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Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having

significant physiological and pharmacological effects. In this review we summarize

data from numerous PUFAs on voltage-gated ion channels containing one or several

voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium

(CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and

transient receptor potential (TRP) channels. Some effects of fatty acids appear to be

channel specific, whereas others seem to be more general. Common features for the

fatty acids to act on the ion channels are at least two double bonds in cis geometry and

a charged carboxyl group. In total we identify and label five different sites for the PUFAs.

PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as

a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular

entrance to the pore. Binding leads to a block of the channel.PUFA site 3: The intracellular

gate. Binding to this site can bend the gate open and increase the current. PUFA site 4:

The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor

domain. Binding to this site leads to an opening of the channel via an electrostatic

attraction between the negatively charged PUFA and the positively charged voltage

sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and

the pore domain. Binding to this site affects slow inactivation. This mapping of functional

PUFA sites can form the basis for physiological and pharmacological modifications of

voltage-gated ion channels.

Keywords: voltage-gated ion channels, polyunsaturated fatty acids, voltage sensor domain, S4, Excitability

disorders

INTRODUCTION

Fish, fish oils, and polyunsaturated fatty acids (PUFAs; which are major components of fish oils)
have beneficial effects on cardiac-, brain-, and muscle-related disorders. This has been shown in a
number of studies at different levels:

1. Anthropological studies suggest that the Eskimo and Mediterranean diets, rich in mono- and
PUFAs, lower the risk of heart disease and early death (Keys, 1970; Bang et al., 1971) (but see
Fodor et al., 2014).
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2. Large clinical trials show beneficial effects of dietary fish oil or
PUFAswith decreased risk of sudden cardiac death (Burr et al.,
1989; de Lorgeril et al., 1994; GISSI-Prevenzione Investigators,
1999; Albert et al., 2002; Marchioli et al., 2002).

3. In vivo animal models show that both intraperitoneal and
intravenous administration of fish oil or isolated PUFAs
prevent induced fatal ventricular arrhythmias (McLennan
et al., 1988; McLennan, 1993; Billman et al., 1994, 1997, 1999).

4. In vitro models show that PUFAs applied directly to
cardiomyocytes terminate arrhythmia and arrhythmia
resumes upon removal of PUFAs (Kang and Leaf, 1994).

The last point suggests that PUFAs merely need to
partition into the phospholipid cell membrane to exert their
antiarrhythmic effect, probably via ion channels, which are
responsible for electrical excitability of cells. Despite intense
research, the molecular details of the action of PUFAs on ion
channels and on excitability are largely unknown. In this review
we will summarize what is known about the interaction between
PUFAs and one superfamily of ion channels, the voltage-gated
ion channels.

Voltage-gated ion channel are pore-forming molecules in
the lipid bilayer of most cells, which open in response to
alterations in the cell’s transmembrane electrical potential (Hille,
2001). Opening of these channels allows the passage of specific
types of ion across the cell membrane, thereby initiating
and altering essential processes such as, signaling via nervous
impulses, or movement via muscle contractions. Ion channels
can be regulated by endogenous or exogenous compounds like

FIGURE 1 | Topology and cartoons on the different ion channels in the superfamily of voltage-gated ion channels. Left column illustrates side view of the

topology of a single subunit. Pore forming segments in blue and voltage-sensor domain segments in red. Middle column illustrates top view of the functional ion

channel. Right column provides an overview of the different subfamilies and their topology. The numbers in parentheses denote the number of ion channels within

each subfamily.

hormones, pharmaceutical drugs, or toxins. Some compounds,
such as PUFAs, can be both endogenous and exogenous.

PUFA effects on ion channels have been reviewed in several
excellent papers (Ordway et al., 1991; Meves, 1994; Leaf and
Xiao, 2001; Boland and Drzewiecki, 2008) but few, if any, have
tried to outline the molecular sites of action and the molecular
mechanism of the effects. Even fewer have tried to search for
common mechanisms across the channel families. These two
aspects are the focus of the present review.Wewill start with brief
overviews of voltage-gated ion channels and of PUFAs. Then, we
will summarize the current literature concerning PUFA effects on
voltage-gated ion channels. This will be followed by an attempt
to explain the data in molecular terms. Finally, we will briefly
discuss relevant physiological and therapeutic implications.

THE SUPERFAMILY OF VOLTAGE-GATED
ION CHANNELS

The general structure of voltage-gated ion channels has been
described in many extensive reviews (e.g., Tombola et al., 2006;
Catterall et al., 2007; Bezanilla, 2008; Börjesson and Elinder,
2008). Therefore, we will only briefly describe core features that
are pertinent to the subsequent discussion.

The human genome contains 144 genes coding for members
of the superfamily of voltage-gated ion channels (http://
guidetopharmacology.org/GRAC/ReceptorFamiliesForward?
type=IC). Figure 1 shows an overview of how these 144 channels
are classified into families.
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Thirty of the channels (upper row in Figure 1) only contain
pore-forming subunits (blue in Figure 1). Each pore-forming
subunit has two transmembrane (2TM) segments with a pore-
lining segment in-between (left column in Figure 1). Four
pore-forming subunits fused together make up a functional
channel with a central ion-conducting pore (middle column).
This tetrameric structure is referred to as the pore domain. The
potassium-selective inward rectifiers (Kir) are examples of such
channels (Figure 1, right column). Also the two-pore potassium
(K2P) channels have a similar 3D architecture but are instead
formed as dimer-of-dimers (each K2P gene is coding for two
linked pore-forming subunits). Channels that contain only the
pore domain are not intrinsically voltage sensitive but belong
to the superfamily of voltage-gated ion channels because of
molecular kinship. These channels are, instead, regulated by
mechanical forces or ligands (Kim, 2003; Honoré, 2007).

113 channels in the superfamily of voltage-gated ion channels
are composed of pore-forming segments, as described above,
linked to voltage sensing segments (red in Figure 1) in
a six transmembrane (6TM) architecture (Figure 1, middle
row). These types of channels have a central pore domain
surrounded by four voltage-sensor domains (VSDs) (Figure 1,
middle column, middle row). In most cases, the VSD confers
voltage dependence to these channels. Molecular details about
the voltage-sensing mechanism will be described below when
we discuss the molecular mechanism for PUFA action on
voltage-gated ion channels. Six families are arranged as tetramers
of 6TM subunits (Figure 1, right column, middle row):
Voltage-gated K (KV) channels, transient receptor potential
(TRP) channels, cyclic nucleotide activated (CNG) channels
(including the hyperpolarization and cyclic nucleotide-activated
(HCN) channels), calcium-activated K (KCa) channels, ryanodine
receptors (RyR), and cation channels of sperm (CatSper). In
contrast, two-pore (TPC) channels are formed as dimers of two
linked 6TM subunits, while voltage-gated calcium (CaV) and
sodium (NaV) channels are formed as monomers of four linked
6TM subunits.

Finally, one channel, the voltage-gated proton (HV1) channel
is a dimer of 4TM-VSD motifs (Figure 1, lower row). This
channel lacks the pore domain but allows protons to pass through
the center of each VSD (Koch et al., 2008; Tombola et al., 2008).

The present review focuses on PUFA effects on intrinsically
voltage-gated ion channels. We will therefore mainly summarize
and discuss data from the VSD-containing channels (6TM and
4TM channels in Figure 1, the middle and lower rows). Effects
on the channels in the upper row will not be covered. However,
some of the 2TM channels are highly sensitive to PUFAs, such
that some of them have names reflecting regulation by PUFAs.
For example, the K2P4.1 channel is also referred to as the TWIK-
related arachidonic-acid activated K (TRAAK) channel. Some
of the described PUFA effects on these channels will be briefly
mentioned later in this review, when we discuss the molecular
mechanism of PUFA effects on intrinsically voltage sensitive ion
channels. It should also be noted that some early studies were
performed before the molecular identity was known. In these
cases we have assigned channels to different families based of
their functional characteristics.

CLASSIFICATION AND SOURCES OF
FATTY ACIDS

Fatty acids are important messengers in cell signaling and critical
components of the phospholipids that constitute the plasma
membrane. The general structure of most naturally occurring
fatty acids is a carboxylic acid with an unbranched aliphatic
hydrocarbon tail. These fatty acids can be classified according
to the number of carbon-carbon double bonds in the tail
(Figure 2A):

– Saturated fatty acids (SFAs) such as stearic acid lack double
bonds.

