
ORIGINAL RESEARCH
published: 11 January 2017

doi: 10.3389/fphys.2016.00679

Frontiers in Physiology | www.frontiersin.org 1 January 2017 | Volume 7 | Article 679

Edited by:

Antonio Macciò,

A. Businco Hospital, Italy

Reviewed by:

Celena Scheede-Bergdahl,

McGill University, Canada

Michaël R. Laurent,

KU Leuven, Belgium

*Correspondence:

Teresa A. Zimmers

zimmerst@iu.edu

†
Present Address:

Melissa J. Puppa,

St. Jude’s Research Institute,

Memphis, TN, USA

Specialty section:

This article was submitted to

Clinical and Translational Physiology,

a section of the journal

Frontiers in Physiology

Received: 19 September 2016

Accepted: 20 December 2016

Published: 11 January 2017

Citation:

Bonetto A, Kays JK, Parker VA,

Matthews RR, Barreto R, Puppa MJ,

Kang KS, Carson JA, Guise TA,

Mohammad KS, Robling AG,

Couch ME, Koniaris LG and

Zimmers TA (2017) Differential Bone

Loss in Mouse Models of Colon

Cancer Cachexia.

Front. Physiol. 7:679.

doi: 10.3389/fphys.2016.00679

Differential Bone Loss in Mouse
Models of Colon Cancer Cachexia
Andrea Bonetto 1, 2, 3, 4, Joshua K. Kays 1, Valorie A. Parker 1, Ryan R. Matthews 1,

Rafael Barreto 1, Melissa J. Puppa 5†, Kyung S. Kang 6, James A. Carson 5,

Theresa A. Guise 3, 7, Khalid S. Mohammad 3, 7, Alexander G. Robling 6, Marion E. Couch 2, 4,

Leonidas G. Koniaris 1, 3, 4 and Teresa A. Zimmers 1, 2, 3, 4, 6*

1Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA, 2Department of Otolaryngology, Head

and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA, 3 Simon Cancer Center, Indiana University

School of Medicine, Indianapolis, IN, USA, 4 Indiana University-Purdue University at Indianapolis, Center for Cachexia

Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, USA, 5Department of Exercise

Science, University of South Carolina, Columbia, SC, USA, 6Department of Anatomy and Cell Biology, Indiana University

School of Medicine, Indianapolis, IN, USA, 7Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,

USA

Cachexia is a distinctive feature of colorectal cancer associated with body weight

loss and progressive muscle wasting. Several mechanisms responsible for muscle and

fat wasting have been identified, however it is not known whether the physiologic

and molecular crosstalk between muscle and bone tissue may also contribute to the

cachectic phenotype in cancer patients. The purpose of this study was to clarify whether

tumor growth associates with bone loss using several experimental models of colorectal

cancer cachexia, namely C26, HT-29, and ApcMin/+. The effects of cachexia on bone

structure and strength were evaluated with dual energy X-ray absorptiometry (DXA),

micro computed tomography (µCT), and three-point bending test. We found that all

models showed tumor growth consistent with severe cachexia. While muscle wasting in

C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was

observed. However, HT-29 tumor bearing mice showed bone abnormalities including

significant reductions in whole-body bone mineral density (BMD), bone mineral content

(BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N),

and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the

ApcMin/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N,

and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is

associated with muscle wasting and may be accompanied by bone loss dependent

upon tumor type, burden, stage and duration of the disease. It is clear that preserving

muscle mass promotes survival in cancer cachexia. Future studies will determine whether

strategies aimed at preventing bone loss can also improve outcomes and survival in

colorectal cancer cachexia.
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INTRODUCTION

Colorectal cancer represents the third most common cancer in the United States and worldwide
(Siegel et al., 2016) and is associated with the development of cachexia in up to 30% of the cases.
Cachexia, defined as loss of body weight and depletion of muscle mass (i.e., sarcopenia), with or
without loss of fat tissue (Fearon et al., 2011), represents a devastating complication of cancer
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(Costelli and Baccino, 2003; Tisdale, 2009; Fearon et al., 2012). It
has been estimated that up to 80% of cancer patients will develop
cachexia over the course of their disease (Haehling and Anker,
2010). The development of cachexia often results in worsened
quality of life, decreased tolerance to radio- and chemotherapy,
and overall reduced survival. Indeed, it is estimated that cachexia
is responsible for 25–30% of all cancer-related deaths (Tisdale,
2009; Muscaritoli et al., 2010). In cancer patients, cachexia is
generally diagnosed in association with unintentional weight loss
of at least 5% of initial weight and is normally accompanied by
muscle weakness, fatigue, anorexia, changes in body composition
(including lean and fat mass), increased inflammatory state,
anemia and low levels of serum albumin. Of note, it has been
shown that body and muscle weight loss positively correlate with
enhanced mortality (Evans et al., 2008; Fearon et al., 2011).

