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Phenotypic diversity between laboratory mouse strains provides a model for studying

the underlying genetic mechanisms. The A/J strain performs poorly in various endurance

exercise models. The aim of the study was to test if endurance capacity and contractility

of the fast- and slow-twitch muscles are affected by the genes on mouse chromosome

10. The C57BL/6J (B6) strain and C57BL/6J-Chr 10A/J/NaJ (B6.A10) consomic strain

which carries the A/J chromosome 10 on a B6 strain background were compared. The

B6.A10 mice compared to B6 were larger in body weight (p < 0.02): 27.2 ± 1.9 vs.

23.8 ± 2.7 and 23.4 ± 1.9 vs. 22.9 ± 2.3 g, for males and females, respectively, and

in male soleus weight (p < 0.02): 9.7 ± 0.4 vs. 8.6 ± 0.9 mg. In the forced running

test the B6.A10 mice completed only 64% of the B6 covered distance (p < 0.0001).

However, there was no difference in voluntary wheel running (p = 0.6) or in fatigability

of isolated soleus (p = 0.24) or extensor digitorum longus (EDL, p = 0.7) muscles.

We conclude that chromosome 10 of the A/J strain contributes to reduced endurance

performance. We also discuss physiological mechanisms and methodological aspects

relevant to interpretation of these findings.

Keywords: electric stimulation, specific force, chromosome substitution strains, exercise, skeletal muscle

INTRODUCTION

Endurance as a component of physical fitness is an important determinant of health and well-being.
For instance, the risk of mortality due to cardiovascular disease in obese men is significantly
reduced with increasing level of fitness (Lee et al., 1999). Genetic factors account for a substantial
portion of endurance capacity with heritability estimates around 50% (Bouchard et al., 1998).
Hence, understanding of the underlying genetics might reveal new biomarkers and targets for
pharmaceutical interventions to improve fitness and health.

The ability to generate energy via aerobic pathways is a significant determinant of endurance
performance. It has been demonstrated that endurance improvement is concomitant with an
increase in VO2max and activity of the mitochondrial enzymes (Vollaard et al., 2009). Indeed,
genes involved in aerobic oxidation and mitochondrial biogenesis may have a substantial influence
on endurance capacity. For example, overexpression of PPARdelta (Wang et al., 2004), which
stimulates mitochondrial biogenesis in skeletal muscle, or PEPCK-C (Hakimi et al., 2007), which
can contribute to the flux through the tricarboxylic acid (TCA) cycle (Burgess et al., 2004),
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significantly improved running endurance in mice. However, it
remains unclear whether these genes play a role in variability in
endurance observed in human populations or animal models.

Analyses of the laboratory mouse strains revealed that
genetic variability can substantially influence endurance capacity.
This influence is evident even when different types of motor
activity are explored. For instance, the A/J strain performs
poorly in forced running (Lightfoot et al., 2001; Hoit et al.,
2002; Courtney and Massett, 2012) and swimming (Kilikevicius
et al., 2013) endurance tests compared to other strains
including the C57BL/6J (B6). Thus, these two strains provide
an interesting model for studying the genetic mechanisms
influencing endurance performance.

Chromosome substitution strains, also known as consomic
strains, provide a simple model for exploring genetic influences.
They consist of a panel of strains where one chromosome of
a host strain is replaced by a homologous chromosome of a
donor strain (Matin et al., 1999; Singer et al., 2004; Ishii et al.,
2011). Phenotypic differences between host and a consomic
strain implicate the variants of genes residing on a particular
chromosome in their etiology. A genome wide screening of
a panel of consomic strains would still require a substantial
number of animals (Shao et al., 2008). However, it offers a
cost effective model for preliminary hypothesis testing in the
instances where analyses can be restricted to a limited number
of chromosomes (Chr).