– Monounsaturated fatty acids (MUFAs) such as oleic acid have
one double bond.

– Polyunsaturated fatty acids (PUFAs) such as linoleic acid,
arachidonic acid (AA), and docosahexaenoic acid (DHA) have
two or more double bonds.

A common way to name fatty acids is by the number of carbons
and double bonds. For example, DHA is also called 22:6 (22
carbons and six double bonds). Moreover, double bonds can
display cis geometry (the adjacent carbons are on the same side
of the carbon chain) or trans geometry (the adjacent carbons
are on opposite sides of the carbon chain). Cis geometry is most
common among naturally occurring unsaturated fatty acids,
while trans is usually caused by industrial processing of fatty acids
(Micha and Mozaffarian, 2009) (Figure 2A).

Certain fatty acids, in particular SFAs and MUFAs, can be
synthesized de novo in the human body (Mullen and Yet, 2015).
Others, especially PUFAs, must instead be acquired through
the diet (Jakobsson et al., 2006; Kihara, 2012). Dietary intake
of α-linolenic acid and linoleic acid (obtained from fish oil
or sunflower oil, respectively) is a vital source for PUFAs
(Figure 2B). The first double bond in α-linolenic acid is located
at the third carbon, counting from the methyl end of the tail,
and is therefore an n-3 (or ω-3) fatty acid. Linoleic acid, on the
other hand, has its first double bond located at the sixth carbon,
and is therefore an n-6 (or ω-6) fatty acid. These dietary PUFAs
function as precursors in the synthesis of longer PUFAs like the
n-3 docosahexaenoic acid (DHA) or the n-6 arachidonic acid
(AA) (Figure 2B). Non-esterified fatty acids can circulate in the
plasma bound to transport proteins such as albumin. These non-
esterified free fatty acids are directly available to dissociate from
albumin and interact with membrane-bound ion channels (as
will be discussed later) or be metabolized by various enzymatic
systems (described below).

The phospholipids that constitute the plasma membrane are
another important source for fatty acids. Each phospholipid
is composed of two fatty acids and a head-group bound to a
glycerol backbone (Figure 3). SFAs are generally esterified to
the first carbon of the glycerol backbone (sn1) while PUFAs,
or (less commonly) MUFAs, are esterified to the second carbon
(sn2). The polarity and charge of different phospholipids are
determined by the properties of the head group bound to the
third carbon of the glycerol backbone (sn3). Esterified fatty acids
in the plasma membrane can be hydrolyzed to non-esterified
free fatty acids, which are then available to interact with ion
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FIGURE 2 | Structures of unesterified fatty acids. (A) Unesterified fatty acids are classified according to the presence, number and geometry of double bonds in

the acyl tail. Abbreviations: MUFA, monounsaturated fatty acid; SFA, saturated fatty acid; PUFA, polyunsaturated fatty acid; The PUFA is shown in both cis and trans

geometry. (B) Metabolic pathways of n-3 and n-6 fatty acid synthesis. α-linolenic acid and linoleic acid are the precursors of n-3 and 6 PUFAs, respectively. Different

desaturases and elongases convert these precursors to different long-chain PUFAs.

channels and other cellular proteins. The hydrolysis of esterified
AA has been most extensively studied. It is primarily mediated
by four different phospholipases that act at four distinct sites
in the phospholipid (Figure 3) (Dennis et al., 1991; Siddiqui
et al., 2008); Phospholipase A2 (PLA2) -mediated hydrolysis of
the sn2 linkage directly releases AA. In contrast, Phospholipase
A1 (PLA1), phospholipase C (PLC), or phospholipase D (PLD)
-mediated hydrolysis yield precursors of AA (such as 1, 2
diacylglycerol and phosphatidic acid) that require additional
enzymatic conversions before non-esterified AA is released. AA
and DHA are the most common PUFAs to be found in sn2
position in mammalian phospholipids. Release of DHA (or
other unsaturated fatty acids) from phospholipids follows the
same overall pathway as AA release, although the chemical
intermediates formed are different due to differences in the fatty
acid acyl tail.

Once released from the plasma membrane, these non-
esterified fatty acids may diffuse to and interact with membrane-
bound ion channels, take part in intracellular signaling, or
be further metabolized by various oxygenases. Metabolism
of non-esterified fatty acids is mediated by three main
types of oxygenases (Figure 3) (Siddiqui et al., 2008; Jenkins
et al., 2009): Cyclooxygenases (COX), lipoxygenases (LOX),
and cytochrome P450 epoxygenases (CYP). These enzymes
produce a family of fatty-acid metabolites named eicosanoids,
which includes prostaglandins, leukotrienes, thromboxanes, and
epoxides (Siddiqui et al., 2008; Jenkins et al., 2009). Again, the
structures of these metabolites depend on the structure of the
specific fatty acid that is substrate for oxygenation.

In this review we will focus on the effect of non-
esterified PUFAs on voltage-gated ion channels. Several fatty
acid metabolites and intermediates formed during phospholipid
hydrolysis are also known to modulate the activity of voltage-
gated ion channels. However, we will not discuss these
interactions here.

EFFECTS OF PUFA ON VOLTAGE-GATED
ION CHANNELS

To collect papers describing the effects of PUFA on the
VSD-containing channels we searched PubMed for various
combinations of voltage-gated ion channels and fatty acids, and
extended the list when relevant articles were found during the
work. In total we identified, read and analyzed data from 295
original papers containing voltage-clamp data from voltage-gated
ion channels published between 1987 and June 2016 (Table 1).
In addition, we read and analyzed about 400 papers concerning
PUFA effects on non-VSD containing channels, review papers, or
papers describing PUFA effects on excitability in general.

Historical Notes from 1981–1992
In 1981, Takenaka et al. reported that fatty acids with chain
lengths exceeding eight carbons, in the concentration range
of 0.2–2.2 mM, decreased the voltage-gated Na current in
squid giant axons while leaving the delayed-rectifier K current
unaffected. Cis-2-decenoic acid, which has ten carbons and a
double bond between carbon 2 and 3 was the most effective
fatty acid in their experiments (Takenaka et al., 1981). In 1987,
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FIGURE 3 | Metabolic pathways of arachidonic acid hydrolysis and oxidation. Phospholipids in the cell membranes commonly have a SFA esterified to sn1

position and a PUFA, such as arachidonic acid (AA) esterified to sn2 position. Activation of different phospholipases releases AA from phospholipids, either in one

enzymatic step (PLA2) or through several enzymatic steps (PLA1, PLC, PLD). Unesterified AA can be further metabolized to various eicosanoid metabolites by

different COX, LOX, and CYP enzymes. Abbreviations: 2-AG, 2-arachidonoylglycerol; AA, arachidonic acid; COX, cyclooxygenase; CYP, cytochrome P450 enzyme;

DAG, 1,2-diacylglycerol; DGL, DAG lipase; EET, epoxyeicosatrienoic acid; HETE, hydroxyeicosatrienoic acid; IP3, inositol 1,4,5-trisphosphate; LOX, lipooxygenase;

LTC4, leucotriene C4; Lyso-GPL, lyso-glycerolphospholipid; Lyso-PLC, lysophospholipase C; MGL, monoacylglycerol lipase; PA, phosphatidic acid; PAP, PA

phosphatase; PGD2, prostaglandin D2; PLA1, phospholipase A1; PLA2, phospholipase A2; PLC, phospholipase C; PLD, phospholipase D; SFA, saturated fatty acid;

TXA2, thromboxane A2.

the same group reported that both saturated and unsaturated
medium-chain fatty acids (8–13 carbons) reversibly attenuated
voltage-dependent Na currents in squid giant axons by shifting
the conductance-vs.-voltage, G(V), curve in a positive direction
along the voltage axis (Takenaka et al., 1987). The effect
developed much faster upon intracellular application, suggesting
an intracellular site of action. The fatty acid concentration needed
for 50% reduction of the peak Na current decreased by a factor
of 1/3 for each extra carbon. The presence of a carboxyl or
hydroxyl group at the ω end of the fatty acid abolished the
effect completely. These findings suggested that a hydrophobic
interaction between the fatty acid and Na channel could be an
important factor for the effect.