Interestingly, while cancer patients have an increased risk
of bone loss and osteoporosis, as often shown in patients
affected with lung cancer (Fearon, 1992) or in those undergoing
radio- or chemotherapy treatments (Mcdonald et al., 2016;
Monroy-Cisneros et al., 2016), this feature represents a largely
unexplored aspect of cachexia research. A growing body of
evidence has led to the identification of molecular mechanisms
and signaling pathways associated with muscle and fat loss
in cancer. Whether the same pathways also interfere with the
homeostasis of bone tissue is not completely clear. Along this line,
it has been proposed that similar mechanisms associated with
muscle wasting may also play a fundamental role in promoting
cancer-associated bone loss, thus leading to the hypothesis that
muscle and bone are regulated in tandem in cachexia (Kandarian,
2008). In more recent years, several reports suggested that
osteoporosis as well as bone metabolic dysfunction and the
decay of bone tissue may represent one of the peculiarities of
cachexia and may participate directly in cachexia development
and sustainment (Verschueren et al., 2013; Huo et al., 2015).
Further, bone and muscle tissues, besides playing a fundamental
role in body growth and movement, have been recently described
as endocrine organs (Karsenty and Ferron, 2012; Pedersen and
Febbraio, 2012; Laurent et al., 2016). Interestingly, muscle and
bone loss have been correlated in human and animal models
during exercise, aging, disuse, and inflammatory conditions such
as arthritis and cancer (Digirolamo et al., 2013). Moreover,
with increasing recognition of the physiologic and molecular
crosstalk between muscle and bone (Cianferotti and Brandi,
2014), mediators shown to be associated with the pathogenesis
of skeletal muscle and fat loss were reported to affect bone
tissue in a similar manner (Choi et al., 2013; Waning et al.,
2015).

The goal of this study was to clarify whether tumor growth
is associated with the occurrence of bone loss. For this purpose,
cachexia was induced in mice using colorectal cancer xenografts
(murine C26 and human HT-29) or genetically induced tumors
(ApcMin) and the effects in terms of tumor-associated loss
of bone mass were assessed. In addition, we examined the
effects of colorectal cancer growth on bone structure, and
mechanical properties were determined by utilizing dual energy
X-ray absorptiometry (DXA), micro computed tomography
(µCT) and three-point bending test. Ultimately, our findings

provide evidence that the development of bone effects might
depend upon tumor type, burden, stage and duration of the
disease.

MATERIALS AND METHODS

Animals
All animal experiments were conducted with the approval of
the Institutional Animal Care and Use Committee at Indiana
University School of Medicine and were in compliance with the
National Institutes of Health Guidelines for Use and care of
Laboratory Animals and with the ethical standards laid down
in the 1964 Declaration of Helsinki and its later amendments.
Eight-week old CD2F1 male mice (Harlan, Indianapolis, IN)
were injected intrascapularly (s.c.) with 1 × 106 C26 (Colon-26)
adenocarcinoma cells in sterile saline and sacrificed after 14 days,
when body weight loss was about 15% of the initial body weight,
a condition referred to as severe cachexia (Bonetto et al., 2011).
Control mice received an equal volume of saline. Eight-week
old athymic nude (Nu/Nu) male mice (Harlan, Indianapolis,
IN) were injected subcutaneously between the scapulae with
2 × 106 HT-29 cells and sacrificed after 47 days from tumor
inoculation. Control mice received an equal volume of saline.
Twelve-week old C57BL6/J-ApcMin/J (ApcMin/+) malemice (The
Jackson Laboratory, Bar Harbor, ME) were maintained in our
colony for up to 27 weeks of age. Animals were genotyped
upon delivery, according to the protocol provided by The
Jackson Laboratory. Mice were sacrificed when muscle weight
loss was about 25% of the initial body weight (i.e., the weight
recorded at time of delivery at our facility). Age-matched
C57BL6/J mice served as controls (The Jackson Laboratory, Bar
Harbor, ME). Animals were monitored and weighed daily until
the day of sacrifice. At time of sacrifice, all mice displayed
evident tumor growth and no animals were excluded from the
study. Several tissues were collected, weighed, snap frozen in
liquid nitrogen and stored at −80◦C for further studies. The
tibialis anterior muscle was frozen in liquid nitrogen-cooled
isopentane, mounted in OCT and stored for morphological
analyses.