The C57BL/6J-Chr 10A/J/NaJ (B6.A10) consomic strain
carrying A/J Chr 10 on the B6 strain background provides a
useful model for studying the genetic mechanisms contributing
to impaired endurance capacity of the A/J strain. A gene
encoding the key enzyme of the TCA cycle, citrate synthase
(Cs), resides on mouse Chr 10. Both human (Vollaard et al.,
2009) and rodent (Holloszy, 1967) studies demonstrated that
endurance training is accompanied by an increase in CS activity.
Such adaptive response implies that Csmay play a limiting role in
endurance capacity. Furthermore, A/J mice carry a strain-specific
allele of the gene. We have reported that enzymatic activity of
CS in skeletal muscle samples from the A/J strain is ∼50% lower
compared to B6 allele (Ratkevicius et al., 2010). As an initial
step to investigating the role of the genes residing on Chr 10 in
endurance capacity of the A/Jmice, we used the B6.A10 consomic
strain to explore relevant phenotypes.

The aim of this study was to test the hypothesis that running
endurance and skeletal muscle resistance to fatigue may be
reduced in the B6.A10 strain.

MATERIALS AND METHODS

Animals
All animal procedures were approved by the Lithuanian State
Food and Veterinary Service (Ref. # 0230). Breeding nuclei of
the C57BL/6J (B6) and C57BL/6J-Chr 10A/J/NaJ (B6.A10) strains
were purchased from Charles River and the Jackson Laboratory,
respectively. Samples of the experimental animals were bred
locally.

Mice were housed in standard cages, one to three same
sex animals per cage, ambient temperature 20–21◦C and 40–60

% humidity, with 12-h light/ 12-h dark cycle. Animals were
fed standard chow diet (LabDiet 5001) and received tap water
ad libitum. The forced running experimental procedure on 16 B6
(8 females and 8 males) and 21 B6.A10 (7 and 14, respectively)
was initiated at 12–13 week of age. Voluntary wheel running was
measured in separate group of 10 B6 and 10 B6.A10 males at 15–
16 week of age. The ex vivo testing was carried out on a separate
group of 6 B6 and 6 B6.A10 males of 18–19 week of age.

Forced Treadmill Running Experiment
Animals were tested on a 5-lane treadmill (LE8710MAP, Panlab,
Harvard Apparatus, SL, Spain) with an exercise area of 37 × 5 ×
5 cm (L × W × H) in each lane, and with a built-in air puff
stimulation at the end of the lane. All treadmill sessions were
carried out during the dark cycle under red light illumination.
Each exposure to the treadmill began with a 2-min habituation
period on a stationary treadmill belt at a zero incline. Two
habituation sessions of 15 min were carried out on 2 consecutive
days prior to endurance test. During those sessions mice ran
on the treadmill at a speed of 16.8 m/min at zero incline. The
treadmill belt was cleaned with 70% ethanol between the groups.

Two days after completion of habituation mice were subjected
to an endurance test. The test is a modification of the protocol
described earlier (Knab et al., 2009; Massett et al., 2009). The
starting speed of the treadmill at a zero incline was set at 16.8
m/min. The speed was increased by 3 m/min every 2 min until
40.8 m/min speed was reached. If a 2 min stage of 40.8 m/min
speed was successfully accomplished, the speed of 40.8 m/min
was maintained until exhaustion. The endurance capacity was
characterized by the distance ran over the test.

Animals were motivated to run by air puffs. It was activated
when the mouse touched the grid at the end of lane. If the mouse
still refused to run then it was encouraged to continue running by
gentle hand prodding of the tail or hindquarters. Themice readily
responded to this stimulus as has been described by Steiner et al.
(2011). The point of exhaustion was defined as the time (in min)
at which the mouse could no longer keep pace with the treadmill
despite of delivered air puffs and continuous (lasting up to 10 s)
hand prodding.

Voluntary Wheel Running
Animals were single housed in a cage equipped with a running
wheel of 71.6 cm in inner circumference (Tecniplast, Italy).
Following 1 day habituation period running wheel activity was
recorded as revolutions of the wheel over 3 consecutive days. This
permitted calculation of the distance ran over that period of time.
However, it was not possible to determine the actual time spent
on the wheel.

