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Precision medicine refers to the idea of delivering the right treatment to the right

patient at the right time, usually with a focus on a data-centered approach to this

task. In this perspective piece, we use the term “precision healthcare” to describe the

development of precision approaches that bridge from the individual to the population,

taking advantage of individual-level data, but also taking the social context into account.

These problems give rise to a broad spectrum of technical, scientific, policy, ethical

and social challenges, and new mathematical techniques will be required to meet

them. To ensure that the science underpinning “precision” is robust, interpretable and

well-suited to meet the policy, ethical and social questions that such approaches raise,

the mathematical methods for data analysis should be transparent, robust, and able to

adapt to errors and uncertainties. In particular, precision methodologies should capture

the complexity of data, yet produce tractable descriptions at the relevant resolution while

preserving intelligibility and traceability, so that they can be used by practitioners to aid

decision-making. Through several case studies in this domain of precision healthcare,

we argue that this vision requires the development of new mathematical frameworks,

both in modeling and in data analysis and interpretation.
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INTRODUCTION: PRECISION MEDICINE AND ITS CHALLENGES

The phrase “precision medicine” describes the idea of delivering the right treatment to the right
person at the right time. Precision approaches aim to achieve a medical revolution: individualized
therapies based on quantitative, patient-specific datasets, integrated via algorithmic analyses that
can aid patient stratification, monitoring, and treatment design. These approaches have been
broadly supported in the US under President Obama’s Precision Medicine Initiative (Collins
and Varmus, 2015; White House Precision Medicine Initiative, 2016), by the Gates Foundation
(Cisneros, 2016), and by the Chan Zuckerberg Initiative (Chan Zuckerberg Initiative — Advancing
human potential and promoting equal opportunity, 2017). Although some of the aspects of this
vision date back to the inception of the Human Genome Project, precision medicine now expands
beyond the restrictions of genomics to encompass a wide range of data sources increasingly
available to clinicians. The idea of embedding diagnostics and treatment with omics and other
medical and physiological datasets at the heart of medicine has been variously described as
systems medicine, personalized medicine, computational systems biomedicine, P4 (Predictive,
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Preventative, Personalized, Participatory) medicine, and
precision medicine, to name just a few (Duffy, 2016).

The development of the field has been underpinned by some
striking successes, particularly in cancer (Derks et al., 2014; Hiley
et al., 2014; Arnedos et al., 2015; Friedman et al., 2015; Navin,
2015; Rubin, 2015; Stover and Wagle, 2015; Wills and Mead,
2015; Cloney, 2017), where molecular profiling is increasingly
routine in lung, breast, and colorectal cancers, as well as in
leukemias and melanomas (Larry Jameson and Longo, 2015). In
asthma, the heterogeneity in clinical response has been shown to
overlap with differences in a number of predictive biomarkers,
allowing patient stratification for tailored therapies (Muraro
et al., 2016). Precision approaches can have immediate benefits
for drug repurposing and treatment: the link between type 2
diabetes and early stage Alzheimer’s, in which there is often
impaired glucose metabolism in the brain, is giving rise to a
body of research for new therapeutics that includes repurposing
existing drugs (Yarchoan and Arnold, 2014). Cardiovascular
disease is another natural domain for precision medicine,
as chronic, pervasive problems like diabetes, obesity, and
hypertension (with a significant socio-economic and life style
component) are directly linked to severe disease including
heart failure (Antman and Loscalzo, 2016). These highly
prevalent conditions are themselves diverse, multifactorial, and
co-occurrent in many individuals, yet mechanism-based markers
that predict the development of hypertension can already be
identified based on functional genetic and epi-genetic markers
(El Shamieh and Visvikis-Siest, 2012; Zhang et al., 2015). In the
domain of infectious diseases, precision technologies can also
be used to identify pathogens and to determine susceptibility
to antimicrobial agents, guiding prescription, e.g., CD4+ cell
counts and viral loads can guide HIV therapies (Barnett et al.,
2008). Beyond single infections, the function of the microbiome
is being probed for disease associations (Gilbert et al., 2016) and
metabolomics and integrated omics’ tools are revealing disease
phenotypes (Chen et al., 2012; Dorrestein et al., 2014).

