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The changing environment always questions the survival mechanism of life on earth.

The plant being special in the sense of their sessile habit need to face many of these

environmental fluctuations as they have a lesser escape option. To counter these

adverse conditions, plants have developed efficient sensing, signaling, and response

mechanism. Among them the role of phytohormones in the management of hostile

ecological situations is remarkable. The strigolactone, a newly emerged plant hormone

has been identified with many functions such as growth stimulant of parasitic plants, plant

architecture determinant, arbuscular mycorrhiza symbiosis promoter, and also in many

other developmental and environmental cues. Despite of their immense developmental

potential, the strigolactone research in the last few years has also established their

significance in adverse environmental condition. In the current review, its significance

under drought, salinity, nutrient starvation, temperature, and pathogenic assail has been

discussed. This review also opens the research prospects of strigolactone to better

manage the crop loss under hostile ecological conditions.
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INTRODUCTION

The plant being sessile, need to manage their lifestyle under ongoing ecological constraints. In
general, plant has the capability to sustain themselves under mild environmental changes. But in
order to do so the plant makes changes in almost every aspect of their biology like morphology,
anatomy, physiology, and molecular biology. It has been known since last few decades that the
crop productivity is negatively influenced by biotic and abiotic stresses. Usually, crop responds by
perception of these stress and subsequent signal transduction followed by the regulation at the
molecular level. Among the array of candidates, phytohormones appeared to be a crucial tool
to address the stress management. The plant hormones are key determinants of plant behavior,
which, along with other signals like reactive oxygen species (ROS), Ca++, and other signaling
molecules provide tools to acquire acclimatization under hostile environmental conditions. The
plant hormones traditionally have been classified into growth promoting (auxin, gibberellins,
cytokinins) or inhibiting (ethylene and abscisic acid) categories, thus particularly focused on
development. The plant hormones have also been addressed for their role under stress conditions
and the significance of phytohormones like abscisic acid (ABA), ethylene (ET), salicylic acid (SA),
and jasmonic acid (JA) has been demonstrated.

In addition, the search of novel plant metabolites that may play role as phytohormones
is one of the most fascinating researches for plant biologists. One such emerging candidate,
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strigolactones (SLs) are a small group of carotenoid derived
compounds, exuded from the roots of 80% land plants and
offer a symbiotic relation with soil arbuscular mycorrhiza (AM)
(Akiyama and Hayashi, 2006). This new class of phytohormones
control architecture of above and underground plant organ
(Gomez-Roldan et al., 2008; Kapulnik et al., 2011; Kohlen et al.,
2011; Ruyter-Spira et al., 2011). Beside this SLs also induce seed
germination in root parasitic plants of the genera like Striga,
Orobanche, Alectra, and Phelipanche (Yoneyama et al., 2013).
These parasitic plants are usually incapable of photosynthetic
assimilations thus depend on host for these requirements. Besides
their impact on natural vegetation, their activity in agricultural
land causes a serious problem for huge agriculture losses (Parker,
2009).

This hormone class got their name after the identification
of its first candidate from Striga (Cook et al., 1966), hence
strigolactone. Later studies demonstrated that this plant
hormone suppresses shoot branching as the SL-deficient mutants
were recognized, highly branched and the application of
GR24 (a synthetic SL), may inhibit axillary bud development
(Gomez-Roldan et al., 2008; Umehara et al., 2008). Thus, the
prime investigation of SL has put views regarding its role
as a growth/germination stimulant or symbiotic promoter.
However, another important role of SL as a possible tool for
stress related events have been described and its role is being
documented in certain biotic and abiotic stress. In the current
review, we have dealt with the ongoing progress of SL for
maintenance of plant life under hostile ecological conditions.
Such comprehensive compilation is important in present
research era where the multilevel improvement approaches are
preferred over conventional methods of crop improvement.

