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Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting

large set of population of the world. To widen the scope of understanding of genetic

causes of this disease, we performed interactive and toxicogenomic based systems

biology study to find potential T2DM related genes after cDNA differential analysis.

Methods: From the list of 50-differential expressed genes (p < 0.05), we found

9-T2DM related genes using extensive data mapping. In our constructed gene-network,

T2DM-related differentially expressed seeder genes (9-genes) are found to interact with

functionally related gene signatures (31-genes). The genetic interaction network of both

T2DM-associated seeder as well as signature genes generally relates well with the

disease condition based on toxicogenomic and data curation.

Results: These networks showed significant enrichment of insulin signaling, insulin

secretion and other T2DM-related pathways including JAK-STAT, MAPK, TGF, Toll-like

receptor, p53 and mTOR, adipocytokine, FOXO, PPAR, P13-AKT, and triglyceride

metabolic pathways. We found some enriched pathways that are common in different

conditions. We recognized 11-signaling pathways as a connecting link between

gene signatures in insulin resistance and T2DM. Notably, in the drug-gene network,

the interacting genes showed significant overlap with 13-FDA approved and few

non-approved drugs. This study demonstrates the value of systems genetics for

identifying 18 potential genes associated with T2DM that are probable drug targets.

Conclusions: This integrative and network based approaches for finding variants in

genomic data expect to accelerate identification of new drug target molecules for different

diseases and can speed up drug discovery outcomes.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a metabolic and complex
disease that is characterized by hyperglycemia in the context
of insulin resistance and relative lack of insulin (Kumar et al.,
2005). Globally, it is estimated that there are more than 285
million people with T2DM making up about 90% of diabetes
cases (Melmed et al., 2011). The disease mechanism is known
to a considerable extent and tissues including pancreatic islets,
liver, skeletal muscle, adipose tissues, gut, and the immune system
play a role in its progression (Kolb and Eizirik, 2011). Although
several key factors including lifestyle, diet, obesity and genetic
shave been recognized in the progression of insulin resistance
and T2DM (Polonsky et al., 1996; Florez, 2008; Ripsin et al.,
2009), the underlying mechanisms remain unclear. It has become
a progressively challenging health issue due to its high morbidity,
mortality, and heightened incidence worldwide (Melmed et al.,
2011).

Recent advances revealed that diabetes is a heterogeneous-
disease with complex genetic mechanisms. Several biological
systems seem to be connected in the progression and
development of T2DM; however the limited understanding
of the complications of these systems and their interactions
has been a major obstruction in the progress of optimal
treatments in T2DM. Most cases of diabetes involve many
genes, with each being a minor contributor to an intensified
possibility of becoming a type 2 diabetic (Melmed et al.,
2011) and similarly genes connected with T2DM poorly
signify established pathways of insulin signaling (Florez,

2008). The existing methods to find statistically significant
functional classes in T2DM related genes have recognized
enrichment of cell cycle regulation (McCarthy, 2010;
Voight et al., 2010). Nonetheless, the functional categories
and therapeutic role of the expressed genes in T2DM and
molecular biology of insulin resistance has not been completely
understood (Voight et al., 2010). Therefore, significant
gaps in clinical outcome still remain within each of these
problems, leading investigators to continue searching for more
improvement.

Differential expression in islets from diabetic and control
individuals explored the list of genes related to type 2
diabetes mellitus. Among the list of probable genes, CHL1,
LRFN2, RASGRP1, and PPM1K were significantly associated
with insulin secretion and diabetes type 2. During this
global expression analysis, it was found that fifty genetic loci
associated with T2DM due to genetic co-expression and protein-
protein interaction involved in insulin secretion and HbA1c
(Taneera et al., 2012). It has been observed that the effect
of genetic variations on incessant glycemic events in non-
diabetic individuals primarily reveal perturbation of insulin
secretion (Jain et al., 2013). Another systems biology approach
based on genome wide association studies explored the T2DM
pathophysiology and insulin signaling genes (Jain et al., 2013).
Similarly, the abnormal secretion of glucagon led to islet
inflammation in T2DM and it has been seen the interleukin-
6 is involved to stimulate the glucagon secretion (Chow et al.,
2014).

Genomic expressions in insulin signaling and integrated
pathways may manifest themselves and to interrupt any
one of these genes could develop the clinically significant
insulin resistance and diabetes (Melmed et al., 2011). The
systems biology approach potentially integrate these biological
networks and will help in revealing key elements involved in
pathogenesis. As genetic expression is vital to better understand
the network of systems biology, thereby cDNA microarray
technology is a valuable tool for analyzing expression levels
of thousands of genes at the same time. The large number
of expression datasets in the public domain provides a rich
source for genome-wide information on T2DM and affords an
opportunity to do expression study with a large number of
samples.

Therefore, we executed differential analysis to show the target
gene signatures associated with insulin resistance and T2DM.
In particular, by probing microarray data, we attempted to find
a statistically significant T2DM-related differentially expressed
genes in diabetic tissue compared to normal. In our study,
we constructed the metabolic pathways to uncover new drug
targets. We began the analysis by aiming on insulin-signaling
and associated cellular genes, a natural and well-established
candidates for finding a signature set of genes (Taniquchi
et al., 2006) associated with insulin resistance or diabetes.
The framework established in this paper is designed to focus
key questions: (1) Can biological processes be recognized that
are deregulated in metabolic pathways of insulin resistance
and diabetes (2) can genetic interaction networks be helpful
to reveal new drug targets and biomarkers for optimizing
the treatment strategies. Studying these molecular networks
from the prospective of probing new drug targets can deliver
valuable insights in both biological and medical research. The
comprehensive illustration of our study framework has been
shown in Figure 1.

MATERIALS AND METHODS

Source Data
The aim of this study was to find new drug target gene
signatures associated with insulin resistance and T2DM. The
study design of this dataset indicated to extract RNA from
the vastus lateralis of normal (NGT), glucose intolerant
(IGT) and type 2 diabetic individuals (total: 118 samples).
Our analyses in this study restricted to genes commonly
covered by hgu133plus2 chips. We accessed the source
expression data for the AffymetrixHG-U133_Plus_2 microarray
GSE18732 (Gallagher et al., 2010) from Gene Expression
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE18732). The GPL9486 Affymetrix GeneChipHuman
Genome U133 Plus 2.0 Array (CDF: Hs133P_Hs_ENST,
version 10) (Affymetrix, Inc., Santa Clara, CA, 95051, USA,
Technology: in situ oligonucleotide) platform was used, and
the annotation information (hgu133plus2) of probes was
used to detect the gene expression. We used computational
analysis using R (http://www.r-project.org) and BioConductor
(http://www.bioconductor.org) packages.
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FIGURE 1 | The comprehensive and squential steps in our study design.

Normalization and Differential Expression
Analysis
We organized the pheno-data files of this dataset in recognizable
format (Troyanskaya et al., 2001). The data was normalized to
the median expression level of each gene using the bioconductor
“ArrayQuality Metrics” package (Bolstad et al., 2003; Fujita et al.,
2006; Obenchain et al., 2014). The expression of a transcript
with detection p-value 0.15 was considered marginal. We log
transformed and quantile normalized the arrays to make sure
that they were on the same scale, and computed the gene-
gene covariance matrix across all arrays (54675 affyids), ignoring
missing values. In order to get a summary of intensities, the
Robust Multi-array Analysis (RMA) was used to correct the
background (Troyanskaya et al., 2001) for perfect matches (PM)
and mismatches (MM). We used the RMA-algorithm to calculate
averages between probes in a probe set. To measure the quality
of RNA in these samples, AffyRNAdeg, summaryAffyRNAdeg,
and plotAffyRNAdeg packages was used for degradation analysis
(Affymetrix, 1999, 2001). We performed relative study and
identified differentially expressed genes by pair wise comparison
from genomic experiments (Tusher et al., 2001) and multiple
testing corrections were completed by Benjamini-Hochberg
method (Benjamini and Hochberg, 1995). The Limma package, a
modified statistic that is proportional to the statistic with sample
variance-offsets, was used to shortlist the DEGs and duplicate
spots and quality weights were measured. The moderated
statistics were calculated; genes were prioritized with respect to
the resulting scores and p-values. A false discovery rate (FDR)
less than 0.05, p ≤ 0.05, Average Expression Level (AEL) ≥40%
and an absolute log fold change (logFC) greater than 1 were set as
the significant cutoffs (Jin and Da, 2013).