Longer chain fatty acids like palmitic acid (16:0), linoleic
acid (18:2), and linolenic acid (18:3) decreased both Na and K
currents, but the effects were irreversible, probably because of
high concentrations tested would result in micelle formation.
Finally, in 1988, by using α-cyclodextrin to dissolve the fatty
acids, this group reported that long-chain PUFAs produced
effects similar to medium-chain fatty acids (Takenaka et al.,
1988). Intracellularly applied AA (20:4) reversibly suppressed
the Na current of the squid giant axon with little effect

on the K current. 180 µM AA reduced the Na current by
50%, which is a concentration almost ten times lower than
required for the medium-chain fatty acid, 2-decenoic acid.
Longer PUFAs, Docosatetraenoic (22:4) and DHA (22:6), had
effects quantitatively similar to AA. Shorter PUFAs, linoleic
acid (18:2) and linolenic acid (18:3), had smaller effects than
AA, while the effects of the MUFA oleic acid (18:1) were
even smaller, and the SFA stearic acid (18:0) had almost no
effect.

In 1989, Bregetovski et al. reported that 2-decenoic acid
increased the open probability of KCa channels up to 10-fold in
the membrane of smooth muscle cells from the human aorta
(Bregestovski et al., 1989). They suggested that 2-decenoic acid
alters the Ca2+-binding mechanism of the channel. The same
year Linden and Routtenberg reported that low concentrations
(1–50 µM) of the MUFA oleic acid (18:1), the PUFAs linoleic
acid (18:2), and linolenic acid (18:3), but not the SFA stearic acid
(18:0) or the trans-isomer of oleic acid blocked the Na current in
N1E-115 neuroblastoma cells (Linden and Routtenberg, 1989); 5
µM oleic acid decreased the peak Na current by 36%. K currents
were not affected while both T-type and L-type Ca currents were
blocked. This study also excluded the possible explanation that
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TABLE 1 | List of general effects and references to all articles analyzed in the present review.

Family Amplitude G(V) ss-inact. Inactivation No articles References

KV1-4 ↓ ← ← Faster 76 a

KV7 ↑ ← – – 9 b

KV10-12 ↑↓ ← – – 5 c

KCa ↑ ← – – 53 d

TRP ↑ – – – 24 e

CNG ↑↓ – – – 2 f

RyR ↑↓ – – – 3 g

Catsper/TCP ↑↓ – – – 4 h

NaV ↓ ↔ ← – 41 i

CaV ↓ ← ← Faster 69 j

HV ↑ ← – – 8 k

The arrows denote the general effect in each family. Double arrows denote mixed effects. A dash denote that the parameter has not been investigated, there is no effect, or that it is not

applicable. a, (Takenaka et al., 1987, 1988; Premkumar et al., 1990; Rouzaire-Dubois et al., 1991; Damron et al., 1993; Villarroel, 1993; Chesnoy-Marchais and Fritsch, 1994; Honoré

et al., 1994; Lee et al., 1994; Lynch and Voss, 1994; Gubitosi-Klug et al., 1995; Poling et al., 1995; Nagano et al., 1995a; Poling et al., 1996; Soliven and Wang, 1995; Wang and Lu,

1995; Nagano et al., 1997; Garratt et al., 1996; Smirnov and Aaronson, 1996; Villarroel and Schwarz, 1996; Gilbertson et al., 1997; Horimoto et al., 1997; Keros and McBain, 1997;

Bogdanov et al., 1998; Bringmann et al., 1998; Devor and Frizzell, 1998; Dryer et al., 1998; Hatton and Peers, 1998; Visentin and Levi, 1998; Bittner and Müller, 1999; Colbert and Pan,

1999; Singleton et al., 1999; Yu et al., 1999; Casavant et al., 2000; Wilson et al., 2000; Holmqvist et al., 2001; Kehl, 2001; McKay and Jennings, 2001; Takahira et al., 2001; Erichsen

et al., 2002; Müller and Bittner, 2002; Ramakers and Storm, 2002; Seebungkert and Lynch, 2002; Xiao et al., 2002; Danthi et al., 2003; Ferroni et al., 2003; Judé et al., 2003; Fioretti

et al., 2004; Oliver et al., 2004; Sokolowski et al., 2004; Angelova and Müller, 2006, 2009; Feng et al., 2006; Kang et al., 2006; Jacobson et al., 2007; Szekely et al., 2007; Zhao et al.,

2007; Börjesson et al., 2008, 2010; Guizy et al., 2008; Xu et al., 2008; Zhang M. et al., 2008; Boland et al., 2009; Koshida et al., 2009; Li et al., 2009; Wang et al., 2009; Decher et al.,

2010; Börjesson and Elinder, 2011; Lai et al., 2011; Kong et al., 2012; Heler et al., 2013; Carta et al., 2014; Ottosson et al., 2014; Bai et al., 2015; Farag et al., 2016; Yazdi et al.,

2016). b, (Béhé et al., 1992; Villarroel, 1993, 1994; Yu, 1995; Doolan et al., 2002; Milberg et al., 2011; Liin et al., 2015, 2016a,b; Moreno et al., 2015). c, (Schledermann et al., 2001;

Liu and Wu, 2003; Wang et al., 2004; Guizy et al., 2005; Gavrilova-Ruch et al., 2007). d, (Bregestovski et al., 1989; Kirber et al., 1992; Ling et al., 1992; Ahn et al., 1994; Duerson et al.,

1996; Zou et al., 1996; Twitchell et al., 1997; Devor and Frizzell, 1998; Stockand et al., 1998; Denson et al., 1999, 2000, 2005, 2006; Barlow et al., 2000; Wu et al., 2000; Fukao et al.,

2001; Lu et al., 2001, 2005; Zhang et al., 2001; Zhang P. et al., 2008; Clarke et al., 2002, 2003; Lauterbach et al., 2002; Li et al., 2002, 2010; Ye et al., 2002; Hamilton et al., 2003;

Gauthier et al., 2004, 2014; Zheng et al., 2005, 2008; Yang M. et al., 2005; Sun et al., 2007, 2009; Morin et al., 2007a,b,c; Gebremedhin et al., 2008; Godlewski et al., 2009; Lai et al.,

2009; Wang et al., 2011a,b; Enyeart and Enyeart, 2013; Harris et al., 2013; Latorre and Contreras, 2013; Hoshi et al., 2013a,b,c,d; Kacik et al., 2014; Martín et al., 2014; Olszewska

et al., 2014; Yan et al., 2014). e, (Chyb et al., 1999; Watanabe et al., 2003; Kahn-Kirby et al., 2004; Hu et al., 2006; Jörs et al., 2006; Oike et al., 2006; Reiter et al., 2006; Andersson

et al., 2007; Hartmannsgruber et al., 2007; Matta et al., 2007; Vriens et al., 2007; Rock et al., 2008; Delgado and Bacigalupo, 2009; Shimizu et al., 2009; Parnas et al., 2009a,b; Zhang

et al., 2010; Bavencoffe et al., 2011; Motter and Ahern, 2012; Shah et al., 2012; Sukumar et al., 2012; Zheng et al., 2013; Redmond et al., 2014; Ruparel et al., 2015). f, (Fogle et al.,

2007; Verkerk et al., 2009). g, (Honen et al., 2003; Woolcott et al., 2006; Muslikhov et al., 2014). h, (Mochizuki-Oda et al., 1993; Asano et al., 1997; Liu et al., 2006; Gutla et al., 2012).

i, (Linden and Routtenberg, 1989; Wieland et al., 1992, 1996; Fraser et al., 1993; Charpentier et al., 1995; Kang et al., 1995, 1997; Xiao et al., 1995, 1998, 2000, 2001, 2004, 2005,

2006; Kang and Leaf, 1996; Vreugdenhil et al., 1996; Bendahhou et al., 1997; Fyfe et al., 1997; Macleod et al., 1998; Lee et al., 1999, 2002; Leifert et al., 1999; Ding et al., 2000; Harrell

and Stimers, 2002; Leaf et al., 2002; Hong et al., 2004; Jo et al., 2005; Kim et al., 2005; Isbilen et al., 2006; Pignier et al., 2007; Duan et al., 2008; Dujardin et al., 2008; Gu et al., 2009,

2015; Nakajima et al., 2009, 2010; Fang et al., 2011; Guo et al., 2012; Wolkowicz et al., 2014; Safrany-Fark et al., 2015; Wannous et al., 2015). j, (Keyser and Alger, 1990; Finkel et al.,