Contractile Properties of Fast- and
Slow-Twitch Muscles
Contractility of extensor digitorum longus (EDL) and soleus
muscles was examined. All procedures were carried out at
room temperature (23–25◦C). Following sacrifice, soleus and
EDL muscles of randomly selected hind limb were excised for
contractile measurements. Sutures were attached to the proximal
and distal tendons of isolated muscles. Thereafter muscle was
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mounted between two platinum plate electrodes in 100mL tissue
bath (Radnoti, USA) filled with Tyrode’s solution (in mM: 121
NaCl, 5 KCl, 0.5 MgCl2, 1.8 CaCl2, 0.4 NaH2PO4, 0.1 NaEDTA,
24 NaHCO3, 5.5 glucose, pH 7.4, and bubbled with 95% O2:
5% CO2). The distal tendon was attached to a stable hook and
the proximal end was tied directly to the lever of the muscle
test system (1200A-LR Muscle Test System, Aurora Scientific
Inc., Canada). Both soleus and EDL of the same hind limb
were processed in an alternating order between the animals.
While processing the first muscle the other was kept in a bath
with Tyrode solution. Mounted muscle was left to equilibrate in
the solution for 10 min. Afterwards the muscle was stimulated
using a custom-made stimulator by 25 V square pulses. It has
been determined in a pilot experiment that this voltage elicits
maximal contraction. Muscle length was increased and twitch
force measured every 30 s until no further increase in force was
observed. Muscle was kept at this optimal length (L0) during
the subsequent experiments. Muscles were photographed with a
scale in the background in order to assess muscle length with a
precision of 0.1 mm. Twitch contraction time (CT) was assessed
as the time elapsed from the beginning of the contraction to its
peak. Twitch half relaxation time (HRT) was measured as the
time taken for the force to decline to 50% of the peak value. At L0
muscle was subjected to 300ms (EDL) or 900ms (soleus) trains
of pulses of increasing frequencies (20, 50, 80, 100, 150, 200Hz).
Maximal isometric force (P0) was estimated from plateau in
force-frequency curve and usually occurred at 100Hz for SOL
and at 100–150Hz for EDL.

Following the force-frequency procedure muscle was
subjected to a fatigue protocol consisting of 180 repeated
isometric contractions at 40Hz. A train of stimuli (250 ms in
duration for EDL, or 500ms for SOL) were delivered every
second for EDL and every 1.1 s for SOL, respectively. Thus,
duration of fatigue protocol for EDL and SOL was 180 and
198 s, respectively. The fatigue index was calculated as the ratio
between the force of the final and the first contraction of the
fatigue protocol multiplied by 100.

After the measurements, the muscle was cleaned from all
visible tendons, blotted, and weighed on an analytical balance
(Kern, ABT 320-4M, Germany). Muscle physiological cross-
sectional area (CSA) was calculated by dividing wet muscle mass
by the optimal fiber length (Lf) and the density of mammalian
skeletal muscle: CSA (mm2) = mass (mg)/length (mm)/1.06
(mg/mm3) (Brooks and Faulkner, 1988). Lf was calculated from
the Lf/L0 ratio of 0.70 or 0.45 for soleus and EDL, respectively
(Brooks and Faulkner, 1988). The specific tension (sP0) was
determined by the ratio between P0 and CSA.

CS Enzyme Activity
CS activity was measured as previously described (Ratkevicius
et al., 2010). The gastrocnemius muscle samples from the B6
(n = 9) and B6.A10 (n = 9) males were homogenized in ice-
cold lysis buffer (50mM Tris·HCl, 1mM EDTA, 1mM EGTA,
1% Triton X-100, pH was adjusted to 7.0) with an ULTRA-
TURRAX homogenizer (Rose Scientific, Edmonton, Canada).
Following shaking for 60 min the homogenates were centrifuged
at 13,000 g at 4◦C for 10 min and the protein concentration

was measured in the supernatant using the Bradford assay
(Bio-Rad, Hertfordshire, UK). The reaction reagent consisted of
100mM triethanolamine-HCl, DTNB (100µM), 0.25% Triton-
X (vol/vol), 0.5mM oxaloacetate, 0.31mM acetyl CoA with pH
adjusted to 8.0. Ten microliters of muscle homogenate was added
to start the reaction in 1000µL. The molar extinction coefficient
of 13,600 M−1

·cm−1 was used to assess the maximum CS activity
(Vmax) at 412 nm during the first 2 min of the reaction. The
assay was carried out at room temperature (∼21◦C), and CS from
porcine heart was used as a standard (C3260-200UN, Sigma-
Aldrich, UK) for assay calibration.