K-Fold Validation
We employed K-Fold study of cross-validation and bootstrap for
accuracy estimation in differential analysis (Seymour, 1993). The

advantage of this method is that all the samples in the dataset are
eventually used for both training and testing. K-fold technique
is generally better for determining approximate average error
and it was used to validate the shortlisted differentially expressed
genes using the bioconductor “boot” package. Boots trapping is
successfully being used to correct biases in analysis (Ripley, 2010).
We applied the generalized linear Gaussian models and used the
“cv.glm” function to assess the k-fold cross validation for these
cases. The true error is estimated as the average error rate:

E = 1/K

K∑

i = K

Ei (1)

The Gaussian function was trailed by the Leave-One-Out-
Cross-Validation (LOOCV) procedure. The LOOCV method
is intuitively termed as one is left out as the testing-set and
remaining data are used as the training-set (Ripley, 2010). For
each experiment, we used N-1 subsets for training and the
remaining for testing. The true error is estimated as the average
error rate on test cases:

E = 1/N

N∑

i = K

Ei (2)

By increasing the number of folds, the bias of the true error rate
estimator will be small and correct (Richard and Dennis, 1984;
MAQC Consortium, 2010).

Disease-Gene Interaction and Cluster
Analysis
Biomedical text mining system is useful to extract specific
information from the literature based on the interactions among
different types of biomedical entities (Clematide and Rinaldi,
2012). So, from the list of shortlisted DEGs, we investigated
the insulin resistance and T2DM associated genes using diverse
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FIGURE 2 | Normalization and analysis of array quality metrics shows a color heatmap of the distances between arrays. The color scale is chosen to

cover the range of distances encountered in the dataset. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unintended

experimental factors (batch effects). The distance dab between two arrays a and b is computed as the mean absolute difference (L1-distance) between the data of the

arrays (using the data from all probes without filtering). In formula, dab = mean | Mai - Mbi |, where Mai is the value of the i-th probe on the a-th array. Outlier detection

was performed by looking for arrays for which the sum of the distances to all other arrays, Sa = 6b dab was exceptionally large. 12 such arrays were detected, and

they are marked by an asterisk, *.

data sources including CTD (Comparative Toxicogenomics
Database) (http://ctdbase.org/), PubMed (http://www.ncbi.nlm.
nih.gov/pubmed), OMIM (Online Mendelian Inheritance in
Man) (http://www.ncbi.nlm.nih.gov/omim), MeSH (http://www.
ncbi.nlm.nih.gov/mesh) and PMC (http://www.ncbi.nlm.nih.
gov/pmc) database to filter disease specific genes.

We performed the Absolute Pearson correlation cluster
analysis (Eisen et al., 1998) based on expression values in

each sample of T2DM-associated differential expressed genes to
explore expression profiling and biological functions (Nam and
Kim, 2008) using the CIMminer tool (Scherf et al., 2000).

Gene Network Analysis and Identifying
Gene Signatures
Proteins usually interact with each other to carry out biological
functions (Li et al., 2004; Muhammad et al., 2014) and therefore
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FIGURE 3 | Side-by-side plot produced by plotAffyRNAdeg

representing 5′ to 3′ trendpresenting an assessment of the severity of

degradation and significance level.

gene network aims to find biological processes that are steadily
deregulated across a cDNA data related with disease conditions
in human tissues. In PPI network, each protein is considered as
belonging to one or more gene-sets connected with biological or
molecular functions (Rachlin et al., 2006). The normal function
of these biological networks may show much altered activity in
the disease state compared to normal.

To overview the global network of DEGs of microarray
dataset, genes in the connection groups were retrieved with
a high confidence score (0.999) in the STRING (Search Tool
for the Retrieval of Interacting Genes/Proteins) version 10
(Szklarczyk et al., 2011) and HAPPI (Human Annotated and
Predicted Protein Interaction) databases (Chen et al., 2009)
for protein-protein interactions. These databases mines and
annotate comprehensive physical and genetic mapping described
in the primary peer-reviewed literature and includes the data
that is validated by experimental studies in an inclusive
form to support simulation analysis of biological networks
and estimation of gene/protein functions. We used Cytoscape
software (version 3.2.1) to visualize and analyze molecular and
interaction networks (Cline et al., 2007). In this network, we
determined the role of each gene signatures (target genes) in
type 2 diabetes mellitus that interacted with T2DM-related seeder
genes (source genes) by gene mapping using CTD, PubMed,
OMIM, MeSH and PMC databases. The motivation for gene-
mapping in the network is to find potentially T2DM-related-
gene signatures is the hypothesis that genes whose dysfunction
contributes to a disease phenotype tend to be functionally related.
The total number of gene signatures associated with each seeder
protein was measured. We assembled the gene signature that
are associated with pathways of interest leading to T2DM and

TABLE 1 | k-fold cross validation by bioconductor “boot” package using

Gaussian dispersion parameters.

Estimate Std. error t. value Pr(>|t|)

(Intercept) 0.038148 0.004451 8.57 <2.00E-16***

x1 0.155175 0.005914 26.239 <2.00E-16***

x2 −0.03757 0.00669 −5.617 <1.96E-08***

x3 0.159384 0.004926 32.357 <2.00E-16***

x4 0.157941 0.005739 27.522 <2.00E-16***

x5 0.149692 0.005343 28.015 <2.00E-16***

x6 0.124573 0.005183 24.034 <2.00E-16***

x7 −0.08823 0.002789 −31.636 <2.00E-16***

x8 0.130695 0.006101 21.422 <2.00E-16***

x9 0.428922 0.004996 85.849 <2.00E-16***

x10 0.040628 0.004818 8.433 <2.00E-16***

x11 0.132742 0.005614 23.645 <2.00E-16***

x12 −0.01105 0.005375 −2.055 0.0399*

x13 −0.27454 0.005962 −46.052 <2.00E-16***

x14 0.044612 0.005961 7.484 7.29E-14***

x15 −0.11979 0.006822 −17.561 <2.00E-16***

Deviance Residuals: Min (−2.6702), 1Q (−0.1516), Median (−0.0100), 3Q (0.1431), Max

(4.9980).

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “” 1.

Number of Fisher Scoring iterations: 2; $K: [1] 10; $delta: [1] 0.08847 = 0.08846.

Null deviance: 171914.5 on 54674 degrees of freedom.

Residual deviance: 4827.2 on 54659 degrees of freedom.

constructed a molecular sub-network of these genes that are
highly transcriptionally affected in the diabetes state. We used
Network Analyzer in Cytoscape to calculate topological network
properties. Nodes in the network were categorized according
to the degree of association of gene signature with T2DM.
Gene ontology (GO) enrichment of the network help us to
show biological functions (Nam and Kim, 2008; Muhammad
et al., 2015), and it was carried out using the web-based
DAVID (Database for Annotation Visualization and Integrated
Discovery) (Huang et al., 2009) and FunRich Annotation tools
(Pathan et al., 2015). For these set of gene signatures, p-value
and FDR were assigned to the number of conditions where
it is enriched. The gene-sets with a substantial p-value were
considered as transcriptionally affected in a wide range of
diabetes associated samples.