STRIGOLACTONES—BIOSYNTHESIS AND
IMPORTANCE

The first natural SL, strigol was discovered as a germination
stimulant of Striga lutea, since then these compounds were
collectively called as strigolactones (Cook et al., 1972). As root
parasitic plants depend entirely on a host plant for water,
assimilates, and nutrients so these plants not only devastate
natural vegetation, but also are a major threat to commercial
crops including maize, millet, sorghum, legumes, rapeseed, and
tomato. In symbiosis between plant and AM fungi, SLs stimulates
branching of fungal hyphae and help plant in obtaining available
mineral nutrients particularly nutrient with low mobility such as
phosphate.

It is reported that SLs derive from carotenoids as evident
in maize plants with low SL accumulation after treatment with
carotenoid biosynthesis inhibitor fluridone (Matusova et al.,
2005). Functional role of SL can be correlated with its origin
and biosynthesis as per the requirement of the system during
evolution. As the gene involved in SL biosynthesis is found
to be reported from different plant species including algae
and bryophytes, so it can be hypothesized that these SLs are
important molecule which has been sustained in the evolutionary
chain from the long period. Basically SLs are four-ringed (A–D)

compound, which shows the variation in their function due
to attachment of different groups on A and B rings (Akiyama
et al., 2010; Boyer et al., 2012). Initially SLs was considered as
a sesquiterpene lactone, but later on it was revealed that they
are apocarotenoid, which are actually derived from carotenoid
cleavage mediated by Carotenoid cleavage dioxygenase (CCDs)
enzymes (Booker et al., 2005). The member of CCD family
is involved in the synthesis of different apocarotenoid like
cyclohexenone and mycorradicin (Auldridge et al., 2006). The
initial biosynthesis occurs in the plastids with the help of three
plastid localized enzyme D27, CCD7, and CCD8.

The genetic studies utilizing SL-deficient and SL-insensitive
mutants have uncovered the SL biosynthesis and perception
(Seto and Yamaguchi, 2014). Most of these mutants are shoot-
branching mutants, like ramosus (rms) of Pisum sativum, more
axillary growth (max) of Arabidopsis thaliana, decreased apical
dominance of Petunia hybrida and dwarf or high-tillering dwarf
(htd) of Oryza sativa (Beveridge et al., 2000; Booker et al., 2005;
Zou et al., 2006; Simons et al., 2007). The SLs are derived from
carlactone (CL), that itself synthesized as a result of sequential
reactions by three biosynthetic enzymes, D27, CCD7, and CCD8
utilizing all-trans-β-carotene in plastids (Alder et al., 2012). This
work has also demonstrated that CCD7 (carotenoid cleavage
dioxygenase 7) cleaves 9-cis-β-carotene to produce 9-cis-β-apo-
10′-carotenal, which is further utilized by CCD8 to give CL, a
biosynthetic precursor for SLs. The CL is then further oxidized by
cytochrome P450 monooxygenase MAX1 or other homologous
genes into different forms of SLs by few other unidentified
steps catalyzed by novel unidentified enzymes. The pathway
of SL biosynthesis is shown in Figure 1. It has been reported
that max1 mutant accumulate high levels of CL (biologically
inactive precursor), but still exhibited branching phenotype as
that of max3 and max4 mutant plants, which was restored
after SL treatment (Seto et al., 2014). With regard to perception
of SLs, the participation of MAX2/D3/RMS4 (F-box protein)
and D14/AtD14/DAD2 (α/77β-hydrolase) were noticed (Pandey
et al., 2016).