Cell Culture
Murine C26 cells were kindly provided by Donna McCarthy
(Ohio State University) and cultured in high glucose (4.5 g/L)
Dulbecco’s Modified Eagle’s Medium (DMEM) supplied with
10% fetal bovine serum, 1% glutamine, 1% sodium pyruvate, 1%
penicillin/streptomycin. Human HT-29 cells (ATCC, Manassas,
VA) were cultured in McCoy’s 5a Modified Medium supplied
with 10% fetal bovine serum, 1% glutamine, 1% sodium pyruvate,
and 1% penicillin/streptomycin. Both cell lines were maintained
in a 5% CO2, 37

◦C humidified incubator.

Dual-Energy X-Ray Absorptiometry (DXA)
Assessment of lean tissue, as well as whole body bone mineral
density (BMD) and bone mineral content (BMC) were assessed
by means of DXA scanning of frozen carcasses. According to
the manufacturer’s guidelines, in order to calibrate and validate
the apparatus for its performance, a spine phantom was scanned
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using the Lunar PIXImus densitometer (PIXImus, Fitchburg,
WI) before scanning the first carcass. Animal carcasses were
placed in a prone position with the limbs outstretched. From
the whole-body scans, areal BMD and BMC were calculated
for the entire body minus head ROI, and regionally for
humerus, femur, and lumbar spine (L5) using the Lunar ROI
tools.

Micro Computed Tomography (MCT)
After euthanasia, the right femur was dissected from each
mouse, fixed for 2 days in 10% neutral buffered formalin,
and then transferred into 70% ethanol for µCT scanning on
a high-throughput µCT specimen scanner (µCT-35; Scanco
Medical AG). The distal 33% of each bone was scanned using
the following conditions: 50 kV, 120mA, 151-ms integration
time, 0.5mm Al filter, and 10-µm voxel resolution (Bouxsein
et al., 2010). Three-dimensional morphometric properties of
the distal femur cancellous bone were measured as previously
described (Niziolek et al., 2011). Briefly, trabecular bone volume
fraction (BV/TV; %), trabecular number (Tb.N; 1/mm), and
trabecular thickness (Tb.Th; mm) were determined on a 1.5mm
region of the distal femur secondary spongiosa, using an ROI
beginning 0.6mm proximal to the distal growth plate (identified
by radiolucency and morphology) and extending proximally for
1.5mm. The trabecular bone was digitally isolated from the
cortical compartment by manually lassoing the trabecular bone
every 15 slices, then interpolating the trabecular compartment in
intervening slices using the contouring function in the Scanco
software. All measurements were calculated automatically using
the Scanco software (µCT v6.1).

Three-Point Bending Test
In order to define the bone mechanical properties in the presence
of colorectal cancer, the bones were loaded to failure by three-
point bending. Briefly, the left femurs were removed from
the carcasses, wrapped in saline soaked gauze, and stored at
−20◦C. Prior to testing they were rehydrated overnight in
0.9% NaCl at room temperature. Testing was performed on a
miniature materials testing machine (Vitrodyne V1000; Liveco,
Inc., Burlington, VT, USA), which has a force resolution of 0.05 n.
The lower supports were set at the maximal allowable distance
for each bone without compromising the test (10.0mm for the
femur). The crosshead speed during testing was 0.2mm/s, and
force-displacement data was collected every 0.01 s. From the data,
a force vs. displacement graph was created, and the ultimate
force (FU; N), stiffness (S; N/mm) and post yield energy to
failure (UPY; mJ) were calculated as shown in Mcateer et al.
(2010).