Prediction of Gene Signature Specific
MiRNA Targets
MiRNAs are considered as post-transcriptional regulators of a
large set of genes involving in many biological processes and
signaling pathways. So, a useful step for understanding their
functional role is characterizing their influence on the gene
targets that help us to understand the disease etiology (Alshalalfa
and Alhajj, 2013). Using miRNA influence as a functional
signature is promising to find molecular connotations between
miRNAs and related gene signatures. MiRNA targets of T2DM-
related gene signatures were determined by microRNA target
predictor (powered by miRanda, mirSVR) and structure duplex
sequences were predicted. MiRNA targets were selected based on
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FIGURE 4 | Type 2 diabetes mellitus specific differentially expressed

genes. These genes were curated using CTD (Comparative Toxicogenomics

Database), PubMed, OMIM (Online Mendelian Inheritance in Man), MeSH and

PMC databases.

the mirSVR score (<=−0.1) which is considered as “good” score
(Betel et al., 2008).

Integrated Genome-Scale Pathway
Reconstruction with Putative T2DM Linked
Genes
A major goal of systems biology is to reconstruct and model
in silico the metabolic networks of disease related genes. We
analyzed the integrated, interactive and metabolic network of
T2DM-related gene signatures and observed the correlation
between these pathways. Cellular and signaling pathways
were reconstructed from the combined gene signatures using
PathVisio 3tool (Kutmon et al., 2015). These genes were
mapped and curated using KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathways on the basis of literature and
database evidence. KEGG, a public domain database generally
used for gene-enrichment analysis and pathway visualization
(Bergholdt et al., 2012; Califano et al., 2012), has a total of
199-unique human pathways with 5197 unique genes/proteins
(http://www.genome.jp/kegg/pathway.html). In this integrated
network, the potential role of each gene signature in each
pathway was studied. To verify known role of these pathways
in T2DM, the PubMed was curated using the key words “type
and 2 and diabetes and insulin and (signaling or resistance or
sensitivity) and (secretion or pancreatic or islets)” in combination
with terms indicating each of these pathways. Genes interacted
with disease are involved to share functional relationships and
represent pathways of interest for the pathogenesis of insulin
resistance and T2DM.

Drug-Gene Network
In drug-gene network, we investigated for genes that interrelate
with anti diabetic-drugs using CTD (http://ctdbase.org/)

database. CTD is a source of physically curated chemical-
gene, chemical-disease and gene-disease interactions from
the literature (Davis et al., 2011). We used chemical-gene
interaction query for each gene (T2DM-related) in CTD
and accessed drugs using the default parameters. In this
interaction, drugs were directly linked with T2DM-associated
gene were sorted. We used DrugBank database to verify
the FDA-approval status of each drug in the interaction
network.

RESULTS

Gene Expression Data and Normalization
We used human GEO dataset to find new drug target gene
signatures related to insulin resistance and type 2 diabetes
mellitus. The cDNA data has118-samples with 54675 genes
derived from the study design of mRNA expression profiling of
skeletal muscle of type 2 diabetes (Gallagher et al., 2010). The
AffyBatch object comprises the size of the array 1164 × 1164
features with 54675 affyIDS. The quantile normalization of
the probes showed quality metrics of the normalized distances
between arrays of entire DNA chip. Patterns in this metrics
revealed clustering of the arrays either because of intended
biological or unintended experimental factors (Figure 2). The
individual probes in a probe set was organized by location relative
to the 5′-end of the targeted RNA molecule. The 3′/5′ intensity
gradient has been shown to depend on the degree of competitive
binding of specific and of non-specific targets to a particular
probe. Poor RNA quality is related with a reduced amount of
RNA quantity hybridized to the array followed by a declined
total signal level. Increasing degrees of saturation decrease the
3′/5′ intensity gradient, and we found that short probe sets
near the 3′-end of the transcripts (Figure 3). The function
summary AffyRNAdeg produced a single summary-statistic for
each array in the batch (Supplementary Table 1) indicating an
assessment of the severity of RNA-degradation and significance
level.

Identifying Differentially Expressed Genes
(DEGS) and Cross-Validation
An automatic process was used to execute pair-wise comparison
between biologically-comparable groups that found a total
of 50 DEGs (all down regulated) from expression profiling
in the skeletal muscle of normal (NGT), glucose intolerant
(IGT) and type 2 diabetic (T2DM) samples (Supplementary
Table 2). For reliable results and verification of differential
analysis, we let off any sub-group without repetition from the
comparisons and the “cv.glm” function of generalized linear
models estimated the cross validation prediction error. The
dispersion criterion for Gaussian is 0.088314 which shows the
confidence level (Table 1). We obtained the same delta value of
0.08847 with K-folds estimation as we used the LOOCV method
(during raw cross validation and then during adjusted cross
validation). The significant codes (0.1, 0.01, 0.001, and 0.05) with
minimum deviance residuals indicated the quality of differential
analysis.
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Identifying T2DM Associated Genes and
Cluster Analysis
Among differentially expressed genes, 9 T2DM-related genes
were identified including: ZEB1, USP16, IL6ST, ASPH,
Eif4g1, RBL2, MEF2A, vapB, and SOS2 after disease-gene
interaction using CTD, PubMed, OMIM, MeSH and PMC
databases. The role of each gene in T2DM was curated and
counted (Figure 4). To show the relationship between these
differentially expressed genes and T2DM, we estimated the
“similarity” between disease-gene interaction by calculating
the Absolute Pearson correlation cluster analysis from two
profiles (Figure 5). Clustering analysis has recognized to be
helpful to understand gene function, gene regulation, and
cellular processes. The genetic expression profiling of skeletal
muscle of normal (NGT) is distinguished from the glucose
intolerant (IGT) and type 2 diabetic (DM) samples, signifying
that obvious differences existed among these cases (treated and
untreated).

Gene Network Analysis and Finding Gene
Signatures
In genetic network of differentially expressed genes, total of
885 nodes and 959 edges were retrieved from STRING and
HAPPI databases (Figure 6). This entire network showed
that T2DM-related DEGs were found to interact with other
functionally related potential genes that are contributing

to a disease phenotype. We identified 31-gene signatures
associated with T2DM by disease-gene mapping using CTD,
PubMed, OMIM, MeSH and PMC databases (Figure 7A).
In the molecular sub-network (462-nodes and 457-edges),
these 31-genes were first-order neighbors of the T2DM-
related seeder genes. These gene signatures were found
to interact with T2DM-related differentially expressed
seeder genes: IL6RB_HUMAN (IL6ST), SOS2_HUMAN
(SOS2), MEF2A_HUMAN (MEF2A), ZEB1_HUMAN
(ZEB1), IF4G1_HUMAN (Eif4g1), RBL2_HUMAN (RBL2),
ASPH_HUMAN (ASPH), VAPB_HUMAN (vapB), and
UBP16_HUMAN (USP16) (Figure 7B). Using network topology
to rank these gene signatures, we identified that among 31-
gene signatures, 13 genes had significant connection with
IL6RB_HUMAN (IL6ST) seeder gene followed by the 6 with
SOS2_HUMAN (SOS2) gene (Figure 7C). In gene ontology
(GO) enrichment-based analysis, we selected genes in profile
based on fold change combine a p-value cut-off (<0.05) which
is more consistent selection than those merely based on p-value
or fold-change alone. These genes are significantly enriched
with MAPK cascade, Insulin signaling pathway, interleukin-
6-mediated signaling, insulin receptor signaling, JAK-STAT
cascade, regulation of insulin secretion and triglyceride
metabolic process (Table 2). The significant transcript factors
for T2DM were observed including SP1, NFIC, ZFP161, FOS,
JUND, and JUNB (Figure 8). We observed transcript abundance
in these genes with known T2DM (SP1 80.6%).