The SLs are also involved in many aspects of plant
development like coordination of growth and architecture of
plants according to the availability of nutrients in soil. SLs
regulates root growth and root hair elongation while on the
other hand, they suppress secondary branching of the shoot
(Koltai, 2011). SLs also stimulate secondary growth of stem and
internode length in a cross talk with auxin and also regulate leaf
senescence (Agusti et al., 2011; de Saint Germain et al., 2013;
Yamada et al., 2014). The SL triggered positive regulation of
Sinorhizobium meliloti induced nodulation was also observed in
Medicago sativa (Soto et al., 2010). In Arabidopsis the SLs are
involved in seed germination and seedling growth. It is reported
that the ABA is involved in regulation of SLs biosynthesis, as
in tomato there is downregulation of LeCCD7 and LeCCD8
genes responsible for SLs biosynthesis in ABA mutants notabilis,
sitiens, and flacca (López-Ráez et al., 2010). Additionally, SLs
behaves antagonistically to CK in bud outgrowth control (Dun
et al., 2012). The positive regulation of drought and high
salinity responses in Arabidopsis was observed by SLs and this
feature was associated with shoot- rather than root-related traits.
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FIGURE 1 | Strigolactone (SL) Biosynthetic pathway: figure shows the biosynthetic pathway of SL production and key enzymes involved in biosynthesis. SL

biosynthesis occurs in two separate compartments, plastid and cytosol. Biosynthesis starts in plastid with the conversion of trans-β-carotene to (Z)-(R)-carlactone (CL)

involving three intermediate steps catalyzed by trans/9-cys-β-carotene Isomerase, CCD7, and CCD8, respectively. Carlactone further moves to cytosol and there with

the help of Cytochrome P450 monooxygenase (MAX1) and several other unidentified enzymes it is further converted to different other SLs. Enzymes involved in this

biosynthetic pathway in different plants are named accordingly like Arabidopsis (MAX), Rice (D), and in Pea (RMS).

Moreover, in the process of stress management, plant utilizes
integrative multiple hormone pathway that includes SL, ABA,
and CK pathways; as evident from comparative transcriptome
analysis (Ha et al., 2014).

The findings of recent research have answeredmany aspects of
SLs particularly related with its biosynthesis, signaling, regulation
of morphological/stress responses, and associated cross talk with
different plant hormones during these events. In view of such
diverse area of studies with regard to this novel plant hormone,
the present study will uncover the role of SL under hostile
environmental conditions.

STRIGOLACTONES AND HOSTILE
ECOLOGICAL CONDITIONS

The role of SL in stress and development has been dealt
in a recent review (Pandey et al., 2016). Like other plant
hormones, the prime function of SLs is the development
and its interaction with auxin dominates in SL regulated
developmental processes (Hayward et al., 2009). However, the
recent exploration has also suggested the role of ABA in
regulation of strigolactone production (López-Ráez et al., 2010),
and thus possibility in stress management. Moreover, it has

been noticed that the biosynthesis of SL are under the influence
of nutrient starvation and regulation of SL production is a
crucial response under stress conditions. In this context, the
upcoming text will uncover the relation between strigolactone
biosynthesis and its influence under hostile ecological conditions
(Figure 2).

Salinity and Drought Stress
The AM symbiosis alleviates the negative effects of salt stress
on lettuce plants by shifting hormonal profiles. Aroca et al.
(2013) have suggested that salt stress induced strigolactone
production in AM associated lettuce plants further triggers AM
fungal growth and thus helps to overcome stress conditions.
In Arabidopsis, the positive regulation of drought and salinity
response was observed through mediation of SL (Ha et al.,
2014). The Arabidopsis max3 and max4 mutants are sensitive to
drought and salt stress and display higher stomatal density and
delayed ABA-induced stomatal closure compared to wild type
plants.

The role of SL in water stress has been observed, which
was found to exhibit interplay with other plant hormones viz.
ABA, etc. In one study, it has been demonstrated that the
9-cis-epoxycarotenoid dioxygenase (NCED)-inhibitor abamine
and SG treated ABA deficient mutants’ exhibit reduced ABA
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FIGURE 2 | Strigolactone triggered response under hostile ecological conditions: picture shows the stress triggered biosynthesis and signaling of SLs. SLs

under abiotic and biotic stress conditions provide resistance to plants. Under water stress SLs inhibit shoot growth (a cross talk with cytokinin) while enhance lateral

root growth to increase the uptake of water. In a cross talk with ABA, SLs regulate stomatal density and release seed dormancy. SLs enhance arbuscular mycorrhizal