Statistical Analyses
A 2-wayANOVA (Strain and Sex), 2-way ANCOVA (body weight
as covariate) and Mann-Whitney U-test were performed where
appropriate using IBM SPSS Statistics (v21) software. Mean and
SD is presented unless stated otherwise.

RESULTS

Endurance Capacity
First we aimed at determining if consomic strain carrying Chr 10
of A/J strain would show a reduced performance in the forced
running endurance test.

The B6 strain showed a superior endurance capacity by
running significantly further compared to the B6.A10 strain,
391 ± 53 vs. 251 ± 54m respectively (p < 0.0001). There was
no sex effect (p = 0.6) on endurance performance (Figure 1A).
Although the B6.A10 mice were heavier (p < 0.02) compared to
the B6; 27.2 ± 1.9 vs. 23.8 ± 2.7 and 23.4 ±1.9 vs. 22.9 ± 2.3 g,
for males and females, respectively, the strain effect on forced
running distance remained statistically significant (p < 0.0001)
after inclusion of body weight as covariate.

Voluntary Wheel Running
We then wanted to examine if the difference in forced running
endurance would be paralleled by a strain effect on voluntary
activity.

Voluntary running capacity was assessed in male mice
over the course of 72 h. Only males were studied because no
sex effect was noted in the forced running test. The tested
animals ran 2649 ± 996m per day. There was no statistically
significant difference between the B6 and B6.A10 strains (p= 0.6;
Figure 1B).

Contractile Properties of Isolated Muscles
To test the hypothesis that peripheral mechanisms of fatigue may
be contributing to poor performance in the forced running trial
we analyzed contractility of isolated fast- and slow-twitch muscle
of the B6 and B6.A10 males. Only males were studied because no
sex effect was noted in the forced running.

Gastrocnemius weight as well as EDL weight, length, and CSA
were similar between the strains, whereas soleus weight and the
CSA were slightly, yet statistically significantly, larger (p < 0.05)
in B6.A10 compared to the B6 strain (Table 1).

The peak force of isometric contraction was similar between
the B6 and B6.A10 strains in both soleus, 192 ± 24 vs.
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FIGURE 1 | Chromosome 10 of the A/J strain confers lower endurance

capacity. (A) Forced treadmill running distance of the consomic B6.A10 strain

was reduced compared to the host C57BL/6 (B6) strain. Males (M) and

females (F) were similarly affected. (B) Voluntary wheel running distance over

24 h period was not different between males of the two strains. Mean and SD

shown; n indicates number of animals per group; p-value for weight adjusted

strain effect is shown.

TABLE 1 | Properties of skeletal muscle samples of B6 and B6.A10 strain

males. Mean ± SD.

B6 (n = 6) B6.A10 (n = 6) p-value*

BW (g) 28.7 ± 2.0 29.1 ± 1.0 0.699

Gastrocnemius weight (mg) 129.8 ± 7.8 138.8 ± 5.4 0.065

Soleus weight (mg) 8.6 ± 0.9 9.7 ± 0.4 0.015

Soleus L0 (mm) 13.9 ± 0.6 14.1 ± 0.5 0.485

Soleus Lf (mm) 9.9 ± 0.4 10.0 ± 0.4 0.589

Soleus CSA (mm2 ) 0.9 ± 0.1 1.0 ± 0.1 0.041

EDL (mg) 10.5 ± 1.2 11.1 ± 0.6 0.394

EDL L0 (mm) 15.9 ± 0.5 15.9 ± 0.7 0.699

EDL Lf (mm) 7.2 ± 0.2 7.2 ± 0.3 0.699

EDL CSA (mm2 ) 1.6 ± 0.2 1.6 ± 0.0 0.818

*Mann-Whitney U-test between the strains, exact significance displayed; values <0.05

are highlighted in bold. BW, body weight; L0, optimal length; Lf , optimal fiber length; CSA,

physiological cross-sectional area; n indicates number of samples tested.