1992; Hallaq et al., 1992; Huang et al., 1992; Shimada and Somlyo, 1992; Damron and Bond, 1993; Dettbarn and Palade, 1993; Pepe et al., 1994; Törnquist et al., 1994; Williams

et al., 1994; Roudbaraki et al., 1995; Nagano et al., 1995b; Schmitt and Meves, 1995; van der Zee et al., 1995; Petit-Jacques and Hartzell, 1996; Shimasue et al., 1996; Shuttleworth,

1996; Uehara et al., 1996; Unno et al., 1996; Damron and Summers, 1997; Munaron et al., 1997; Striggow and Ehrlich, 1997; Xiao et al., 1997; Hazama et al., 1998; Chen et al., 1999,

2001; Fang et al., 1999; Liu and Rittenhouse, 2000, 2003; Vellani et al., 2000; Zhang et al., 2000; Barrett et al., 2001; Bringmann et al., 2001; Fiorio Pla and Munaron, 2001; Hirafuji

et al., 2001; Krutetskaia et al., 2001; Liu et al., 2001, 2004, 2008, 2015; Luo et al., 2001; Mignen and Shuttleworth, 2001; Ferrier et al., 2002; Soldati et al., 2002; Swan et al., 2003;

Yagami et al., 2003; Guermouche et al., 2004; Guibert et al., 2004; Oz et al., 2004; Talavera et al., 2004; Danthi et al., 2005; Erriquez et al., 2005; Rychkov et al., 2005; Yang K. T.

et al., 2005; Chemin et al., 2007; Holmes et al., 2007; Liu, 2007; Feng et al., 2008; Rimmerman et al., 2008; Barbara et al., 2009; Heneghan et al., 2009; Mitra-Ganguli et al., 2009;

Roberts-Crowley and Rittenhouse, 2009, 2015; Rocha and Bendhack, 2009; DeCostanzo et al., 2010; Cazade et al., 2014; Cui et al., 2014; Thompson et al., 2014). k, (DeCoursey and

Cherny, 1993; Kapus et al., 1994; Gordienko et al., 1996; Lowenthal and Levy, 1999; Hourton-Cabassa et al., 2002; Morgan et al., 2002, 2007; Kawanabe and Okamura, 2016).

fatty acid effects were produced by increased fluidization of the
membrane.

In 1991, Rouzaire-Dubois et al. showed that several MUFAs
and PUFAs induced or accelerated inactivation of KV channels
via a direct mechanism (not activation of protein kinase C). For
instance, 5 µM of oleic acid accelerated the inactivation by a
factor of about 10. Among the 18-carbon fatty acids, linoleic acid
(18:2) was the most potent inactivator (50-fold acceleration at 5
µM), followed by oleic acid (18:1), linolenic acid (18:3), elaidic
acid (18:1, trans), and stearic acid (18:0) which did not affect the
inactivation time course at all.

In 1992 several papers on different ion channels established
that low µM concentrations of PUFAs affect voltage-gated ion
channels, opening as well as closing (Béhé et al., 1992; Finkel

et al., 1992; Hallaq et al., 1992; Huang et al., 1992; Kirber et al.,
1992; Ling et al., 1992; Shimada and Somlyo, 1992; Wieland et al.,
1992).

At about the same time several influential studies were
published suggesting that PUFA or PUFA-metabolites had direct
effects on other, non-voltage-gated, ion channels (Buttner et al.,
1989; Giaume et al., 1989; Kim and Clapham, 1989; Kurachi et al.,
1989; Ordway et al., 1989; Anderson and Welsh, 1990; Cantiello
et al., 1990; Hwang et al., 1990; Kim and Duff, 1990).

General Effects
Despite the multiple different types of ion channels and PUFAs
included in this review, the effects PUFAs have on voltage-gated
ion channels are surprisingly general and can be summarized
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in a few points (Table 1). However, it should be noted that
quantitative differences do exist.

i. Alteration in voltage dependence of ion channels: A
common finding is that PUFAs shift the G(V) and/or
the steady-state inactivation curves in a negative direction
along the voltage axis (Figures 4A,B). Such a shift of the
G(V) curve opens the channel, while this shift of the steady-
state inactivation curve closes (inactivates) the channel. For
NaV and CaV channels, shifts of the steady-state inactivation
curve tend to be larger than shifts of the G(V) curves. As a
consequence, NaV and CaV channels are generally inhibited
by PUFAs. In contrast, KV channels which in many cases are
less affected by steady-state inactivation at resting voltage are
typically activated by PUFAs.

ii. Alteration in maximal conductance of ion channels: PUFAs
are also able to increase or decrease the conductance at
positive voltages (either open probability or the single-
channel conductance), where the conductance is not affected
as a consequence of the G(V) shift (Figure 4C). In
many cases, there is a combination of effect i and ii
(Figure 4D). Despite these combined effects it is relatively
easy to distinguish them without curve fitting. Increased
conductance can be measured directly at voltages where
the conductance has saturated while a G(V) shift can be
measured at the foot of the curve (e.g. at 10% of maximal
conductance in control–the error for the G(V) curve shown
in Figure 4D is only 1.7 mV if the maximal conductance is
increased by 50%).

iii. Alteration in the time course of ion channel kinetics:
Consistent with the negative shift of the channel’s voltage
dependence in negative direction along the voltage axis,
the opening kinetics are sometimes faster (Figure 4E) and
the closing kinetics slower (Figure 4F) in the presence of
PUFAs. There are also multiple reports of a PUFA-induced
acceleration of channel inactivation (Figure 4G).

Specific Effects—Family by Family
Although many of the PUFA effects are general for the
voltage-gated ion channels, there are quantitative and qualitative
differences. We will therefore briefly describe the specific PUFA
effects on different sub-families of voltage-gated ion channels.
Table 1 describes the general effects for the specific families and
lists the references.

KV Channels
The largest and most studied family when it comes to PUFA
effects on voltage-gated ion channels is the family of voltage-
gated K (KV) channels. Because of the size and diversity of
this family, we will divide this family into three groups of
subfamilies. Subfamilies that are not included in our description
below have not, to our knowledge, been studied with respect to
PUFAs.

KV1–4: KV channels within these subfamilies open rapidly and
thereby cause fairly fast repolarization of the action potential.
Therefore, these channels have special importance for neurons
that fire with high frequency. Some of these channels [such as

FIGURE 4 | General effects of the fatty acids on the channels. (A) The black curve represents a typical control conductance-vs.-voltage curve [G(V ) =

1/(1+exp((V-V½)/s))n, where V is the membrane voltage, s = 8 mV, V½ = −40 mV, n = 4] for a voltage-gated ion channel. The red curve is the control curve shifted

by −20 mV. (B) The black curve represents a typical steady-state inactivation curve [G(VPP) = 1/(1+exp((V-V½ )/s)), s = −8 mV, V½ = −40 mV]. The red curve is the

control curve shifted by −20 mV. (C) The black curve represents a typical control curve as in (A). The red curve is the control curve increased by a factor 1.5. The blue

curve is the control curve decreased by multiplying by 0.5. (D) The black curve represents a typical control curve as in (A). The red continuous curve is an example

where the curve is both shifted in negative direction along the voltage axis and increased. The amplitude increase can reliably be measured at high voltages where the

conductance levels out. The shift can reliably be measured at the foot of the conductance curve (at 10% of the max value of the control curve) without normalization of

the curve. The shift of the curve is −20 mV. Measured at the foot, when the maximum conductance is increased by 50%, the shift is over-estimated by 1.7 mV (–21.7

mV instead of –20 mV). (E) The black curve represents a typical activation time course (τ = 2 ms, n = 4, τinact = 2 s). The red curve is a two fold increase in opening

rate. (F) The black curve represents a typical single exponential channel closure (τ = 5 ms). The red curve is 10 times slower. (G) The black curve represents a typical

channel inactivation (τ = 2 s), while the red inactivates 10 times faster.
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KV4 channels which generate transient outward (Ito) neuronal
and cardiac K currents] also inactivate rapidly and are thus
sometimes referred to as A-type KV channels. Other members
within this subfamily, such as Kv2.1, inactivate slowly generating
persistent K currents, in the physiological time frame. Some
studies describe PUFA-induced increases in native K currents of
unclear molecular identity (e.g., Horimoto et al., 1997; Ferroni
et al., 2003; Fioretti et al., 2004), however the most commonly
observed PUFA effect on fast native K currents (Lynch and Voss,
1994) and heterologously expressed KV1–4 channels is inhibition
(by 20–100% at ∼10 µM PUFA). This inhibition is commonly
associated with an acceleration of the time course of channel
inactivation. PUFA effects on channel voltage dependence are less
consistent, but themost commonly described are negative voltage
shifts ofG(V) and/or steady-state inactivation curves. The overall
effect is typically a reduced current, but a few exceptions describe
PUFA-induced activation of KV1–4 channels (Zhao et al., 2007;
Börjesson et al., 2008, 2010; Zhang M. et al., 2008; Börjesson and
Elinder, 2011).