(AM) association to increase mineral uptake under Nitrogen and Phosphorus deficiency. Under biotic stress condition SLs provide tolerance against pathogen infection.

and SL levels. Moreover, the ABA mutants further revealed
suppression of LeCCD7 and LeCCD8 transcripts (López-Ráez
et al., 2010). It has been observed that the SL-deficient and
SL-response mutants exhibited hypersensitivity to drought and
salt stress and the features was associated with shoot related
traits. Further studies with SL biosynthesis (max3 and max4) and
response (max2)mutants exhibit that the SL treatment can rescue
the germination under drought condition only in biosynthesis
mutants. Additionally, these mutants also exhibit low sensitivity
for ABA as compared to wild type plants (Ha et al., 2014).
The comparison of Lotus japonicus wild-type and SL-depleted
plants were studied under osmotically stressed and/or phosphate
starved conditions. The stomatal conductance of SL-depleted
plants was found higher and they exhibited weaker resistance in
terms of slower stomatal closure in response to ABA, associated
with drought (Liu et al., 2015). The SL pretreatment inhibited
the osmotic-stress induced ABA production by suppression of
LjNCED2. Recently, the MAX2 identified from a parasitic plant
(Orobanche aegyptiaca, OaMAX2) has also been characterized
in Arabidopsis using complementary approach. Interestingly,
OaMAX2 restored the drought tolerant phenotype of Atmax2
mutant, which suggested the conservation of MAX2 signaling in
parasitic and non-parasitic plants (Li et al., 2016). It is known
that AM symbiosis alleviates drought stress in plants. Moreover,
it has been noticed that the drought may influence the hormone
profile in tomato and lettuce plants. Under such conditions, there

is a possibility of high accumulation of strigolactone that in turn
influences symbiosis thus is helpful to cope up with this stress
(Ruiz-Lozano et al., 2016).

Temperature
The temperature is one of the important environmental concerns
that have been emerged mostly due to the recent way of
developments. The plant requires a set of optimal conditions,
including temperature, to perform their biochemical and
physiological behavior and any short or long term fluctuations
may bring them under stress. The seed germination in plants
is dependent upon temperature and usually inhibited by high
temperature. Again, plant hormones such as CK and GA
positively influence germination processes and ABA negatively
regulate the germination. SLs has been originally discovered as
a chemical that stimulate the germination of seeds of parasitic
weeds. However, it has been also noticed that SL also exhibit
this activity for other plants. It has been observed that SL
lowers the ABA to GA balance and further increases the
cytokinin (CK) levels, which is a positive move toward seed
germination. On application of GR24 under high temperature,
the germination of SL defective Arabidopsis mutant gets
stimulated (Tsuchiya et al., 2010). During warm stratification, the
germination in dormant Philipanche ramose seed is rescued by
SL that also involves a reduction of ABA levels (Lechat et al.,
2015).
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Nutrient Stress Conditions
Under nutrient deprived conditions, plant produces high
amounts of SLs that lead to suppression of shoot branching
and stimulates symbiosis (Gomez-Roldan et al., 2008; Umehara
et al., 2008). With their activity via modification of root and
shoot architecture and promotional activity toward a symbiosis
of rhizobial bacteria and AM fungi, SLs play crucial role in
nitrogen and phosphorous deficiency (Marzec, 2016). In AM
symbiotic relation, fungi ensure the supply of water and nutrients
(particularly phosphate and nitrogen) through their hyphal
extensions. Under low phosphate, the GR24 treated wild plants
have been shown to demonstrate high lateral root numbers;
however, the SL mutants exhibited low lateral roots. In contrast,
the application of GR24 under high phosphate causes decrease
in lateral root density by suppressing both outgrowth and lateral
root-forming potential (Ruyter-Spira et al., 2011). This study
advocated the participation of SL under these conditions. Further,
the correlation of low phosphate, high strigolactones and reduced
bud outgrowth was evident in Arabidopsis and rice (Umehara
et al., 2010; Kohlen et al., 2011). Apart from the role of SLs in
the management of phosphate homeostasis, the SLs have also
been recognized as a possible route for regulating plant growth
response to nitrogen supply. In a study with Arabidopsismutants
of SL-biosynthesis (max1-1) and SL-insensitive (atd14-1), the
altered response to nitrogen deficiency was observed. Moreover,
under limited nitrogen conditions the alteration of expression
levels of SL biosynthesis genes (MAX3 and MAX4) was noticed
(Ito et al., 2016).