Statistical Analysis
All results were expressed as means ± SEM. In particular,
changes in muscle and fat mass (Figure 1) are presented as
percentage (%) of the tissue weights normalized to the initial
body weight (IBW). Significance of the differences was evaluated
by Student’s t-test. Difference was considered significant when
p < 0.05.

RESULTS

Colorectal Cancer Causes Body Weight
Loss Associated with Muscle and Fat
Wasting
In order to investigate whether the growth of colorectal cancer
associates with the development of cachexia and bone loss, we
took advantage of three different in vivo models. In particular,
CD2F1 mice injected with the well-characterized C26 murine
colorectal cancer cells showed progressive loss of body weight
(−14%, p < 0.01), accompanied by marked muscle depletion, as
suggested by the reduction in skeletal muscle mass (GSN:−16%;
Quadriceps:−26% vs. Control) and by the decrease in lean tissue
content (C = 2.49 ± 0.38 g, C26 = 2.05 ± 0.39 g; −18%, p <

0.05), assessed by means of DXA. Consistently, the epididymal
fat was also severely depleted in the tumor hosts (−62%,
p < 0.05) (Figure 1A), while tumor size (0.67 ± 0.29 g) was in
line with previous studies using the same experimental model
(Bonetto et al., 2011). Of note, tumor growth also caused cardiac
muscle atrophy (−17%, p < 0.01) (Figure 1A). To the extent
of establishing and characterizing new preclinical mouse models
of colorectal cancer, we injected the HT-29 human colorectal
adenocarcinoma in athymic nude mice. After 47 days from
tumor inoculation, the animals showed significantly reduced
body weight (−14%; p < 0.05 vs. Control) along with depletion
of skeletal muscle (GSN: −18%; Quadriceps: −20% vs. Control),
overall reduction in lean tissue content (C = 6.80 ± 0.63 g, HT-
29 = 5.82 ± 0.38 g; −14%, p < 0.05) and severe decrease in fat
mass (−78%, p< 0.05) (Figure 1B). This was also consistent with
remarkable tumor growth (2.71 ± 1.37 g). Similarly, at around
27 weeks of age, the ApcMin/+ mouse, an extensively studied
genetic model of colorectal cancer development, displayed severe
body weight loss (−27%, p < 0.001), consistent with overall
loss of skeletal muscle mass (GSN: −32%; Quadriceps: −43% vs.
Control), lean tissue (C = 9.67 ± 0.72 g, ApcMin/+ =: 5.37 ±

1.11 g; −44%, p < 0.001) and adipose tissue (−69%, p < 0.001),
but no change in heart weight (Figure 1C).

Bone Tissue Is Differentially Affected by
Colorectal Cancer
Bone loss in the presence of colorectal cancer was assessed by
means of DXA (Figure 2) or µCT scans (Figure 3). Based on
the DXA scan quantification, while a moderate loss of whole
body bone mineral density (BMD) was observed in the C26
hosts (Figure 2E), the HT-29 hosts showed decreased BMD
(−5%, p < 0.05), along with depletion of bone tissue at the
level of vertebrae (−11%, p < 0.01) and femur (−15%, p <

0.01) (Figure 2F). Similarly, the ApcMin/+ mice displayed an
overall severe depletion of bone tissue (−18%, p < 0.001), even
more exacerbated in the L5 vertebrae (−22%, p < 0.001), femur
(−31%, p< 0.001) and humerus (−25%, p< 0.001) (Figure 2G).
Interestingly, no significant change in bone mineral content
(BMC) was detected in the C26 or HT-29 hosts (Figures 2E,F),
while an overall marked bone tissue loss was detected in the
ApcMin/+ animals (−28%, p < 0.01), and more specifically
in femur (−18%, p < 0.05) and humerus (−16%, p <
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FIGURE 1 | Models of colorectal cancer show muscle and fat wasting.

Tumor growth was associated with changes in body weight, muscle

(gastrocnemius, quadriceps, heart) and fat tissue in mice bearing colorectal

cancers. C26 (A), ApcMin/+ (B), HT-29 (C). n = 4–8. Data (means ± SEM) are

expressed as percentage (%) of the respective Control group. Significance of

the differences: *p < 0.05, **p < 0.01, ***p < 0.001 vs. Control. FBW,

tumor-free final body weight; GSN, gastrocnemius.