FIGURE 5 | Cluster analysis of diabetes type 2-related differentialy expressed genes with 1-Absolute Pearson correlation (Binning method: Equal

width). Blue corresponds to small distance and Red to large distance. Lines indicate the clusters boundaries in the level of the tree.
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FIGURE 6 | Genetic network of 50-differentially expressed genes with 885 nodes and 959 edges. Red nodes representing “T2DM” genes while blue nodes

are non-diabetic differentially expressed genes.

Classifying T2DM-Gene Specific MiRNAs
Targets
MicroRNAs are considered to be important regulators of
genes and have already been involved in a growing number
of diseases. The computational algorithms (miRanda,
mirSVR) predicted T2DM-gene specific multiple miRNA
targets including hsa-miR-7, hsa-miR-486-5p, hsa-miR-
148b, hsa-miR-140-5p, and hsa-miR-7. The dysregulation of
these genes are associated with insulin resistance and type 2
diabetes mellitus. The genes sirt1, pdgfra, shc1, sos, and sos1
predicted 73, 76, 76, 82, and 82 miRNAs hits respectively
(Table 3).

Pathways Model with Putative T2DM
Associated Genes
Genes in T2DM-interactome was studied for pathways modeling
which revealed that several pathways are involved in T2DM-
pathophysiology. Other than insulin-signaling and T2DM

pathway that relates to both insulin secretion and insulin-
signaling, the other pathways such as JAK-STAT, MAPK, TGF,
Toll-like receptor, p53 and mTOR, adipocytokine, FOXO, PPAR,
and P13-AKT signaling pathways have all been connected in
T2DM (Figure 9A). Although we found enrichment of several
pathways associated with gene signatures, insulin signaling was
obvious in over-represented pathways model. Collectively, our
analysis determined 11-signaling pathways as a connecting-link
between gene signatures in insulin resistance and T2DM. The
database was curated to verify the known role of these pathways
in T2DM. In this study, we found 8-gene signatures associated
with JAK-STAT signaling pathways followed by the FOXO and
MAPK pathways (7 and 6-genes respectively) (Figure 9B).

Finding Potential Anti-T2DM Drug Targets
in DG-Network
We used a toxicogenomic approach for drugs-genes (DG)
interaction to further explore the existing treatment and
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FIGURE 7 | Molecular Sub-network analysis (A) gene Mapping and role of gene signatures in T2DM was curated and counted in CTD, PMC, PubMed, OMIM, and

MeSH databases (B) molecular sub-network (462 nodes and 457 edges) of T2DM-related differentially expressed seeder genes interacted with T2DM-related gene

signatures. The interaction is highlighed with red color (C) total number of gene signatures associated with each T2DM-related differentially expressed seeder genes.

better understanding of disease etiology. Gene that interact
with antidiabetic drugs metformin, mipyridamole, leptin,
troglitazone, pioglitazone, acarbose, decitabine, tolbutamide,
decitabine, gliclazide, vildagliptin, sitagliptin, estradiol,
saxagliptin, liraglutide, exenatide, and few others were identified
using the publicly available CTD database. Among them, we
found 13-FDA approved drugs. In this interaction, we identified
18-genes as potential drug targets (Figure 10) involved in type 2
diabetes mellitus.

DISCUSSION

The current study signifies the important relationship of genetic
variation with gene expression and functional role of these
genes in disease. The analyses provide a list of potential
T2DM genes based upon differential expression in skeletal
muscles, interaction with known T2DM-related gene signatures
and correlation with metabolic pathways. The expression
profiling of these genes is indicating the obvious differences in
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TABLE 2 | Gene Ontology and enriched pathways in T2DM-related genes signatures.

Term P-Value Fold enrichment FDR

GO:0007167∼enzyme linked receptor protein signaling pathway 2.03E-18 21.69175627 3.21E-15

GO:0007169∼transmembrane tyrosine kinase signaling pathway 8.32E-13 23.37788018 1.31E-09

GO:0010604∼positive regulation of protein metabolic process 5.96E-11 8.147250348 9.41E-08

GO:0042127∼regulation of cell proliferation 2.76E-10 8.317416076 4.36E-07

IPR001245:Tyrosine protein kinase 1.30E-09 8.47353586 2.05E-06

GO:0007242∼intracellular signaling cascade 7.14E-09 8.505295739 1.13E-05

GO:0007166∼cell surface receptor linked signal transduction 3.98E-08 33.88927637 4.41E-05

GO:0016310∼phosphorylation 4.08E-08 4.232202447 6.45E-05

GO:0045597∼positive regulation of cell differentiation 4.81E-07 9.370036278 5.72E-04

hsa05200:Pathways in cancer 5.77E-07 9.148576452 9.12E-04

GO:0009725∼response to hormone stimulus 8.92E-07 64.63373656 0.001027

GO:0007259∼JAK-STAT cascade 1.49E-06 18.40418261 0.00171

hsa04630:Jak-STAT signaling pathway 3.01E-06 47.43338008 0.004748

GO:0042981∼regulation of apoptosis 3.91E-06 15.56769569 0.004502

GO:0019221∼cytokine-mediated signaling pathway 1.45E-05 32.08728653 0.022906

IPR013019:MAD homology, MH1 8.69E-05 5.768124204 0.103221

IPR001132:SMAD domain, 8.72E-05 201.5201613 0.096554

h_egfPathway: EGF Signaling Pathway 6.42E-04 76.37058824 0.7883

GO:0012501∼programmed cell death 0.001802 5.074268567 2.809631

hsa04910:Insulin signaling pathway 0.002675 37.74786043 3.133987

GO:0046425∼regulation of JAK-STAT cascade 0.002842 7.847222222 2.749384

GO:0031625∼ubiquitin protein ligase binding 0.002858 36.3655914 4.421405

GO:0008286∼insulin receptor signaling pathway 0.002896 36.06388889 3.511908

h_TPOPathway: TPO Signaling Pathway 0.003845 2.49245367 5.905743

GO:0070102∼interleukin-6-mediated signaling pathway 0.006558 293.8390805 7.220592

hsa04350:TGF-beta signaling pathway 0.006687 288.5111111 7.938695

GO:0000165∼MAPKKK cascade 0.007536 4.626011627 11.26526

GO:0060397∼JAK-STAT in growth hormone signaling pathway 0.008842 218.1935484 13.0922

hsa04062:Chemokine signaling pathway 0.008973 214.9548387 9.502942

IPR013801:STAT transcription factor, DNA-binding 0.012540 153.5391705 13.04699

GO:0005138∼interleukin-6 receptor binding 0.015483 15.2228057 21.84943

GO:0007183∼SMAD protein complex assembly 0.017556 6.834677419 15.92934

h_il3Pathway:IL 3 signaling pathway 0.020837 2.432792005 22.86529

hsa04920: Adipocytokine signaling pathway 0.036196 5.273560082 44.15

h_aktPathway: AKT Signaling Pathway 0.050395 7.838181818 44.1915

GO:0031016∼pancreas development 0.073471 6.480996487 70.05124

GO:0006916∼anti-apoptosis 0.075371 6.386152636 71.00653

GO:0042102∼positive regulation of T cell proliferation 0.076007 6.355151895 71.32031

GO:0050796∼regulation of insulin secretion 0.083053 22.37882548 74.58724

GO:0006641∼triglyceride metabolic process 0.087090 5.870678432 76.29865

skeletal muscle of normal samples from the glucose intolerant
(IGT) and type 2 diabetic (DM) samples (Gallagher et al.,
2010).

