under competition pressure, the best strategy
for an animal is to escape in a straight line with high velocities.
Such an escape behavior has e.g., also been shown for the African
ball-rolling dung beetle that rolls its dung ball on a straight path
from the dung pile at which it encounters intense competition
among conspecifics (Byrne et al., 2003; Dacke et al., 2003a,b,c,
2011, 2013). A very fast escape movement in cuttlefish might
have evolved because they are soft-bodied animals with many
predators.

This study provided a detailed characterization of body
saccades in cuttlefish. Cuttlefish saccades were defined as
rotations exceeding a rotation velocity of 125◦/s. This velocity
threshold seems conservative when compared to the results of
optokinetic studies (Collewijn, 1970; Messenger, 1970). In these
studies, low gain optokinetic responses up to a rotational velocity
of the optokinetic drum of only 35◦/s were reported. However,
the gain function published by Collewijn (1970) suggests that
the cuttlefish might have also responded to higher rotational
velocities if these had been tested. This claim is supported by
Boulet (1960) who documented ocular reactions to a target
movement of up to 51◦/s and also by Cartron et al. (2013)
who state that cuttlefish followed drum movements up to
100◦/s but failed at a stimulus velocity of 130◦/s. Cuttlefish
body saccades lasted for 217.5 ms on average. It is very
probable that the eyes even move faster although Collewijn
(1970) reported that it took a cuttlefish eye 0.5 s to complete
a saccade. The cuttlefish rotated their bodies by an angle of
9–85◦. From observations and as documented by Messenger
(1968), cuttlefish rotate their eyes together with the body by
almost 180◦ in the first phase, the attention phase of their
attack. The overall goal in this phase of the attack is to align
the optical and the prey axis. It is very likely that we did not
record such wide angles as we inserted the prey predominantly
within the anterior visual field of a cuttlefish close to the
platform. Thus, there was no need for the cuttlefish to turn by
a large angle. The behavior we documented thus predominantely
describe the movement pattern of cuttlefish in the second and
third phase of the attack, positioning, and seizure (Messenger,
1968).

Cuttlefish and seal body saccades (Geurten et al., under
revision), the only saccades documented for swimming animals

up to now, are very similar in respect to their mean and
maximum rotation velocities. These velocities are achieved by
slightly smaller angles covered in a shorter period of time in
cuttlefish in comparison to harbor seals that rotate in larger
angles which also takes more time. These differences are most
likely due to the larger body size of harbor seals as compared
to cuttlefish. Body saccades of these two aquatic species are
surpassed in rotation velocity by most flying species (Blaj and
van Hateren, 2004; Eckmeier et al., 2008; Geurten et al., 2010),
which is probably due to the higher viscosity and density of
water vs. air. Whereas, harbor seals change between active
swimming and gliding (Geurten et al., under revision), cuttlefish
switch between two active swimming modes, fin motion, and
jet propelled swimming. However, the movements made by
cuttlefish are characterized by movements along as well as
perpendicular to the body axis, the latter not occurring in harbor
seals.

In conclusion, this study revealed that cuttlefish move their
bodies saccadically thereby probably optimizing the extraction
of distance information from optic flow. Future studies however
need to be performed to proof the usage of optic flow in
S. officinalis. Cuttlefish change between a saccadic moment
strategy and highmovement velocities, during which they abolish
the separation of rotational and translational movements, a
flexibility that is unique till now. Moreover the finding of a
saccadic movement strategy in another aquatic species besides
harbor seals suggests that this strategy might be as wide-spread
underwater as it is in the terrestrial habitat.
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