KV7: KV channels within this subfamily open slowly and are
referred to as slow delayed rectifiers. KV7 channels underlie the
neuronal M current, which contributes to the negative resting
membrane potential in neurons, and the cardiac IKs current,
which contributes to the repolarization in cardiomyocytes.
PUFAs are reported to activate both natively and heterologously
expressed KV7 channels. PUFA-induced increases of KV7 current
amplitudes are associated with a small negative shift in the
G(V) curve (roughly −5 to −10 mV by 10 µM PUFA). There
are, however, some inconsistencies concerning the role of the
auxiliary subunit KCNE1 during PUFA exposure. The cardiac
IKs channel is a complex between KV7.1 and KCNE1. Doolan
et al. find that PUFA effects on the IKs channel require the
presence of KCNE1 (Doolan et al., 2002). In contrast, we describe
that KCNE1 causes reduced PUFA sensitivity of the IKs channel
compared to KV7.1 alone (Liin et al., 2015). Moreover, Moreno
et al. show that PUFA effects on the IKs channel vary over time
(Moreno et al., 2015).

KV10–12: These subfamilies contain the KV10.1 channel (=
EAG1) and the KV11.1 channel (= hERG or ERG1). KV11.1
forms the major portion of the rapid delayed rectifier current
(IKr), which is critical in correctly timing the repolarization of
cardiac action potentials. Mutations in KV11.1 and compounds
targeting IKr channels can cause long QT syndrome and
subsequent lethal ventricular fibrillation. Most PUFA studies on
this group have been performed on the KV11.1 channel, with
a single study performed on KV10.1. The effects in this small
group are mixed. Both current reductions and current increases
have been reported. The G(V) curve is negatively shifted in most
studies. This shift is rather large for KV10.1, around−30mV at 10
µM for all PUFAs studied (Gavrilova-Ruch et al., 2007). Several
studies also suggest that PUFAs speed up closure (inactivation) of
these channels.

KCa Channels
The family of Ca-activated K channels contains three types of
channels: Big, intermediate, and small conductance channels.
Only the KCa1.1 (BK) family is clearly voltage dependent as
it is opened by alterations in membrane voltage in addition

to increases in the intracellular Ca2+ concentration. Almost all
studies of PUFA effects on KCa channels have been performed
on KCa1.1 channel. This channel is essential for the regulation
of smooth muscle tone and neuronal excitability. PUFAs,
even at submicromolar concentrations, increase the maximum
conductance and shift the G(V) curve in negative direction along
the voltage axis. In addition, the KCa1.1 channel is quite sensitive
to PUFA metabolites (Meves, 2008). Recent studies have mapped
the binding site for PUFAs to a region near the intracellular gate
(Hoshi et al., 2013d; Tian et al., 2016).

TRP Channels
The transient receptor potential (TRP) channels form a large
family, consisting of 28 channels divided in six subfamilies. TRP
channels are for example involved in mediating the sensations
of cold, heat, and pain. These channels are fairly non-selective
and therefore conduct several types of cations (e.g., Na+, Ca2+).
TRP channels are generally described as being activated by
PUFAs. However, many of these studies measured TRP channel
activity indirectly using fluorescence-based calcium imaging,
which provides limited information about TRP channel voltage
dependence and the time course of TRP currents. In studies that
include electrophysiological recordings (primarily from TRPVs,
TRPCs, TRPAs, and drosophila TRPs), the amplitude of TRP
currents are found to increase many-fold following application
of >10 µM PUFA. Moreover, Shimizu et al. describe a PUFA-
induced negative shift in the G(V) curve of TRPP3 channels
(Shimizu et al., 2009). However, TRPM channels are an exception
among TRP channels, as they are almost completely inhibited by
PUFAs (Andersson et al., 2007; Parnas et al., 2009b; Bavencoffe
et al., 2011).

NaV Channels
The family of voltage-gated Na channels contains the first ion
channel to be discovered and explored electrophysiologically
(Hodgkin and Huxley, 1952a,b), and later, cloned and sequenced
(Noda et al., 1984). NaV channels generate action potentials in
neurons, the heart, and other muscles. Thus, they are important
targets for the regulation of excitability. With few exceptions,
PUFAs reduce NaV currents. However, PUFAs also shift theG(V)
and steady-state inactivation curves of most NaV channels in a
negative direction along the voltage axis. In general, the steady-
state inactivation curve is shifted more than the G(V) curve.
These shifts have conflicting results; the G(V)-curve shift opens
channels and thereby increase excitability, while the steady-state
inactivation curve shift inactivates/closes channels and thereby
decrease excitability. Altogether, these mixed effects result in
reduced excitability.

CaV Channels
Voltage-gated Ca channels have two critical functions:
Generating (or boosting) action potentials, and conducting
extracellular Ca2+ ions into the cell where they can act as a
second messenger. PUFA effects on CaV channels have been
studied rather extensively. The effects are very similar to the
effects on NaV channels, that is, the maximal conductance
is decreased, and G(V) and steady-state inactivation curves
are shifted in a negative direction along the voltage axis, with
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the steady-state inactivation shift being larger than the G(V)
shift. In addition, the inactivation time course is in some cases
accelerated. Altogether, these mixed effects result in reduced
excitability.

HV Channels
The proton channel, which was cloned only 10 years ago
(Ramsey et al., 2006; Sasaki et al., 2006), deviates from all other
ion channels in lacking the conventional ion-conducting pore
domain. However, the voltage sensing mechanism is similar to
the other voltage-gated ion channels; the difference is that two
VSDs act together as a dimer (Koch et al., 2008; Lee et al., 2008).
The effects of PUFAs on the HV channels are reminiscent of the
effects on the other channels, suggesting that at least some of the
effects are conferred by the VSD. PUFAs increase the maximal
current of HV channels–for most other channels the maximal
current is decreased. The shift of the G(V) is in the negative
direction along the voltage axis, but the size is smaller than for
most other channels. One surprising finding is that the PUFA
carboxyl charge is not important for this effect (Kawanabe and
Okamura, 2016).

Other Voltage-Gated Ion Channels
Several other ion channels belonging to the superfamily of
voltage-gated ion channels have been explored with respect
to PUFA effects, but many of them are difficult to study in
biophysical detail. For several of the families only few studies
have been performed, often with mixed data, making it difficult
to draw general conclusions. These families are brieflymentioned
here and the references are found in Table 1. The family of
cyclic-nucleotide gated (CNG) ion channels contains two types
of channels–hyperpolarization-activated cyclic nucleotide gated
(HCN) channels, which are highly voltage dependent (even
though the polarity is opposite to most other ion channels),
and the non-voltage dependent CNG channels. HCN channel
have an important role as pacemaker channels in the sino-
atrial node of the heart. AA has been found to directly facilitate
HCN channel opening, and rats fed a diet enriched with fish
oil show reduced pacemaker currents and consequently reduced
heart rate (see Table 1). The ryanodine receptor (RyR) family
is an intracellular cation channel critical for the regulation of
intracellular levels of Ca2+. PUFAs have been reported both to
increase and decrease the RyR current. CatSper channels and
TCP channels are molecularly related. CatSper channels are
found in the plasma membrane of sperm while TCP channels are
found in intracellular endolysosomes. Here the effects of PUFAs
are also mixed.

SITES AND MECHANISMS OF ACTIONS
OF PUFA

There are some general properties of fatty acids that are often
described as being required to induce the PUFA effects described
above (e.g., Xiao et al., 1997, 1998; Danthi et al., 2003, 2005;
Börjesson et al., 2008; Liin et al., 2015):

(a) At least two double bonds in the acyl tail are required.
Therefore, PUFAs induce these effects while SFAs and
MUFAs generally do not. However, there is usually no clear
difference between n-3 and n-6 PUFAs. Also, there is no large
or systematic difference between PUFAswith respect to chain
lengths from 16 to 24 carbons.