0.05) (Figure 2G). Consistently, the µCT analysis revealed
varying levels of bone loss across our models. In particular,
while no significant changes were observed in the C26 model

(Figures 3A–D), decreased BV/TV (−14%, p < 0.05), Tb.N
(−35%, p < 0.05) and Tb.Th (−15%, p < 0.01) were detected
in the bone of mice bearing the HT-29 tumors (Figures 3B–E).
Analogously, the ApcMin/+ showed reduced BV/TV (−37%, p <

0.001), Tb.N (−19%, p < 0.01) and Tb.Th (−28%, p < 0.001)
(Figures 3C–F).

The ApcMin/+ Mouse Shows Reduced Bone
Strength
In order to investigate whether changes in bone strength were
associated with the development of colorectal cancer in vivo,
femurs from HT-29 bearers or ApcMin/+ mice were subjected
to three-point bending mechanical testing. Of note, despite
a moderate loss of bone tissue, as shown in Figure 3, no
change in bone strength, measured by three-point bending test
(Figures 4A,B), was detected in the HT-29 tumor-bearing mice
(Figure 4C). Conversely, the ApcMin/+ mice showed significant
decrease in ultimate force (FU; −44%, p < 0.001), stiffness (S;
−43%, p < 0.001), and energy to failure (UPY; −57%, p < 0.01)
when compared to the wild type controls (Figure 4D).

DISCUSSION

Extensive skeletal muscle wasting, with or without fat depletion,
is one of the hallmarks of cancer cachexia (Fearon et al.,
2011). Indeed, skeletal muscle loss and weakness are debilitating
consequences of several advanced malignancies, which often
associate with bone metastases (Waning et al., 2015). While the
mechanisms associated with the development of bone metastases
have been investigated for quite some time, it is not clear
whether the occurrence of tumor-derived muscle wasting also
directly affects bone tissue and its mechanical properties. In the
present study, we aimed to investigate whether the occurrence of
colorectal cancer was also associated with abnormalities in bone
structure and mechanical properties. A better understanding
of how cancer cachexia impacts the musculoskeletal system
requires the generation of proper pre-clinical models for use in
mechanistic studies. Indeed, only a handful of mouse models,
only partially characterized, are currently in use for the study
of cancer cachexia (Mori et al., 1991; Aulino et al., 2010; Benny
Klimek et al., 2010). Therefore, we examined new and well-
characterized experimental models of colorectal cancer cachexia
to determine whether tumor growth is associated with the
occurrence of bone pathology.

Here, we show that bone loss, accompanied by aberrations
in bone structure and function, is associated with colorectal
cancer cachexia by utilizing well-known and new in vivo models
of colorectal cancer. We examined mice bearing the murine
C26 tumor (Bonetto et al., 2009, 2011) or the human HT-29
colorectal adenocarcinoma.We also studied the ApcMin/+ mouse
(Mehl et al., 2005; Bonetto et al., 2012; White et al., 2012),
which carries a heterozygous germ line mutation at codon 850
of the Apc gene responsible for the development of spontaneous
colorectal adenomas. We found that all models showed tumor
growth consistent with severe cachexia, consistently with muscle
loss and fat depletion, although at a different extent across the
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FIGURE 2 | The development of colorectal cancer is associated with decreases in Bone Mineral Density. Representative DXA scans of carcasses from

colorectal cancer hosts. Total bone mineral density (BMD) and bone mineral content (BMC) measurements of the whole body are shown in (A). Green boxes indicated

ROI for the measurement of regional BMD and BMC (B: L5 vertebrae; C: femur; D: humerus). BMD and BMC quantification in C26-bearing animals (E), HT-29 hosts

(F) and ApcMin/+ mice (G). n = 4–8. Data (means ± SEM) are expressed as g/cm2 (for BMD) or g (for BMC). Significance of the differences: *p < 0.05, **p < 0.01,

***p < 0.001 vs. Control.

three models (Figure 5). Interestingly, tumor size also seemed
to correlate with the degree of wasting and with the length of
the experimental period, whereas the C26 hosts show smaller
tumors compared to the HT-29 bearers. In the present work, no
assessment of tumor size was performed in the ApcMin/+ mice,
although it was previously shown that the size of the colorectal
polyps mainly correlates with the extent of cachexia (Puppa et al.,
2011).