211± 10mN (p= 0.13), respectively, and EDLmuscles, 209± 21
vs. 217± 13mN (p= 0.59). The isometric contraction force after
adjustment for the CSA of the muscle did not differ between
the strains in either soleus or EDL muscle (Figure 2A). The
temporal properties of twitch contraction and relaxation did not
differ between the strains either (Figure 2B). A series of repeated

FIGURE 2 | Contractile properties of isolated slow- (soleus) and

fast-twitch (extensor digitorum longus, EDL) muscles are not

associated with chromosome 10 genotype. Force-frequency relationship

expressed as specific force (A), contraction (CT) and half relaxation times

(HRT) of single twitch (B) are shown. Black symbols/bars represent B6 and

white B6.A10 strain. Mean and SD shown.

contractions in both fast- and slow-twitch muscle resulted in a
similar level of fatigue between the strains (Figure 3). Fatigue
index in B6 and B6.A10 soleus was 34 ± 5 and 31 ± 3%,
respectively (p = 0.24), and 27 ± 2 and 27 ± 4% (p = 0.7) in
the EDL.

CS Enzymatic Activity
The CS activity in gastrocnemius muscle was assessed to examine
if it could have contributed to reduced forced running endurance
of the B6.A10 strain. The analysis indicated that CS activity was
significantly lower (p< 0.0001) in B6.A10 compared to B6 strain,
487.7± 69.5 vs. 754.0± 68.6 U/g, respectively.

DISCUSSION

The main findings of this study are that Chr 10 of the A/J strain is
associated with substantially lower endurance capacity compared
to the B6 strain. The between strain difference remained robust
and highly significant even following adjustments for body
weight. Consistently with our recent observation in a separate
study involving the same strains (Kilikevicius et al., 2016), it
also emerged that soleus muscle weight was higher in B6.A10
compared to the B6 mice.
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FIGURE 3 | Fatigue of isolated muscle is not linked to chromosome 10

genotype. Mean force of 180 repeated contractions of slow-twitch soleus

(top) and fast-twitch EDL (bottom) muscles are shown. Solid and dashed

lines represent B6 and B6.A10 strains, respectively.

Endurance capacity of the B6 strain measured in the present
study as the distance run during the test was comparable to values
in the literature despite the differences in the testing protocol and
age (Massett, 2013; Courtney and Massett, 2014). In these earlier
studies endurance capacity of the A/J strain equaled to just∼43%
of that in the B6 strain. Our model, showing that B6.A10 mice
ran only 64% of the distance completed by B6, implicates Chr
10 gene(s) in impaired endurance of the A/J strain. This novel
finding adds to the previous knowledge of the role of Chr 14;
specifically, males of consomic strain B6.A14 ran ∼84% of the
distance completed by B6 strain (Courtney and Massett, 2014).
Thus, it emerges that the difference in endurance between the B6
and A/J strains is polygenic in nature, caused by chromosome
10 and 14 genes; the identity of the causative genes, however,
remains to be determined.

Physical activity is an important determinant of health
and fitness. Voluntary wheel running is extensively used for
quantification of physical activity in rodents. The majority of
rodent species avidly engage in this locomotor activity although
it is debatable what motivates animals to run (Careau et al.,
2012). Although both voluntary and forced running represent
locomotor activities, mechanisms limiting performance under
these two conditions are likely to differ. The forced running
test is continuous and limited by the neuromuscular and/or
cardiovascular systems, while the voluntary running consists of
bursts of activity accumulated over a long period of time and
hence is not determined by the same physiological mechanisms.

Such a notion is consistent with the observations that voluntary
running distance did not differ markedly between the B6 and
A/J strains (Lightfoot et al., 2010; Courtney and Massett, 2012).
A similar uncoupling of performance in the two types of
activity was also observed between other strains; for instance
129S1/SvImJ mice performed poorly in voluntary running
compared to the B6 but matched their performance in forced
running (Lightfoot et al., 2010; Courtney and Massett, 2012).
Thus, mechanisms limiting forced running endurance in the
B6.A10 strain do not affect voluntary running of these animals.