(b) Cis-geometry of the double bonds in the acyl tail is required.
Trans-geometry renders the PUFAs ineffective.

(c) The negative charge of the carboxyl group is required.
Uncharged methyl esters of PUFAs generally lack effects.

In addition, PUFAs need to remain in their intact form.
Experiments conducted with non-metabolizable PUFA analogs
(such as ETYA) and cyclooxygenase inhibitors (that prevent
PUFA metabolism) show that the PUFAs themselves, and not
their metabolites, induce these general effects. Some exceptions,
however, have been reported (Twitchell et al., 1997; Lee et al.,
2002; Judé et al., 2003).

Despite the large number of studies published (Table 1), only
a few PUFA sites of action have been described and little has been
described concerning the mechanism by which PUFAs interact
with voltage-gated ion channels.

The first major question is whether the reported effects of
PUFAs on the voltage-gated ions channels are direct channel
effects or if they are mediated via non-specific membrane effects.
In general, the concentrations needed for the PUFA effects
are relatively low (1–10 µM), ruling out unspecific membrane
fluidizing effects (Pound et al., 2001). Moreover, there is
no correlation between a PUFA’s propensity to fluidize the
membrane and their effects on voltage-gated ion channels
(Villarroel and Schwarz, 1996). Alterations of the lipidmembrane
by soaking out cholesterol affect ion channel function but do
not affect acute PUFA effects (Moreno et al., 2015). Further,
the onset and washout of the effect on KV channels is very
rapid (2–3 s), suggesting a direct channel effect (Poling et al.,
1996). An early suggestion that PUFAs may bind directly to
voltage-gated ion channels came from experiments on NaV
channels in which the PUFA eicosapentaenoic acid (EPA)
inhibited the binding of a radio-labeled toxin to cardiac
NaV channels (Kang et al., 1995; Kang and Leaf, 1996).
Further evidence that PUFAs have direct ion channel effects
is provided by the demonstration that single point mutations
in various voltage-gated ion channels also affects the ability
of PUFAs to modulate those channels (e.g., Xiao et al., 2001;
Börjesson and Elinder, 2011; Ottosson et al., 2014; Liin et al.,
2015).

Secondly, we may ask on which side of the membrane
the PUFAs act. Whereas, most studies have used extracellular
application of PUFAs, one study made a direct comparison
of PUFA-induced effects upon PUFA application from either
side of the membrane. They found no difference in PUFA
effects on KV channels based on the side of application (Oliver
et al., 2004). In contrast, some studies have demonstrated ion
channel modulation when PUFAs are applied extracellularly
but fail to observe modulation when PUFAs are added
intracellularly (Honoré et al., 1994; Poling et al., 1995, 1996;
Garratt et al., 1996; Kehl, 2001; McKay and Jennings, 2001;
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Guizy et al., 2008). Yet other studies primarily observe
effects when the PUFAs are applied to the intracellular side
(Boland et al., 2009; Decher et al., 2010). These differences
in the side of action may be explained by differences in the
predominant PUFA sites of action in different types of ion
channels.

Five Sites of Action
From our analysis of PUFA publications in the field we have
identified five sites of actions (Figures 5A,B). The first two sites
are located in the ion-conducting pore, one at the intracellular
entrance (PUFA site 1), and the other at the extracellular entrance
(PUFA site 2). The third is located at the VSD-to-pore domain
linker close to the intracellular gate (PUFA site 3). The last two
are located at the interface between the extracellular part of the
ion channel and the outer leaflet of the lipid bilayer from which
PUFAs electrostatically interact with the VSD (PUFA site 4) or
the pore domain (PUFA site 5).

PUFA Site 1–the Intracellular Cavity
Several studies have identified the intracellular part of the
pore lining S6, with residues facing the intracellular cavity, as
critical for the PUFA effects. A common mechanism is an open-
channel block causing a time dependent current reduction–an
inactivation.

A single point mutation of domain I of the cardiac NaV1.5
channel (N406K) clearly reduces the inhibitory effect of DHA
(Xiao et al., 2001). The negative shift of the steady-state
inactivation curve is also attenuated. The identified amino-acid
residue is located in the middle of S6, facing the intracellular
cavity, in a similar position where local anesthetics bind to
domain IV of a rat brain NaV channel (Ragsdale et al., 1994).
However, the molecular detail why the steady-state inactivation
curve is shifted by DHA has not been described.

In KV1.1 channels, DHA and AA, but also the uncharged
anandamide induces inactivation by interacting with
hydrophobic residues lining the inner cavity of the pore

FIGURE 5 | Sites of actions of PUFAs on voltage-gated ion channels. (A) A homology model of the Shaker KV channel based on the structure of the KV2.1/1.2

chimera (Long et al., 2007; Henrion et al., 2012). Side view. VSD denote one voltage-sensor domain. PD denotes the pore domain. For clarity, the VSD in the front and

the back are removed. The long loop between S3 and S4 are removed (residues 337–353). The two continuous lines delineate the approximate outer and inner

borders of the lipid bilayer. The Figures 1–5 denote five proposed sites of actions of PUFA. (B) Top view of the channel in (A). (C) Interaction site for a DHA molecule

with the VSD of the Shaker KV channel. The helix in magenta is S3 and the helix in blue is S4. The four yellow amino acid residues are the four gating charges [R362

(in the top), R365, R368, and R371]. The four residues in cyan (two in S3, residues 325 and 329; two in S4, 359 and 360) are the residues identified to be close to the

PUFA binding site (Börjesson and Elinder, 2011). A typical binding pose for a DHA molecule in green is from Yazdi et al. (2016). The POPC lipid bilayer is represented

by a cyan iso-density surface corresponding to the positions of lipid nitrogens in the simulation at 5% occupancy. The left and middle panels are the VSD viewed along

the membrane from two different angles. The right panel is the VSD viewed from the extracellular side.
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(Decher et al., 2010). The inactivation was suggested to be
caused by open-channel block by PUFA binding to the cavity
of the channel. KV1.5 has been proposed to be inactivated
via a similar mechanism. Point mutations combined with
computer docking support PUFA binding in the cavity
(Bai et al., 2015).

In the Ca-activated KCa3.1 (= SK4 or IK1) channel, which
is not voltage sensitive despite having VSDs, AA inhibits the
current. This inhibition is completely prevented by the T250S
mutation at the inner end of the pore loop, together with the
V275A mutation in the middle of S6, close to residue 250
(Hamilton et al., 2003). Furthermore, introducing the threonine
and the valine in the equivalent positions of the AA-insensitive
KCa2.2 (= SK2) channel makes this channel sensitive to AA.
Thus, AA interacts with the pore-lining amino acids of KCa3.1
to inhibit the channel.

Thus, several studies on different ion channels have identified
the middle of S6, in the cavity, as a major determinant for PUFA
interactions.

Another type of channel-inactivating pore-interacting
mechanism has been described for AA on KV3.1 (Oliver et al.,
2004). AA is equally effective from either side of the membrane.
AA-induced inactivation was not affected by the presence of TEA
at the extracellular or intracellular side of the channel protein.
These results rule out open-channel block as the mechanism
underlying AA-induced inactivation, but suggest a lipid-induced
closure of the “pore gate”.

PUFA Site 2–the Extracellular Entrance of the Ion

Conducting Pore
KV1.1 (Garratt et al., 1996), KV1.2 (Garratt et al., 1996; Poling
et al., 1996), KV1.5 (Honoré et al., 1994; Bai et al., 2015), and
KV3.1a (Poling et al., 1996) are inactivated by PUFAs via a
proposed open-channel block where the pore is accessed from
the extracellular side. Point mutations combined with computer-
guided docking support a PUFA binding site at the extracellular
entrance of the pore (Bai et al., 2015).

PUFA Site 3–the Intracellular Gate (Lower End of S6

and S4—S5 Linker)
Some studies have identified a PUFA site at the inner end of S6
or in the S4–S5 linker, which are close to each other and form
the intracellular gate of the channel (Long et al., 2005). In the
absence of detailed data we have brought them together to a
single site. The difference from PUFA site 1 and 2 is that this site
is outside the central axis of the channel and that this site thus
can host PUFA molecules to open the channel by bending the
gate open.