Interestingly, our work is consistent with other studies that
have shown a concurrent loss of muscle and bone tissue in
murine models of cancer cachexia. Indeed, it was recently
reported that animals bearing the Lewis Lung carcinoma
present muscle wasting associated with decreased BMD, although
alterations of bone strength were not taken into consideration

(Choi et al., 2013). Similarly, bone tissue and bone strength
were significantly affected in murine models of pancreatic cancer
(Greco et al., 2015; Zhang et al., 2015). In the present study,
we showed that regardless of the type of tumor, muscle and
fat loss were generally accompanied by significantly decreased
BMD, while BMC was reduced exclusively in the ApcMin/+

animals (Figure 5). Moreover, HT-29 and ApcMin/+ tumor
hosts also displayed altered bone structure, consistent with
decreased BV/TV, Tb.N and Tb.Th. Only the ApcMin/+ mouse,
characterized by the longest duration of the disease and
the most aggressive cachectic phenotype, showed abnormal
mechanical properties, as evidenced by the decreased FU, S and
UPY parameters. Surprisingly, these results are in substantial
disagreement with previous reports showing that mutations of
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FIGURE 3 | Colorectal cancer promotes bone degeneration in the ApcMin/+ and HT-29-bearing mice, but not in the C26 hosts. Representative µCT scan

images of femur sections from colorectal cancer hosts (A–C). Quantification of bone volume fraction (BV/TV; %), trabecular number (Tb.N; 1/mm), and trabecular

thickness (Tb.Th; mm) in the femur of tumor-bearing mice. C26 (D), HT-29 (E) and ApcMin/+ (F). n = 4–8. Data are expressed as means ± SEM. Significance of the

differences: *p < 0.05, **p < 0.01, ***p < 0.001 vs. Control.

the Apc gene, encoding for a protein whose main role is to bind
β-catenin, a mediator of the Wnt signaling pathway, are actually
associated with increased BMD, both in animal models and in
patients with Familial Adenomatous Polyposis (Holmen et al.,
2005; Miclea et al., 2010). On the other hand, we cannot exclude
that dysfunctions of the gut barrier, as often associated with the
development of colorectal cancer in the ApcMin/+ mouse model,
may not only result into higher inflammation and increased risk
of endotoxemia (Puppa et al., 2011), but also in decreased intake
of calcium and Vitamin D, required for proper bone formation
(Carmeliet et al., 2015; Wesa et al., 2015).

Based on our observations it does appear that the duration
of the disease and the extent of muscle loss represent major
contributing factors in regulating bone tissue in colorectal cancer.
However, our results, generated by analyzing a single endpoint in

the three mouse models, cannot establish a definitive relationship
between duration of cachexia and severity of bone loss, as they
cannot exclude thatmore severe cancer progression would lead to
even more exacerbated bone loss. Moreover, the use of different
mouse strains (CD2F1, athymic Nu/Nu, C57Bl6-ApcMin/+),
either immunocompetent or immunodeficient, may prevent us
from generalizing our results and could represent a limitation
to our findings. Indeed, strain-specific bone phenotypes have
been previously described in a transgenic model with either a
BALC/cJ or C57Bl6/J background, as well as in athymic and
euthymic mice (Mccauley et al., 1989; Syberg et al., 2012).
Similarly, bone regeneration and increased risk of osteoporosis
have been shown in NOD/scid-IL2Rγnullc animals, which exhibit
defects in innate and adaptive immunity (Rapp et al., 2016),
as well as in patients affected with acquired immunodeficiency
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FIGURE 4 | Bone strength is decreased in the ApcMin/+ mouse. Representative three-point bending test performed on femur from colorectal tumor-bearing mice

(A). Representative Force vs. displacement graph, where the peak of the curve represents the ultimate force (FU), the slope the stiffness (S), and the area under the

curve the energy to failure (UPY ) (B). HT-29 (D), ApcMin/+ (C). n = 4–8. Data (N for FU; N/mm for S; mJ for UPY ) are expressed as means ± SEM. Significance of the

differences: **p < 0.01, ***p < 0.001 vs. Control.