We found 50 down regulated differentially expressed genes
that showed the interaction with known T2DM-associated genes
(ZEB1, USP16, IL6ST, ASPH, Eif4g1, RBL2, MEF2A, vapB,
and SOS2) after mapping in databases. The dysregulation and
functional aberration of these differential genes has also been
studied (Baxter, 2008; Pihlajamäki et al., 2009; Jewell et al., 2010;

Jowett et al., 2010; Nitert et al., 2012; Reddy et al., 2012; Chow
et al., 2014; Liew et al., 2014; Neglia et al., 2014) in type 2 diabetes
progression. The T2DM linked genes including ZEB1, USP16,
IL6ST, ASPH, Eif4g1, RBL2, MEF2A, vapB, and SOS2 effect
on pancreatic β-cells, peripheral glucose uptake in muscles, the
secretion of multiple cytokines, β-cell gene expression, islet cells,
β-cells chromatin and proliferation attenuation (Baxter, 2008;
Jowett et al., 2010; Nitert et al., 2012; Chow et al., 2014; Liew et al.,
2014). The genetic networks extended the analysis of transcripts
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FIGURE 8 | Transcription factors for T2DM-related gene signatures involved to alter gene expression in a host cell to promote insulin resistance and

pathogenesis.

to predict interactive gene signatures that have role in diabetes
pathophysiology. The molecular sub-network revealed the direct
interaction of functionally related 31-gene signatures with seeder
genes. In this interaction, we found significant number of gene
signatures (13-genes) in connection with T2DM-related IL6ST
seeder gene. The variant role of family of IL6-genes has been
studied in type 2 diabetes (Chow et al., 2014). Similarly, we
observed that SOS2 was another seeder gene that was linked with
SRC, INSRR, EGFR, FGFR1, PGFRA and PGFRB gene signatures
that were significantly associated with insulin resistance and type
2 diabetes (Davidson et al., 2012; Singh and Kakkar, 2013; Zheng
et al., 2013; Li et al., 2015). These observations indicated that the
aberration in DEGs expression precede the disturbances in gene
signatures ultimately causes type 2 diabetes. The curation and
mapping of these gene signatures with T2DM further verified this
relationship.

To gain insight into the direction of systems biology,
these genes are considerably enriched with Insulin signaling
pathway, insulin receptor signaling, interleukin-6-mediated
signaling, MAPK cascade, JAK-STAT cascade, regulation of
insulin secretion and triglyceride metabolic process. We find
that T2DM-gene signatures identified in enrichment analysis
can elucidate disease conditions when the interlinked genes
are taken together with their protein and functional level
interactors (Lee et al., 2011; Lakshmanan et al., 2012; Chow

et al., 2014; Ma L. et al., 2015; Ma W. et al., 2015). These
signaling pathways contained the significant gene regulatory
network of transcript factors families for type 2 diabetes
including SP1, NFIC, ZFP161, and FOS, JUND, JUNB. The
pathways modeling and integrative network based analysis of
gene signatures revealed 11-signaling pathways including insulin
secretion, insulin signaling, JAK-STAT, MAPK, TGF, Toll-like
receptor, p53 and mTOR, adipocytokine, FOXO, PPAR, and P13-
AKT signaling pathways have all been connected in T2DM.
Recent reports and literature search indicated our genomic,
interactomic, and toxicogenomic evidence to converge on vital
pathways including insulin signaling, JAK-STAT signaling, P13-
AKT signaling, FOXO signaling, and TGF-beta signaling, the
vital pathway involved to play a critical role in pancreatic islets
maturity and function, and insulin secretion (Jain et al., 2013).
Collectively, we find that genes link directly to insulin secretion
and indirectly, through communication with other genes, to
insulin resistance and T2DM.

Gene-drug interactions of great interest because such
association can not only expressively improve our understanding
of disease pathophysiology, but also are helpful in drug discovery
processes. The disease related genes-drugs association network
can be improved by data mining and biomedical linkages (Chen
et al., 2008). Our toxicogenomic-based approach supported
this analysis. In this network, 13-FDA approved and few
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TABLE 3 | miRNA targets related to T2DM-related gene signatures.

Uniprot_ID Gene_Name microRNA mirSVR score Nuclei mapped to alignments Total MiRNA hits Structure of predicted duplex