While there are plenty of potential “low hanging fruits” yet
to be plucked, for precision medicine to maximize its impact as
envisioned, a number of significant challenges need to be met
across multiple domains. Some of these challenges are technical
and relate to data collection, processing, storing, and sharing
(Garber and Tunis, 2009; Servant et al., 2014; Palmisano et al.,
2016; Sboner and Elemento, 2016), and have broad scientific,
clinical, social, and ethical ramifications (Juengst et al., 2012;
Khoury et al., 2012; Castaneda et al., 2015; Schork, 2015; Cohn
et al., 2016). Indeed, advances in sequencing, metabolomics,
biomarker discovery, genetics and single-cell technologies,
alongside computing, and data science, have brought a strong
impetus to the development of the scientific toolkit, data
management systems, and regulatory framework for precision
medicine. Data collection is currently taking place across the
traditional channels of hospitals, community health care settings,
and public health bodies, but also increasingly in a decentralized
manner via social media analytics and wearable devices. The
adoption of systematic formats for Electronic Health Records
has improved data collection and consistency, but a considerable
effort in data processing and integration still needs to take

place (Garber and Tunis, 2009; Servant et al., 2014; Palmisano
et al., 2016; Sboner and Elemento, 2016). Storing and accessing
extremely high volumes of data is difficult and a concerted
effort must be developed to enable clinicians, policy-makers, and
academics to access these datasets, thus reducing the need for
custom bioinformatics expertise. The question of whether data
management is done by public or private organizations, and
whether researchers and other users will need to pay to use data
is an additional area of concern. Further, efforts to harness large
datasets will require the development of sophisticated graphical
user interfaces and visualization, data quality management, and
data storage (Duffy, 2016). Programmes like the UK Biobank
(2016), an open resource collecting de-identified data on health
and well-being from 500,000 volunteers, and making it available
for research, will be instrumental in meeting these challenges.
There is also the issue of obtaining informed consent about
the storage and use of data, when the uses are dynamic and
expanding (Khoury et al., 2016). Finally, as yet there are no
centralized resources collecting datasets, modeling and software
analysis tools, and pipelines for precision medicine, which would
facilitate method-sharing and allow interested researchers to join
the effort.

Precision approaches, as they develop, must also
accommodate the ethical and transparent use of data. Recently,
O’Neil has coined the phrase “Weapons of Math Destruction”
(WMD) (O’Neil, 2016) to describe how black-box algorithms
can create pernicious and damaging feedback loops, with unfair
consequences to individuals, often without much effort placed
on identifying and correcting errors (O’Neil, 2016). Hood and
Friend (2011) present the vision that “in the not-too-distant
future, each patient will be surrounded by a ‘virtual cloud’
of billions of data points that will uniquely define their past
medical history and current health status. Furthermore, it will
be possible to mine the billions of data points from hundreds
of millions of individuals to generate algorithms to help predict
the future clinical needs for each patient.” Hence, although
precision medicine under this broad vision could have the
beneficial potential to identify diseases earlier, to reduce burdens
of treatment, and to improve screening by reducing false
positives, and ultimately improve health, a sceptic might imagine
a scenario in which these same predictions are used to produce
quality-adjusted life year estimates, affecting which treatments
are covered for whom, and guiding hiring, lending or health
insurance decisions (O’Neil, 2016). With the amount and
breadth of data available, there is the danger that such decisions
could yield negative discrimination according to e.g., postcode
lotteries, socio-economic factors, social network data, past
healthcare interactions, judicial and law enforcement history.