FIGURE 5 | The degree of bone loss in colorectal cancer cachexia

depends upon tumor type, burden and duration of the disease. The

chart summarizes the phenotypic changes observed upon colorectal cancer

growth in the three experimental models (C26, HT-29 and ApcMin/+). The

number of arrows is indicative of the degree of change (mild, moderate,

severe).

syndrome (Annapoorna et al., 2004). Interestingly, the level of
physical activity may also contribute to explain the loss of bone
tissue across the three tumor models, especially keeping in mind
that the interaction between skeletal muscle and bone tissue was
initially described as mainly mechanical in nature (Brotto and
Bonewald, 2015). Consistently, previous reports showed that the

growth of colorectal tumors progressively affected the overall
activity and physical performances in C26 hosts and ApcMin/+

mice (Baltgalvis et al., 2010; Toledo et al., 2014).
Nonetheless, muscle-derived factors have been shown to

significantly affect bonemetabolism, although it is not completely
clear whether changes in muscle mass per se may also affect the
integrity of bone tissue (Hamrick, 2012; Brotto and Bonewald,
2015). In the present study, thatmainly described the relationship
between colorectal cancer and the occurrence of changes in bone
mechanical properties, we did not evaluate the levels of any of
these factors. However, several mediators, such as BDNF, CXCL-1
(also known as KC), IL-1, IL-5, IL-6, IL-7, irisin, IFN-γ, LIF, TNF,
TGF-α/β, and myostatin, have been shown to take part to the
biochemical communications between skeletal muscle and bone
tissue and to play a role in regulating the complicated balance
between bone degradation and bone generation (Saidenberg-
Kermanac’h et al., 2004; Mizoguchi et al., 2009; Polzer et al., 2010;
Hamrick, 2011, 2012; Schett, 2011; Elkasrawy andHamrick, 2013;
Brotto and Bonewald, 2015; Waning et al., 2015). Importantly,
bone-targeting pro-inflammatory cytokines, such as IL-6, IL-
7, and IL-15, were originally described in association with
muscle contraction and exercise, thus further supporting the idea
that mechanical stimulation is fundamental to maintain bone
integrity (Nielsen et al., 2007; Pedersen, 2009; Haugen et al., 2010;
Hamrick, 2012). Conversely, recent evidence suggests that bone,
acting as an endocrine organ, may secrete factors that can target
muscle tissue and influence its homeostasis (Dallas et al., 2013).
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Indeed, elevated FGF23 was reported to affect cardiac function
(Mirza et al., 2009), while osteocalcin levels were shown to have a
direct effect on muscle strength (Fernández-Real et al., 2009).

Recent evidence also suggests that anticancer therapies may
contribute to both muscle weakness and bone decay. Along
this line, we recently showed that therapies routinely used
for the treatment of colorectal cancer play an important
role in promoting muscle wasting and fatigue, particularly by
affecting the muscle oxidative state and causing mitochondrial
depletion (Barreto et al., 2016). Of note, significant loss
of BMD was described in patients undergoing adjuvant
chemotherapy for various gynecologic cancers (Christensen
et al., 2016; Lee et al., 2016) or radiotherapy for abdominal
tumors (Wei et al., 2016). Regardless of the molecular causes
responsible for these side effects, the occurrence of bone
fractures in patients with cancer or undergoing chemo-
radiotherapy represents a problem of significant concern,
causing substantial morbidity and worsening of the quality of
life.

In conclusion, the data presented in our study suggest that
colorectal cancer associates with muscle wasting and is generally
accompanied by bone loss (Figure 5). Based on our results, the
extent of bone depletion might depend upon tumor type, burden
and duration of the disease, although limitations associated with
the use of different mouse strains were also identified. Despite
all this, the identification of muscle-/bone-derived factors that
may result into novel therapeutic targets for the treatment of

sarcopenia and osteoporosis is far from being accomplished.
Moreover, while it is largely accepted that strategies aimed at
preserving muscle mass can improve survival and quality of life
in cancer cachexia (Benny Klimek et al., 2010; Zhou et al., 2010),
as well as tolerance to the anticancer therapies (Barreto et al.,
2016; Hatakeyama et al., 2016), further studies will be required to
clarify whether preserving bone mass in cachexia may represent
a novel strategy to improve outcomes and survival in colorectal
cancer.
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