The Ca2+-activated KCa1.1 (= BK) channel is, in contrast to
the NaV1.5 and the KCa3.1 channels described above, opened by
several PUFAs such as DHA, AA and α-linolenic acid. Hoshi and
collaborators have identified Y318 near the cytoplasmic end of S6
in the KCa1.1 channel as a critical determinant of the stimulatory
action of DHA (Hoshi et al., 2013d; Tian et al., 2016). The Y318S
mutation greatly diminishes the channel’s response to DHA, but
not to AA or α-linolenic acid.

KV4.2 inactivates very quickly upon application of AA, while
the inactivation of the Shaker KV channel is fairly unaffected.
Transplanting the Shaker S4–S5 linker to KV4.2 attenuates the
effect of AA on the KV4.2 channel, and conversely, transplanting
the KV4.2 S4–S5 linker to the Shaker KV channel makes the
Shaker KV channel more sensitive to AA (Villarroel and Schwarz,
1996). Molecular docking approaches using a KV4.2 homology
model predicted a membrane-embedded binding pocket for
AA comprised of the S4–S5 linker on one subunit and several
hydrophobic residues within S3, S5, and S6 from an adjacent
subunit (Heler et al., 2013). The pocket is conserved among KV4
channels.

Pufa Site 4–Lipoelectric Effects on S4 Charges of the

Voltage-Sensor Domain
It is well-known that the lipid environment is important for
the function of voltage-gated ion channels. Crystal structures
show that phospholipids are making close and specific contacts
with the channel (Long et al., 2007). Molecular dynamics
simulations suggest that the negatively charged phosphate group
of phospholipids make electrostatic interactions with the positive
charges of the voltage sensor (Freites et al., 2005; Sansom et al.,
2005). Experiments altering the charge of the phospholipids show
that the charge of the phospholipids is necessary for proper
function of voltage-gated ion channels (Schmidt et al., 2006).
Free PUFA molecules can also affect ion-channel gating. PUFA
molecules in the extracellular solution can quickly incorporate
in the extracellular leaflet of the phospholipid bilayer; the
hydrophobic tail is tucked into the hydrophobic part of the
bilayer and the carboxyl group is facing the extracellular water
(Feller et al., 2002; Yazdi et al., 2016). The PUFA molecules
are most likely everywhere in the lipid bilayer but they could
potentially be clustered around ion channels (Yazdi et al., 2016).

In studies of the Shaker KV channel and several KV7 channels
we have identified a site between the extracellular leaflet of
the lipid bilayer and S4 of the VSD. Mutational analysis and
molecular dynamics simulations have suggested that the PUFA
molecules interact between the transmembrane segments S3 and
S4 and the lipid bilayer (Figure 5C) (Börjesson and Elinder,
2011; Yazdi et al., 2016). The electric charge of free PUFA
molecules in the lipid bilayer affects the gating machinery of
the VSD (Börjesson et al., 2008, 2010; Börjesson and Elinder,
2011; Ottosson et al., 2014; Liin et al., 2015, 2016b; Yazdi
et al., 2016). Because lipophilicity and electrostatic forces are
central in this model, we have called this the lipoelectric
mechanism.

Pufa Site 5–Lipoelectric Effects on the Pore Domain
PUFAs modulate the KV1.4 channel inactivation. It has been
suggested that the PUFA molecule partition in the membrane
as has been suggested for PUFA site 4. The difference is that
the negatively charged PUFA molecule line up outside the
pore domain and from this position the acidic head group
of the PUFAs raises the pKa of H508 in the pore domain.
This raised pKa of the histidine reduces the K+ occupancy
of the selectivity filter, stabilizing the C-type inactivated state
(Farag et al., 2016).
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Helical Screw and a Mechanism by Which
PUFAs Can Open An Ion Channel
Of all five sites described above, the mechanism by which PUFAs
affect KV channels via PUFA site 4 has been studied in most
detail. In the remaining part of this section we will focus on
this PUFA mechanism. The mechanism by which voltage-gated
ion channels sense membrane voltage is central for this effect
(reviewed for instance in Armstrong, 1981; Keynes and Elinder,
1999; Bezanilla, 2000; Swartz, 2004; Börjesson and Elinder, 2008).
Therefore, we will here, in brief, describe the mechanism for
voltage sensing.

The four VSDs connected to a central ion-conducting pore
domain make, in most cases, the channel voltage sensitive.
Each VSD has four transmembrane segments labeled S1 to S4.
The fourth transmembrane segment, S4, has several positively
charged amino-acid residues (blue sticks in Figure 6) interspaced
by two hydrophobic residues. The transmembrane segments S1
to S3 host negative counter charges (red sticks in Figure 6) that
neutralize the positive S4 charges in the transmembrane section
of the VSD. The positive charges of S4 can change partners and
thereby slide along the rest of the VSD (from the deepest state
C4 to the open state O in Figure 6). At negative membrane
voltages, S4 is close to the intracellular side (the down state) and
at positive membrane voltages S4 is close to the extracellular side
(the up state) of the membrane. At resting states C4 and C3 most
S4 charges are below the hydrophobic barrier (Tao et al., 2010)
(the green phenylalanine in Figure 6). Upon activation three to
four charges of each S4 move across the barrier, in three to four
discrete steps. The total movement is around 13 Å, even though
distances from 7 to 15 Å have been reported (e.g., Ruta et al.,
2005; Campos et al., 2007; Delemotte et al., 2011; Henrion et al.,
2012).

S4 not only slides along S1–S3 during activation but also
rotates around its longitudinal axis because the positive charges
are spiraling around S4 (Figure 6). This means that the top
positive charge in S4 (R1) moves in a spiral from the center of the
channel to the extracellular surface and then along the surface
(arrows in Figure 6). Thus, fixed negative charges at or close to
the extracellular surface of the channel can electrostatically “pull”

S4 to open the channel, while fixed positive charges could do
the opposite. For instance, charged residues in the extracellular
linkers connecting the transmembrane segments of a voltage-
gated ion channel can control the voltage dependence of the
channel (Elinder et al., 2016).

Our data are consistent with one (or several) PUFA molecules
interacting with the VSD close to a cleft between the extracellular
ends of S3 and S4 (Börjesson and Elinder, 2011). Experimental
data from the Shaker KV channel suggests that it is mainly the
C1→ O transition that is affected by the PUFA molecules and
that the top charge of S4, which moves horizontally along the
lipid bilayer during this last step, is the most important charge
for the effect.

Data Supporting the Lipoelectric Model
Here we list experimental support for the proposed lipoelectric
model. Most of the experiments have been performed on the
Shaker KV channel. Some experiments have also been performed
on KV7.1 and KV7.2/3 channels:

(1) The sign and size of the PUFA charge is critical for the effect.
(i) A PUFA molecule, expected to be at least partially
negatively charged at neutral pH, increases the current
(Figure 7A, red curve) by shifting the G(V) curve in
negative direction along the voltage axis (Figure 7B, red
curve), as expected from an electrostatic mechanism. (ii) If
the PUFA molecule is not permanently charged at neutral
pH, alterations in pH are expected to affect the PUFA effect.
In fact, pH has a pronounced effect on the G(V) shift for
PUFAs (Figure 7C, red symbols). At pH 6.5 there is no shift
as if the PUFA molecule is uncharged. At pH 9 or 10 the
shift is saturated as if the PUFA molecule is fully negatively
charged. The midpoint value of the curve is at pH 7.9 for the
Shaker K channel. This surprisingly high value compared
to the predicted pKa value in solution of pH 4.9 suggests
that the local pH at the surface is radically different from
the bulk solution. Similar effects have been described for
KV7.1 (pKa = 7.7) and KV7.2/3 (pKa = 7.5). Alteration of
the charge of amino acids close to the binding site can alter

FIGURE 6 | Helical screw and the lipoelectric effect. Five states of the VSD of the Shaker KV channel are shown (Henrion et al., 2012). For clarity, only the

transmembrane segments (224–246, 278–300, 311–332, 354–377) are shown and the intra- and extracellular loops are removed. Gating charges (residues R362,

R365, R368, and R371) of S4 are shown as blue sticks. Negative counter charges (E283, E293, and D316) are shown as red sticks. The hydrophobic barrier in S2 is

shown in green (F290). The continuous red arrows indicated the movement of the charge of R362 in each step. The dotted red arrow in state O denotes the complete

movement of R362, from state C4 to state O. The negative sign denotes the position of the carboxyl group of the PUFA molecule.
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FIGURE 7 | Examples of experimental data. (A) K current though Shaker

KV channels at a voltage step to V = −40 from a holding voltage of −80 mV.