Biotic Stress
Besides a role in growth and development, SLs has also been
recognized as a player to offer resistance to specific pathogens
(Marzec, 2016). First such evidence came with the identification
of pathogen associated TF motifs in the promoter of genes
associated with the SL biosynthesis (Torres-Vera et al., 2014).
The study with SL synthesis and signaling impairs mutants
of A. thaliana demonstrated the role of strigolactone in plant
resistance against infection of bacteria like Rhodococcus fascians,
Pectobacterium carotovorum, and Pseudomonas syringae (Piisilä
et al., 2015; Stes et al., 2015). The infection of R. fascians resulted
into more pronounced leafy gall syndrome in SL-biosynthesis
(max1, max3, and max4) and signaling (max2) mutants. The
supplementation of GR24 (a synthetic analog of SL) and D2
(an inhibitor of SL biosynthesis) in the media of wild types
displayed greater susceptibility to R. fascians, only in later study.
Moreover, the infection also triggers up regulation of genes
associated with SL production (max1, max3, and max4; Stes
et al., 2015). The radial growth of diverse phyto-pathogenic fungi
was inhibited after application of GR24 (Dor et al., 2011). The
increase in sensitivity toward Alternaria alternata and Botrytis
cinerea was also observed in the Lycopersicon esculentum SL-
biosynthesis mutant slccd8 (ortholog of the A. thaliana MAX4),
which was accompanied by reduction in the content of plant
defense hormones (Torres-Vera et al., 2014). Contrary to this, SLs
was not displayed their role in resistance to other pathogens viz,
Pythium irregulare and Fusarium oxysporum (Blake et al., 2016;
Foo et al., 2016). Thus, it can be stated that the SLmay be involved

in plant immune response involving only specific bacterial and
fungal pathogens.

CONCLUSION AND FUTURE
PROSPECTIVE

The interaction of phytohormones and stress is well known
events in plant stress management. The current list of these
candidates involves both the classical and newly discovered
phytohormones and the list is still continuing with the advent of
novel growth stimulatory phytochemicals. The plant hormones
in most of the cases are originally defined and described in
terms of development and its role in stress is usually being given
the next preference. But, the recent outlook for key hormones
like ABA, ET, JA, SA has put the clear categorization of plant
hormones under two separate heads i.e., development and stress
related. In this continuation, the SL has been recognized as an
important emerging player in plant stress management.

The SL was originally described to favor AM symbiosis
establishment and offer as host detection cues for root parasitic
plants such as Striga and Orobanche and stimulate seed
germination of these parasitic weeds (Bouwmeester et al., 2007;
López-Ráez et al., 2011). The stress may influence directly the
SL biosynthesis or its signaling or its cross-talk with other plant
hormones particularly ABA. Mostly unique to this, they pave
the way for plant survival growing under nutritional starvation
by stimulating growth-supporting microbial community like
AM and nodulation efficiency of nitrogen fixing bacteria.
Furthermore, the impairment of either its synthesis or signaling
may compromise pathogen specific plant resistance.

Though the significance of SL has been recognized in salinity,
drought, temperature, nutrient starvation, and plant resistance,
but its establishment as stress related hormones demand further
studies. The queries that need to answer at this juncture may
include—the disparity of SL biosynthesis/signaling in stress
related contrasting genotype, their significance in multiple stress
management to address the exact field problems, possibility of
cross talk with other stress related hormones, interaction with
plant transcription factors and related signaling pathway.
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