INSI1_HUMAN INSIG1 hsa-miR-7 −0.1826 170 51 ugUUGUUUUA-GUGA–UCAGAAGGu

INSRR_HUMAN INSRR hsa-miR-132 −1.0038 74 5 gcugguaccGACAUCUGACAAu

SOCS_HUMAN Socs hsa-miR-324-5p −0.5384 17 24 ugugguuaCGGGAU–CCCCUACGc

PGFRB_HUMAN Pdgfrb hsa-miR-24 −0.3169 217 32 gacaaGGACGACU-UGACUCGGu

STAT_HUMAN STAT hsa-miR-421 −0.1519 111 17 cgcgGGUUAA-UUAC—AGACAACUa

EGFR_HUMAN egfr hsa-miR-370 −0.1112 46 34 ugGUCCAAGGU-GGGGUCGUCCg

SMAD7_HUMAN SMAD7 hsa-miR-15b −1.1638 43 62 acaUUUGGUACUACACGACGAu

SMAD3_HUMAN SMAD3 hsa-miR-490-3p −0.1643 1086 19 gucgUACCUC-AGGAGGUCCAAc

UBP_HUMAN USP hsa-miR-410 −0.2122 112 18 uguccgguagacacAAUAUAa

JAK3_HUMAN JAK hsa-miR-139-5p −0.1403 143 42 gaccucugUGCACGUGACAUCu

SRC_HUMAN Src hsa-miR-491-5p −0.2503 350 18 ggAGU-ACCUUCCCAAGGGGUGa

UBP16_HUMAN USP16 hsa-miR-520a-3p −0.8179 1 27 ugucagguuucccUUCGUGAAa

SOS2_HUMAN SOS hsa-miR-148b −0.2544 45 82 uguuucaagACAUCACGUGACu

JAK2_HUMAN Jak2 hsa-miR-133a −0.1218 7 47 gucgaccaacuucccCUGGUUu

SMAD2_HUMAN SMAD2 hsa-miR-486-5p −0.1007 288 2 gagcccCGUCGA-GU-CAUGUCCu

STAT3_HUMAN Stat3 hsa-miR-544 −0.4626 5 47 cuugaacGAUUUUUACGUCUUa

MK14_HUMAN Mapk14 hsa-miR-421 −0.2044 1 35 cgcGGGUUAAUUAC-AGACAACUa

PGFRA_HUMAN pdgfra hsa-miR-140-5p −0.3169 46 76 gauGGUAUCCCAUUUUGGUGAc

STAT4_HUMAN STAT4 hsa-miR-132 −1.0501 37 15 gcuggUACCGACAUCUGACAAu

SHC1_HUMAN SHC1 hsa-miR-140-5p −0.3169 46 76 gauGGUAUCCCAUUUUGGUGAc

SOS1_HUMAN SOS1 hsa-miR-148b −0.2544 45 82 uguuucaagACACUACGUGACu

FOXO4_HUMAN FOXO4 hsa-miR-149 −0.1391 23 24 cccucacuUCUGUGCCUCGGUCu

SQSTM_HUMAN sqstm1 hsa-miR-193a-3p −0.1698 68 36 ugacCCUGAAACAU–CCGGUCAa

FOXO3_HUMAN FOXO3 hsa-miR-599 −0.1021 34 49 gaugauuuuguacCUUCGUGAAu

SOCS3_HUMAN socs3 hsa-miR-551a −0.4552 8 28 acCUUUGGUUCUC–ACCCAGCg

IL6_HUMAN IL6 hsa-miR-365 −0.1918 16 28 uauucCUAAAAAUCCCCGUAAu

FGFR1_HUMAN Fgfr1 hsa-miR-133a −0.1491 241 30 gucgaccaacuuccCCUGGUUu

FOXO1_HUMAN foxo1 hsa-miR-370 −0.4792 32 60 ugGUCCAAGGUGGGGUCGUCCg

STX1A_HUMAN STX1A hsa-miR-491-5p −0.2032 380 21 ggaguaccuUCCCAAGGGGUGa

IF4E_HUMAN eif4e hsa-miR-150 −0.4746 38 62 gugaccauGUUCCCAACCCUCu

JAK1_HUMAN JAK1 hsa-miR-139-5p −0.1403 143 42 gaccucugUGCACGUGACAUCu

ZEB1_HUMAN ZEB1 hsa-miR-217 −0.977 219 62 agGUUAGUCAAGGACUACGUCAu

IL6RB_HUMAN IL6ST hsa-miR-873 −0.6274 1 10 uccUCUGAGUGUUCAAGGACg

ASPH_HUMAN asph hsa-miR-204 −0.4606 142 52 uccGUAUCCUACUGUUUCCCUu

RBL2_HUMAN RBL2 hsa-miR-335 −0.1191 1 47 uguaaaaagcaauaacGAGAACu

SIR1_HUMAN SIRT1 hsa-miR-486-5p −1.1526 2 73 gagccccguCGAGU-CAUGUCCu

FIGURE 9 | Pathway analysis (A) integrated genome to phenome scale signaling pathways involved in insulin resistance and T2DM. Gene signatures were mapped

on to KEGG pathway for signaling and metabolic reconstruction (B) distribution of T2DM-related gene signatures in associated pathway network.
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FIGURE 10 | Drug–Gene network (DG-network). The DG-network is generated between the reported drugs and their target gene signatures (55-nodes and

63-edges). Circles and rectangles correspond to target genes and drugs, respectively. A dotted link is placed between a drug and a target node if the gene is a known

target of that drug while solid link denotes the potential drug targets. Color codes are given in the legend. DrugBank_ID has been shown for these drugs. The

drugs-gene signature assocaition was curated using PMC, CTD, and Drug Bank databases.

non-approved drugs were associated with T2DM-related genes
leaving the 18-genes as potential drug targets. All drugs are FDA
approved except troglitazone which has been withdrawn from the
market due to its idiosyncratic reaction leading to drug-induced
hepatitis. However resveratrol and leptin are FDA investigational
drugs and curcumin is non-approved drug. More importantly,
this network proposes many testable assumptions with potential
of great success, though the real achievement can only be justified
by experimental studies.

In conclusion, gene expressionmicroarray studies have greatly
improved our knowledge of genetic mechanisms of human
diseases. Systems biology analysis of cDNA data helped us to
find T2DM-connected genes as alternative drug targets using
interactomic and toxicogenomic data that led us to link with
vital metabolic and signaling pathways involved in disease
pathophysiology. Our simple and integrated steps are helpful
in revealing genome to phenome association in diabetes and
finding potential drug targets for type 2 diabetes. Therefore this

approach will support to understand the genetic basis of complex
phenotypes. These findings can provide a valuable framework
for developing diagnostic biomarkers and treatment strategies.
However, further molecular studies can be designed to validate
the role of these genes in T2DM for effective treatment.

AUTHOR CONTRIBUTIONS

SM and JC designed the study. BB, WR, and XW collected the
data. SM, JC, and TN analyzed the data. JC and BB provided
guidance with study design and data analysis. All authors
contributed to manuscript writing and edition.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fphys.
2017.00013/full#supplementary-material

REFERENCES

Affymetrix (1999). Affymetrix Microarray Suite User Guide, 4th Edn. Santa Clara,

CA: Affymetrix.

Affymetrix (2001). Affymetrix Microarray Suite User Guide, 5th Edn. Santa Clara,

CA: Affymetrix.

Alshalalfa, M., and Alhajj, R. (2013). Using context-specific effect of miRNAs to

identify functional associations between miRNAs and gene signatures. BMC

Bioinformatics 14(Suppl. 12):S1. doi: 10.1186/1471-2105-14-S12-S1

Baxter, M. A. (2008). The role of new basal insulin analogues in the initiation and

optimisation of insulin therapy in type 2 diabetes. Acta Diabetol. 45, 253–268.

doi: 10.1007/s00592-008-0052-9

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Statist. Soc. Seri. B.

57, 289–300.

Bergholdt, R., Brorsson, C., Palleja, A., Berchtold, L. A., Fløyel, T., Bang-

Berthelsen, C. H., et al. (2012). Identification of novel type 1 diabetes

candidate genes by integrating genome wide association data, protein-protein

interactions, and human pancreatic islet gene expression.Diabetes 61, 954–962.

doi: 10.2337/db11-1263

Betel, D., Wilson, M., Gabow, A., Marks, D. S., and Sander, C. (2008). MicroRNA

target predictions: the microRNA.org resource: targets and expression. Nucleic

Acids Res. 36, D149–D153. doi: 10.1093/nar/gkm995

Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). A

comparison of normalization methods for high density oligonucleotide

array data based on variance and bias. Bioinformatics. 19, 185–193.

doi: 10.1093/bioinformatics/19.2.185

Califano, A., Butte, A. J., Friend, S., Ideker, T., and Schadt, E. (2012). Leveraging

models of cell regulation and GWAS data in integrative network-based

association studies. Nat. Genet. 44, 841–847. doi: 10.1038/ng.2355

Chen, E. S., Hripcsak, G., Xu, H., Markatou, M., and Friedman, C. (2008).

Automated acquisition of disease drug knowledge from biomedical and

clinical documents: an initial study. J. Am. Med. Inform. Assoc. 15, 87–98.

doi: 10.1197/jamia.M2401

Frontiers in Physiology | www.frontiersin.org 13 January 2017 | Volume 8 | Article 13

http://journal.frontiersin.org/article/10.3389/fphys.2017.00013/full#supplementary-material
https://doi.org/10.1186/1471-2105-14-S12-S1
https://doi.org/10.1007/s00592-008-0052-9
https://doi.org/10.2337/db11-1263
https://doi.org/10.1093/nar/gkm995
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1038/ng.2355
https://doi.org/10.1197/jamia.M2401
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Muhammad et al. New Drug Targets of T2DM

Chen, J. Y., Mamidipalli, S., and Huan, T. (2009). HAPPI: an Online Database of

Comprehensive Human Annotated and Predicted Protein Interactions. BMC

Genomics 10(Suppl. 1):S16. doi: 10.1186/1471-2164-10-S1-S16

Chow, S. Z., Speck, M., Yoganathan, P., Nackiewicz, D., Hansen, A. M.,

Ladefoged, M., et al. (2014). Glycoprotein 130 receptor signaling mediates

α-cell dysfunction in a rodent model of type 2 diabetes.Diabetes 63, 2984–2995.

doi: 10.2337/db13-1121

Clematide, S., and Rinaldi, F. (2012). Ranking relations between diseases,

drugs and genes for a curation task. J. Biomed. Semantics 3(Suppl. 3):S5.

doi: 10.1186/2041-1480-3-S3-S5

Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C.,

et al. (2007). Integration of biological networks and gene expression data using

Cytoscape. Nat. Protoc. 2, 2366–2382. doi: 10.1038/nprot.2007.324

Davidson, E. P., Coppey, L. J., Holmes, A., and Yorek, M. A. (2012). Effect of

inhibition of angiotensin converting enzyme and/or neutral endopeptidase on

vascular and neural complications in high fat fed/low dose streptozotocin-

diabetic rats. Eur. J. Pharmacol. 677, 180–187. doi: 10.1016/j.ejphar.2011.

12.003

Davis, A. P., Wiegers, T. C., Rosenstein, M. C., andMattingly, C. J. (2011). MEDIC:

a practical disease vocabulary used at the Comparative Toxicogenomics

Database. Database (Oxford) 2012:bar065. doi: 10.1093/database/bar065

Eisen,M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis

and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A.