The negatively charged DHA increases the current (red curve), while the

positively charged arachidonoyl amine (AA+) decreases the current (Börjesson

et al., 2010). (B) The normalized conductance-vs.- voltage curve for control

and 70 µM DHA (Börjesson et al., 2010). (C) pH dependent shift of the G(V )

curves (Börjesson et al., 2008, 2010). (D) Decreasing the pKa value of the

DHA molecule, and thereby charging the molecule, by adding a glycine motif

increases the shift (Liin et al., 2015) (data on the KV7.1 channel).

the apparent pKa value of PUFAs (Börjesson and Elinder,
2011). Interestingly the auxiliary subunit KCNE1 alters the
pKa value of KV7.1 to pKa = 8.6 to render the channel
essentially insensitive to PUFA at neutral pH (Liin et al.,
2015). (iii) If the charge is essential, an uncharged molecule
should not shift the G(V) and a permanently charged should
shift the G(V) as much the PUFA molecule at high pH. In
fact, uncharged methyl esters of the PUFAs do not shift
the G(V) despite competing with PUFAs for the same site
(Liin et al., 2015). Designed PUFAs with a shifted pKa value,
for instance docosahexaenoyl glycine (DHA-Gly), shifts
the G(V) much more than a PUFA molecule at neutral pH
(Figure 7D) (Liin et al., 2015, 2016b). Most importantly, a
positively charged “PUFA” should shift the G(V) in positive
direction along the voltage axis and reduce the current. This
is in fact the case (Figures 7A,C blue trace and symbols)
(Börjesson et al., 2010; Liin et al., 2015). Also these positively
charged PUFA analogs show pH dependence, but now the
effect is in opposite direction (Figure 7C).

(2) The positions and valence of the charges on S4 are critical.
To investigate the PUFA interaction with S4, in closer
detail, we decorated the extracellular end of S4 in the Shaker
KV channel with positively charged residues in different
positions (Ottosson et al., 2014). The major findings were
the following: (i) moving the top charge R1 in S4 from
position 362 to 359 (by constructing the A359R/R362Q
mutant) increased the effect by DHA by a factor of about
two (Figure 8A). (ii) Adding more arginines than just one
sometimes increased the effect; adding two extra charges
(356R and 359R) to the existing top charge of S4 (R362)
increased the PUFA-induced G(V) shift by a factor of three

(Figure 8A). Because there are three (positively charged)
arginines in the sequence 356–362 in this construct, we have
called this the 3R channel. (iii) A positively charged residue
on the opposite side to R359 (the most influential charge)
of the α-helical S4 (i.e., R361) abolished the PUFA-induced
G(V) shift (Figure 8B), supporting the idea that S4 rotates
and that R1 is moved along the bilayer surface (at least in
its last step). (iv) Negatively charged residues introduced at
these specific positions in S4 had opposite effects to positive
charges supporting electrostatic effects.

(3) PUFA mainly act on the final channel-opening step. A
voltage-gated ion channel undergoes several voltage
dependent transitions between closed (C) states before it
enters into the open (O) state (Figure 8C). PUFAs act on
the voltage-sensor transitions and can theoretically act on
any of the transitions. It is possible to differentiate effects on
the early voltage-dependent transitions, before the channel
reaches the open state, and the final voltage-dependent
transition, which open the channel, in the Shaker KV

channel by introducing a set of mutations in S4 (the ILT
mutation) (Smith-Maxwell et al., 1998). We found that DHA
only has a minor effect on the early transitions, and that
almost all effects of DHA are on the last step (Börjesson and
Elinder, 2011). This means that the critical, PUFA-sensitive
step, is when R1 moves from a position close to the pore
domain to a position close to the lipid bilayer (C1 to O in
Figure 6). In KV7.1 channels, both early S4 movements and
S4 movements associated with channel opening are affected
by PUFA (Liin et al., 2016b). However, the relative PUFA
effect on these different gating transitions in the KV7.1
channel remains to be quantified.

Other Properties Important for the Effect of
PUFAs
The lipolelectricmechanism described above clearly explains why
the charge of the PUFA molecule plays such an important role.
However, we have less information about why multiple double
bonds in cis geometry in the tail are required, and we have no
information about the length of the tail. Double bonds restrict
the conformational freedom in C=C bonds of the fatty acid but
double bonds in cis geometry (Figure 2), causes the chain to
bend and explore conformations not found for saturated fatty
acids–the more cis double bonds the more curved the molecule
is. The curvedness goes from a kink for one double bond to
hairpin shapes for five or six double bonds. DHA, a PUFA
with a 22-carbon chain and six cis double bonds, undergoes
fast conformational changes and has a highly flexible structure
(Eldho et al., 2003). In contrast, double bonds in trans geometry
(Figure 2) do not cause the chain to bend much, having a shape
similar to straight saturated fatty acids. Thus, it is not surprising
that saturated fatty acids and trans PUFAs lack effects on ion
channels if a curved shape is required.

The same pattern for the effective molecules is not restricted
to voltage-gated ion channels but also to fatty-acid activation of
K2P channels where fatty acid-induced stimulation requires at
least one C=C bond and the anionic (COO-) form of the fatty
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FIGURE 8 | VSD mutations affect the DHA effect on the Shaker KV channel (A) The number and positions of the arginines in the top of S4 affects the

DHA-induced G(V ) shift (Ottosson et al., 2014). The 3R channel contains the positive charges R356, R359, and R362. Only the transmembrane parts are shown

(residues 224–246, 278–300, 311–332, 354–377) (B) Altering the valence or altering the side of S4 for the charge alters the effect of DHA (Ottosson et al., 2014). (C)

Effects on the early and late transitions are measured on the conducting and non-conducting ILT-mutant (Börjesson and Elinder, 2011).

acid (Lotshaw, 2007). Unesterified DHA molecules are predicted
to infiltrate certain spaces between the transmembrane helices of
rhodopsin (Grossfield et al., 2006). The dynamic changes in the
protein during gating would thus be influenced by the packing
of DHA within these spaces, which could explain how DHA
facilitates conformational changes in rhodopsin upon activation
(Feller and Gawrisch, 2005). This flexibility can explain the
promiscuity of the PUFAs, why they act on so many channels and
sites.

PHYSIOLOGICAL AND THERAPEUTIC
CONCENTRATIONS

The concentration of unesterified PUFAs available to affect
voltage-gated ion channels in different tissues is largely
unknown. It is therefore difficult to assess the physiological
relevance of the PUFA effects described in this paper. A
concentration range of 1–30 µM of PUFA is often effective
for experimental modulation of voltage-gated ion channels.
The concentration of unesterified PUFA in plasma has been
reported to be roughly 10–50 µM (Burtis and Ashwood, 1998;
De Caterina et al., 2000; Fraser et al., 2003; Siddiqui et al.,
2008). This plasma concentration of PUFA can dramatically
increase to 130–400 µM during consumption of certain diets
(Kuriki et al., 2002; Fraser et al., 2003; Siddiqui et al.,
2008). Moreover, the local PUFA concentration in specific
tissues may be increased during pathological conditions such
as ischemia and epileptic seizures (Hochachka, 1986; Siesjö
et al., 1989). Based on these reported PUFA concentrations
it seems plausible that most voltage-gated ion channels
that are PUFA sensitive would experience some degree of
PUFA modulation under physiological as well as pathological

conditions. The outcome of different synergistic and opposing
PUFA modulations in terms of, for instance, neuronal and
cardiac excitability is hard to predict and would depend on the
PUFA sensitivity and relative importance of each type of ion
channel.

CONCLUDING REMARKS

In the present review, we have suggested five different PUFA-
binding sites. Two of the sites (PUFA site 1 and PUFA site 2)
are located in the ion conducting pore and binding to these sites
reduce the current. Two of the sites (PUFA site 3 and PUFA site
4) can either increase or decrease the open probability of the
channel by either affecting the gate (PUFA site 3) or the voltage
sensor (PUFA site 4). Finally, one site in the periphery of the pore
domain (PUFA site 5) can regulate slow inactivation by acting
on distance. We suggest that all five sites can exist in a single
ion channel and the overall effect is determined by the relative
contributions of the five sites.
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