How can such scenarios be avoided? Part of the answer
must come from policy and regulation to ensure openness and
fair use of data (Noveck, 2015). Yet, in addition, we need to
develop the kind of mathematics and statistics for data science
that will keep the “human in the loop” so that decision-making
can be transparent and based on interpretable features and
evidence. In doing so, we will need to develop methods that
can track back and be updated in response to errors, taking
full account of uncertainties, thus avoiding the over-reliance on
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complex computational decision black boxes. With this aim of
model intelligibility, an important goal is to extract improved
data-driven descriptions at the appropriate intermediate scales
between the fully individualized level, which carries the risk of
non-transparent and damaging over-use of data, and descriptions
that are too coarse, which lead to insufficient precision in the face
of individual variation. There is virtue in reaching a nuanced,
data-informed middle-ground between these extremes: one that
considers the individual in a population context and includes the
role of human judgment.

It is thus essential to build theoretical understanding at
the appropriate scale. One of the advantages of an integrated
precision approach in medicine is to refine disease classification,
increasing and finessing the number of groups of patients to
reflect the true diversity of major diseases like cancers, so as to
target treatment appropriately.While biomarker information can
substantially improve clinical trial design as well as treatment
(Trusheim et al., 2011), stratification also greatly increases the
number of categories for which clinical trials may need to
be carried out, reducing reproducibility and posing challenges
to evidential policy (Khoury et al., 2012). Conversely, data-
centric approaches may identify common mechanisms and
treatments across disparate diseases, reducing stratification. Such
approaches could potentially deliver dramatic cost efficiency.
For these reasons, precision approaches must act at the right
scale, which will often be intermediate–between “one size fits all”
medicine and fully individualized therapies.

However, we do not yet have the ideal tools at hand
to identify relevant features and integrate them to obtain
interpretable predictions, optimized therapies, and new policies–
even if merged datasets describing multivariate aspects of
individuals’ health across time (including, e.g., genomic,
proteomic, metabolomic, brain images, social, and behavioral
data) collected with informed consent were available. In addition,
such combined genetic, genomic, proteomic, metabolomic, or
single-cell data will only provide highly enriched and noisy
snapshots taken at a few times—at best, we will have sparse noisy
samples of the underlying process of disease, and sparse samples
of the context of each patient.

To reveal the potential of such datasets in medicine, we must
thus develop mathematical frameworks that are able to describe
high-dimensional, dynamic, noisy, sparsely-sampled processes.
Ideally, we must then be able to extract concise descriptions
(coarse-grained at the right resolution) which are intelligible
and actionable, and which link co-occurrences of events, co-
morbidities, and time patterns in disease and in health-related
processes. This area poses a set of core mathematical challenges:
creating transparent, replicable descriptions in healthcare, which
make use of large diverse datasets, placing individuals in context,
and which use dynamical information across time at the correct
scales. These mathematical challenges must be researched in
parallel with precision medicine, ideally spanning the individual-
and population-level perspectives.

In our view, these constitute deep additional challenges to
mathematical modeling and data analysis that will need to be
met in order for precision approaches to meet their promise.
In the remainder of this perspective, we lay out a vision for

what we term precision healthcare, its aims and its mathematical
challenges. We do not aim to write a review of precision
medicine; many reviews of tools and methods in different
medical domains are available (see for example Chen and Snyder,
2013; Rosell and Karachaliou, 2013; Hiley et al., 2014; Ignatiadis
and Dawson, 2014; Arnedos et al., 2015 among many others),
as well as perspectives from a variety of viewpoints (Mirnezami
et al., 2012; Roychowdhury and Chinnaiyan, 2013; Ciardiello
et al., 2014; Ignatiadis and Dawson, 2014; Servant et al., 2014;
Arnett and Claas, 2016; Rost et al., 2016; Vargas andHarris, 2016).