95, 14863–14868. doi: 10.1073/pnas.95.25.14863

Florez, J. C. (2008). Newly identified loci highlight beta cell dysfunction as a key

cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia

51, 1100–1110. doi: 10.1007/s00125-008-1025-9

Fujita, A., Sato, J. R., de Oliveira, R. L., Ferreira, C. E., and Sogayar, M. C.

(2006). Evaluating different methods of microarray data normalization. BMC

Bioinformatics 7:469. doi: 10.1186/1471-2105-7-469

Gallagher, I. J., Scheele, C., Keller, P., Nielsen, A. R., Remenyi, J., Fischer, C. P., et

al. (2010). Integration of microRNA changes in vivo identifies novelmolecular

molecular features of muscle insulin resistance in type 2 diabetes.GenomeMed.

2:9. doi: 10.1186/gm130

Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and

integrative analysis of large gene lists using DAVID bioinformatics resources.

Nat. Protoc. 4, 44–57. doi: 10.1038/nprot.2008.211

Jain, P., Vig, S., Datta, M., Jindel, D., Mathur, A. K., Mathur, S. K., et al. (2013).

Systems biology approach reveals genome to phenome correlation in type 2

diabetes. PLoS ONE 8:e53522. doi: 10.1371/journal.pone.0053522

Jewell, J. L., Oh, E., and Thurmond, D. C. (2010). Exocytosis mechanisms

underlying insulin release and glucose uptake: conserved roles for Munc18c

and syntaxin 4. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R517–R513.

doi: 10.1152/ajpregu.00597.2009

Jin, Y., and Da, W. (2013). Screening of key genes in gastric cancer with DNA

microarray analysis. Eur. J. Med. Res. 18:37. doi: 10.1186/2047-783X-18-37

Jowett, J. B., Curran, J. E., Johnson, M. P., Carless, M. A., Göring, H. H., Dyer,

T. D., et al. (2010). Genetic variation at the FTO locus influences RBL2 gene

expression. Diabetes 59, 726–732. doi: 10.2337/db09-1277

Kolb, H., and Eizirik, D. L. (2011). Resistance to type 2 diabetes mellitus: a matter

of hormesis?. Nat. Rev. Endocrinol. 8, 183–192. doi: 10.1038/nrendo.2011.158

Kumar, V., Fausto, N., Abbas, A. K., Cotran, R. S., and Robbins, S. L. (2005).

Robbins and Cotran Pathologic Basis of Disease 7th Edn. Philadelphia, PA:

Saunders.

Kutmon, M., van Iersel, M. P., Bohler, A., Kelder, T., Nunes, N., Pico, A. R., et al.

(2015). PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput.

Biol. 11:e1004085. doi: 10.1371/journal.pcbi.1004085

Lakshmanan, A. P., Harima, M., Sukumaran, V., Soetikno, V., Thandavarayan, R.

A., Suzuki, K., et al. (2012). Modulation of AT-1R/AMPK-MAPK cascade plays

crucial role for the pathogenesis of diabetic cardiomyopathy in transgenic type

2 diabetic (Spontaneous Diabetic Torii) rats. Biochem. Pharmacol. 83, 653–660.

doi: 10.1016/j.bcp.2011.11.018

Lee, I., Blom, U.M.,Wang, P. I., Shim, J. E., andMarcotte, E.M. (2011). Prioritizing

candidate disease genes by network-based boosting of genome-wide association

data. Genome Res. 21, 1109–1121. doi: 10.1101/gr.118992.110

Li, F., Long, T., Lu, Y., Ouyang, Q., and Tang, C. (2004). The yeast cell-cycle

network is robustly designed. Proc. Natl. Acad. Sci. U.S.A. 101, 4781–4786.

doi: 10.1073/pnas.0305937101

Li, Y. G., Ji, D. F., Zhong, S., Lin, T. B., and Lv, Z. Q. (2015). Hypoglycemic effect of

deoxynojirimycin–polysaccharide on high fat diet and streptozotocin-induced

diabetic mice via regulation of hepatic glucosemetabolism.Chem. Biol. Interact.

225, 70–79. doi: 10.1016/j.cbi.2014.11.003

Liew, C. W., Assmann, A., Templin, A. T., Raum, J. C., Lipson, K. L., Rajan, S.,

et al. (2014). Insulin regulates carboxypeptidase E by modulating translation

initiation scaffolding protein eIF4G1 in pancreatic β cells. Proc. Natl. Acad. Sci.

U.S.A. 111, 2319–2328. doi: 10.1073/pnas.1323066111

Ma, L., Shao, Z., Wang, R., Zhao, Z., Dong, W., Zhang, J., et al. (2015).

Rosiglitazone improves learning and memory ability in rats with type 2

diabetes through the insulin signaling pathway. Am. J. Med. Sci. 350, 121–128.

doi: 10.1097/MAJ.0000000000000499

Ma, W., Wu, J. H., Wang, Q., Lemaitre, R. N., Mukamal, K. J., Djousse, L., et al.

(2015). Prospective association of fatty acids in the de novo lipogenesis pathway

with risk of type 2 diabetes: the cardiovascular health study. Am. J. Clin. Nutr.

101, 153–163. doi: 10.3945/ajcn.114.092601

MAQC Consortium (2010). The Microarray Quality Control (MAQC)-II study

of common practices for the development and validation of microarray-based

predictive models. Nat. Biotechnol. 28, 827–838. doi: 10.1038/nbt.1665

McCarthy, M. I. (2010). Genomics, type 2 diabetes, and obesity. N. Engl. J. Med.

363, 2339–2350. doi: 10.1056/NEJMra0906948

Melmed, S., Polonsky, K. S., Larsen, P. R., and Kronenberg, H. M. (2011).Williams

Textbook of Endocrinology, 12th Edn. Philadelphia, PA: Elsevier/Saunders.

Muhammad, S. A., Ahmed, S., Ali, A., Huang, H., Wu, X., Yang, X. F.,

et al. (2014). Prioritizing drug targets in Clostridium botulinum with a

computational systems biology approach. Genomics 104, 24–35. doi: 10.1016/

j.ygeno.2014.05.002

Muhammad, S. A., Fatima, N., Syed, N. I., Wu, X., Yang, X. F., and

Chen, J. Y. (2015). MicroRNA expression profiling of human respiratory

epithelium affected by invasive Candida infection. PLoS ONE 10:e0136454.

doi: 10.1371/journal.pone.0136454

Nam, D., and Kim, S. Y. (2008). Gene-set approach for expression pattern analysis.

Brief Bioinform. 9, 189–197. doi: 10.1093/bib/bbn001

Neglia, C., Agnello, N., Argentiero, A., Chitano, G., Quarta, G., Bortone, I.,

et al. (2014). Increased risk of osteoporosis in postmenopausal women with

type 2 diabetes mellitus: a three-year longitudinal study with phalangeal QUS

measurements. J. Biol. Regul. Homeost. Agents 28, 733–741.

Nitert, M. D., Dayeh, T., Volkov, P., Elgzyri, T., Hall, E., Nilsson, E., et al. (2012).

Impact of an exercise intervention onDNAmethylation in skeletal muscle from

first-degree relatives of patients with type 2 diabetes. Diabetes 61, 3322–3332.

doi: 10.2337/db11-1653

Obenchain, V., Lawrence, M., Carey, V., Gogarten, S., Shannon, P., and

Morgan, M. (2014). Variant annotation: a Bioconductor package for

exploration and annotation of genetic variants. Bioinformatics 30, 2076–2078.

doi: 10.1093/bioinformatics/btu168

Pathan, M., Keerthikumar, S., Ang, C. S., Gangoda, L., Quek, C. Y., Williamson, N.