Enzymatic activity of citrate synthase (CS) has been used as
a biomarker of mitochondrial content (Larsen et al., 2012) and
function (Jacobs et al., 2013) in skeletal muscle. It has been
known that endurance exercise training leads to an increase in CS
activity in exercised skeletal muscles (Holloszy and Booth, 1976).
The CS encoding gene, Cs, resides in the telomeric region of
mouse Chr 10. The A/J strain is characterized by ∼50% reduced
enzymatic activity of CS in skeletal muscle (Ratkevicius et al.,
2010). Consistently with that, albeit a smaller reduction of∼35%
was observed in the present study in B6.A10 strain carrying
the A/J strain Chromosome 10. This discrepancy between the
A/J and B6.A10 strains suggests that ∼35% reduction can be
attributed to Chromosome 10, whereas the remaining difference
is due to themechanisms governed by the factors out with Chr 10,
which could affect quantity of the enzyme in the muscle (e.g., by
influencing proportion of oxidative fibers) rather than the innate
CS activity.

We hypothesized that the impaired endurance capacity of
the B6.A10 strain might be a reflection of fatigue resistance of
skeletal muscles. However, fatigability of the muscles was not
strain dependent. To understand this unexpected observation we
first considered whether sample size could have been too small.
That, however, is unlikely. If the strain effect on the fatigue index
of isolated muscle was proportional to that on the forced running
endurance, we had statistical power >85% for detecting it at
alpha level of 1% in this sample. The second possible explanation
is methodological. It has been demonstrated that isolatedmuscles
fatigue faster compared to individual muscle fibers dissected
from the same muscle because of the restricted oxygen diffusion
to the core of the muscle (Zhang et al., 2006). If differences
in the aerobic metabolism of skeletal muscle were responsible
for accelerated fatigue in the forced running test (a plausible
hypothesis considering the difference in CS activity between the
B6 and B6.A10), its relevance might have been substantially
diminished under the hypoxic conditions where contractility
would shift toward reliance on anaerobic metabolism. Examining
fatigue properties in isolated muscle fibers and/or the whole
muscle in situ would be required to address this question. The
third alternative explanation is that forced running endurance
could be primarily limited by cardiovascular function. The
echocardiographic variables (ventricular wall thickness, chamber
size) in the B6 strain exhibit properties reminiscent of the
“athlete’s heart” in comparison to A/J (Hoit et al., 2002). The
estimates of the cardiac output based on the systolic-diastolic
volume difference and heart rate are∼15% lower in the A/J strain
compared to the B6 (Hoit et al., 2002; Lake et al., 2009; The
Jackson Laboratory, 2010). However, as ventricular parameters of
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the B6.A10 strain are not known, its direct comparison to the B6
strain is not possible. Further studies will be required to prioritize
between the contribution of cardiac andmuscular mechanisms to
the difference in fatigability between the B6 and B6.A10 mice.

A difference in soleus muscle weight between the B6 and
B6.A10 strains (Table 1) provides further support to recently
reported observation between the same strains (Kilikevicius et al.,
2016). Albeit a ∼13% increase in soleus of B6.A10 strain is less
extensive than ∼40% reported in that study, collectively these
findings are consistent with a notion that A/J variant of one
or more chromosome 10 genes confer an increase in soleus
weight. The direction of the effect, i.e., B6.A10> B6, is somewhat
surprising because in the B6 vs. A/J comparison the former
exhibits higher weight due to more numerous fibers (Kilikevicius
et al., 2013). The contractile function measured in the present
study was comparable with literature, both for the soleus (Brooks
and Faulkner, 1988) and EDL (Amthor et al., 2007) muscles.
In general, there was no difference between the B6 and B6.A10
strains in contraction and relaxation times (Figure 2), although
peak isometric force in B6.A10 soleus was slightly elevated
mirroring muscle weight difference between the strains. The
mechanisms and gene(s) underlying the strain difference remain
to be determined.

In conclusion, Chr 10 of the A/J strain contributes to the
reduced CS enzymatic activity and endurance performance. The
effect may be mediated by the cardiovascular function, although
the role of skeletal muscle cannot be ruled out. An intercross
between the B6 and B6.10A strains provides an attractive
research model for further analyses and identification of gene(s)
determining endurance capacity.
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