Why Precision Healthcare?
For most of these challenges, population-level thinking coupled
with mathematical data science analytics can help translate the
benefits of precision medicine to address broader effects at the
group level, including concerns regarding health equity and
ethics.We use the phrase “precision healthcare” to encompass this
vision that integrates the population and individual perspectives.
Precision healthcare thus aims to build tools that make use of the
increasing array of data sources, allowing for their continuous
refinement in the face of new data, and whose predictions
are aimed at and respond to the requirements of healthcare
practitioners (clinicians, the public, policy thinkers, and other
stakeholders).

This vision will require the use of an array of mathematical
tools to unify individual-level precision medicine with public
health, placing high-dimensional individual data and refined
interventions in their social network context. Indeed, in many
instances, individual health cannot be separated from its
behavioral and social context. For example, highly targeted
interventions against a cancer can be undermined by metabolic
diseases caused by dietary behaviors which, in turn, co-vary
with social network structure and other societal constructs. An
adjuvant therapy for cancer might thus be to influence the diet
and behavior of the patient taking into account their close social
contacts.

The scenario by Hood and Friend (2011) mentioned above
can thus be thought of as the analysis of a virtual cloud of a
large number of high-dimensional feature vectors corresponding
to the different individuals. Dynamical datasets in this scenario
would correspond to a large collection of paths in such a space. If
the technical and policy challenges to collect and integrate such
data into a single accessible point of access were surmounted,
methods for dimensionality reduction could be applied to reduce
the relevant features to a few “components” which could then
be used to “cluster” (or classify) the data into groups of similar
individuals according to their paths. This is an area of current
active research, ranging from the direct application of classic
methods such as principal components analysis (PCA), support
vector machines (SVMs), and independent component analysis
(ICA) with all their myriad of variants, through manifold
learning to the revivified use of neural networks for such
classification tasks (Mallat, 2016). Developing ways to cope with
noisy data and noisy labels is an ongoing challenge in machine
learning (Xiao et al., 2015) and across precision medicine, as
omics datasets can be extremely noisy.

Frontiers in Physiology | www.frontiersin.org 3 March 2017 | Volume 8 | Article 136

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Colijn et al. Toward Precision Healthcare

However, specific requirements in the precision healthcare
setting make such tasks especially difficult. The datasets are
dynamic and usually sparsely sampled. The processes involved
are high-dimensional, highly nonlinear, noisy, and uncertain.
The dimensionality reduction framework for such datasets
should ideally achieve competing objectives: preserve, to some
extent, the meaning of the original descriptive variables (without
mixing all features into conglomerates) while extracting concise
(i.e., sparse) representations in terms of few relevant extracted
features. Ideally, it should be possible to adjust the level of detail
(i.e., the resolution scale) of such models depending on the
quality of the data and the needs of the practitioner. Finally,
the mathematical framework should deliver robust outcomes,
and include the possibility of restricting and conditioning the
extracted models to incorporate additional and complementary
data without the need for refitting.

Indeed, in the process of harnessing these large-scale data, a
great degree of caution is required. Most biomedical research is
plagued by a flood of false positive results due to experiments
of insufficient discriminatory power (Ioannidis, 2005). The
translational impact of this trend is starkly illustrated by recent
failures to reproduce landmark cancer studies and low success
rates in clinical trials (Prinz et al., 2011; Begley and Ellis, 2012). In
particular, the quest for (publishable) p-values over (meaningful)
effect sizes (Goodman, 1999; Ziliak and McCloskey, 2008) has
led to the likely incorrect linking of many genetic features with
diseases (Johnston, 2016). Selecting appropriate mathematical
models can help increase the statistical power of large-scale
experimental data, allowing rigorous statistical treatments to
discriminate likely from spurious effects, and quantifying the
sizes of effects so that the scientific, as well as the nominally
statistical, significance of observations can be better understood.