J., et al. (2015). FunRich: a standalone tool for functional enrichment analysis.

Proteomics 15, 2597–2601. doi: 10.1002/pmic.201400515

Pihlajamäki, J., Boes, T., Kim, E. Y., Dearie, F., Kim, B. W., Schroeder, J.,

et al. (2009). Thyroid hormone-related regulation of gene expression in

human fatty liver. J. Clin. Endocrinol. Metab. 94, 3521–3529. doi: 10.1210/jc.

2009-0212

Polonsky, K. S., Sturis, J., and Bell, G. I. (1996). Non-insulin-dependent diabetes

mellitus–a genetically programmed failure of the beta cell. N. Engl. J. Med. 334,

777–783. doi: 10.1056/NEJM199603213341207

Rachlin, J., Dotan, D., Cantor, C., and Kasif, S. (2006). Biological context view of

the interactome.Mol. Syst. Biol. 2:66. doi: 10.1038/msb4100103

Reddy, M. A., Jin, W., Villeneuve, L., Wang, M., Lanting, L., Todorov, I.,

et al. (2012). Pro-inflammatory role of microrna-200 in vascular smooth

muscle cells from diabetic mice. Arterioscler. Thromb. Vasc. Biol. 32, 721–729.

doi: 10.1161/ATVBAHA.111.241109

Richard, P., and Dennis, C. (1984). Cross-validation of regression models.

J. Am. Stat. Assoc. 79, 575–583. doi: 10.1080/01621459.1984.104

78083

Ripley, B. (2010). Package “Boot.” Available online at: CRAN: https://cran.r-

project.org/web/packages/boot/index.html (Accessed September 10, 2015).

Ripsin, C. M., Kang, H., and Urban, R. J. (2009). Management ofs blood glucose in

type 2 diabetes mellitus. Am. Fam. Physician. 79, 29–36.

Frontiers in Physiology | www.frontiersin.org 14 January 2017 | Volume 8 | Article 13

https://doi.org/10.1186/1471-2164-10-S1-S16
https://doi.org/10.2337/db13-1121
https://doi.org/10.1186/2041-1480-3-S3-S5
https://doi.org/10.1038/nprot.2007.324
https://doi.org/10.1016/j.ejphar.2011.12.003
https://doi.org/10.1093/database/bar065
https://doi.org/10.1073/pnas.95.25.14863
https://doi.org/10.1007/s00125-008-1025-9
https://doi.org/10.1186/1471-2105-7-469
https://doi.org/10.1186/gm130
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1371/journal.pone.0053522
https://doi.org/10.1152/ajpregu.00597.2009
https://doi.org/10.1186/2047-783X-18-37
https://doi.org/10.2337/db09-1277
https://doi.org/10.1038/nrendo.2011.158
https://doi.org/10.1371/journal.pcbi.1004085
https://doi.org/10.1016/j.bcp.2011.11.018
https://doi.org/10.1101/gr.118992.110
https://doi.org/10.1073/pnas.0305937101
https://doi.org/10.1016/j.cbi.2014.11.003
https://doi.org/10.1073/pnas.1323066111
https://doi.org/10.1097/MAJ.0000000000000499
https://doi.org/10.3945/ajcn.114.092601
https://doi.org/10.1038/nbt.1665
https://doi.org/10.1056/NEJMra0906948
https://doi.org/10.1016/j.ygeno.2014.05.002
https://doi.org/10.1371/journal.pone.0136454
https://doi.org/10.1093/bib/bbn001
https://doi.org/10.2337/db11-1653
https://doi.org/10.1093/bioinformatics/btu168
https://doi.org/10.1002/pmic.201400515
https://doi.org/10.1210/jc.2009-0212
https://doi.org/10.1056/NEJM199603213341207
https://doi.org/10.1038/msb4100103
https://doi.org/10.1161/ATVBAHA.111.241109
https://doi.org/10.1080/01621459.1984.10478083
https://cran.r-project.org/web/packages/boot/index.html
https://cran.r-project.org/web/packages/boot/index.html
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Muhammad et al. New Drug Targets of T2DM

Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., et al.

(2000). A gene expression database for the molecular pharmacology of cancer.

Nat. Genet. 24, 236–244. doi: 10.1038/73439

Seymour, G. (1993). Predictive Inference. New York, NY: Chapman and Hall. ISBN

0-412-03471-9.

Singh, J., and Kakkar, P. (2013). Modulation of liver function, antioxidant

responses, insulin resistance and glucose transport by Oroxylum indicum

stem bark in STZ induced diabetic rats. Food Chem. Toxicol. 62, 722–31.

doi: 10.1016/j.fct.2013.09.035

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P.,

et al. (2011). The STRING database in 2011: functional interaction networks

of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568.

doi: 10.1093/nar/gkq973

Taneera, J., Lang, S., Sharma, A., Fadista, J., Zhou, Y., Ahlqvist, E., et al. (2012). A

systems genetics approach identifies genes and pathways for type 2 diabetes in

human islets. Cell Metabol. 16, 122–134. doi: 10.1016/j.cmet.2012.06.006

Taniquchi, C. M., Emanuelli, B., and Kahn, C. R. (2006). Critical nodes in signaling

pathways: insights into insulin action. Nat. Rev. Mol. Cell. Biol. 7, 85–96.

doi: 10.1038/nrm1837

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani,

R., et al. (2001). Missing value estimation methods for DNA microarrays.

Bioinformatics 17, 520–525. doi: 10.1093/bioinformatics/17.6.520

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of

microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci.

U.S.A. 98, 5116–5121. doi: 10.1073/pnas.091062498

Voight, B. F., Scott, L. J., Steinthorsdottir, V., Morris, A. P., Dina, C., Welch, R.

P., et al. (2010). Twelve type 2 diabetes susceptibility loci identified through

largescale association analysis. Nat. Genet. 42, 579–589. doi: 10.1038/ng.609

Zheng, X., Zhu, S., Chang, S., Cao, Y., Dong, J., Li, J., et al. (2013). Protective

effects of chronic resveratrol treatment on vascular inflammatory injury in

steptozotocin-induced type 2 diabetic rats: role of NF-kappa B signaling. Eur.

J. Pharmacol. 720, 147–157. doi: 10.1016/j.ejphar.2013.10.034

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Muhammad, Raza, Nguyen, Bai, Wu and Chen. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physiology | www.frontiersin.org 15 January 2017 | Volume 8 | Article 13

https://doi.org/10.1038/73439
https://doi.org/10.1016/j.fct.2013.09.035
https://doi.org/10.1093/nar/gkq973
https://doi.org/10.1016/j.cmet.2012.06.006
https://doi.org/10.1038/nrm1837
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1073/pnas.091062498
https://doi.org/10.1038/ng.609
https://doi.org/10.1016/j.ejphar.2013.10.034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus
	Introduction
	Materials and Methods
	Source Data
	Normalization and Differential Expression Analysis
	K-Fold Validation
	Disease-Gene Interaction and Cluster Analysis
	Gene Network Analysis and Identifying Gene Signatures
	Prediction of Gene Signature Specific MiRNA Targets
	Integrated Genome-Scale Pathway Reconstruction with Putative T2DM Linked Genes
	Drug-Gene Network

	Results
	Gene Expression Data and Normalization
	Identifying Differentially Expressed Genes (DEGS) and Cross-Validation
	Identifying T2DM Associated Genes and Cluster Analysis
	Gene Network Analysis and Finding Gene Signatures
	Classifying T2DM-Gene Specific MiRNAs Targets
	Pathways Model with Putative T2DM Associated Genes
	Finding Potential Anti-T2DM Drug Targets in DG-Network

	Discussion
	Author Contributions
	Supplementary Material
	References