The interface of individual-level personalized medicine and
public health will thus need to develop new mathematical
tools to formulate and analyse mathematical questions for data-
rich characterization of disease progression and transmission,
controlled intervention, and healthcare provision. Key areas that
we see in the remit of precision healthcare include: statistics
for noisy, incomplete, heterogeneous data; stochastic modeling;
inference and control of network dynamics; mathematical
approaches to exploit complex structure in large datasets, and
methods to couple imaging and omics. More broadly, a central
distinction between precision medicine and precision healthcare
is that the former treats individuals, whereas the latter treats
individuals explicitly embedded in a society or broader context.
Precision healthcare thus aims to link “big data” tools to explore
individual agents with an understanding of how those individuals
behave collectively and respond to society-wide initiatives.

Some Proposed Case Studies in Precision
Healthcare
We now describe a number of demonstrative examples, ill-
ustrating some of the tools that come under the umbrella
of precision healthcare. These range from systems precision
medicine approaches focusing on the representation of complex
dynamic data, to precision healthcare approaches including both

retrospective analysis and real-time interventions that are rooted
in complex individual and population data.

Gene Therapies for Mitochondrial Diseases
A combination of new maths, statistics, and large-scale
experimental data has led to recognition of the importance
of personalized therapeutic approaches in cutting-edge gene
therapies addressing the inheritance of mitochondrial diseases.
These diseases (e.g., mitochondrial encephalomyopathy, lactic
acidosis, and stroke-like episodes—MELAS, myoclonic epilepsy
with ragged red fibers—MERRF, Leber’s hereditary optic
neuropathy—LHON) result from mutations in mitochondrial
DNA (mtDNA) which are passed frommother to child (DiMauro
and Davidzon, 2005). Mitochondrial replacement therapies aim
to prevent this inheritance by replacing mutated mother mtDNA
with mtDNA from a third party woman, but technological
limitations in the procedure can lead to small amounts of
mother mtDNA being amplified leading to disease (Burgstaller
et al., 2015). Classically the risk of differential proliferation has
been considered minimal, but evidence harnessed with statistical
modeling and large-scale data frommouse models has shown it is
common (Burgstaller et al., 2014). Further, quantitative modeling
on large-scale human mtDNA datasets has confirmed that this
risk is present in heterogeneous human populations (Røyrvik
et al., 2016), as supported by experimental observations (Hyslop
et al., 2016; Yamada et al., 2016). The personalized aspect stems
from the fact that the risk of differential proliferation depends
on the genetic details of the mother’s and third-party’s mtDNA,
which vary throughout global human populations according to
geography and ancestry. Appropriate modeling can elucidate
the biological details of why these proliferative differences
arise, make probabilistic statements about the probability and
timescales of therapeutic outcomes, and describe the mtDNA
differences likely to arise in human populations. In the future,
precision healthcare strategies could allow us to propose suitable
third-party donors to optimize successful fertility strategies.

Pathways of Disease Progression in

High-Dimensional Spaces
Recent mathematical and statistical developments in the study
of evolution have shed light on the emergence of efficient
photosynthesis (Williams et al., 2013) and the reduction of
organelle genomes (Johnston and Williams, 2016) by modeling
evolution as the acquisition (or loss) of a set of L-discrete
traits. Evolution in this picture takes place on an L-dimensional
hypercube, with each vertex corresponding to a given pattern
of trait presence/absence and each edge corresponding to
an evolutionary innovation. Observations of evolutionary
intermediates can then be used, as in a hidden Markov model,
to infer likely trajectories through this space. This paradigm
can be developed to infer likely pathways of disease progression
(generalizing statistical studies on disease progression; Hjelm
et al., 2006; Pagel and Meade, 2006; Loohuis et al., 2014;
Beerenwinkel et al., 2015), picturing the “space of symptoms” as
an analogous hypercube, and disease progression as paths over
its edges. Large-scale and longitudinal patient datasets can be
used to infer likely sets of “evolutionary” trajectories through
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this space, so that probabilistic statements can be made about
the likely next step for any given individual patient–and thus
a personalized optimal therapeutic strategy. Interestingly, this
approach can be linked with descriptions based on continuous
variables, where similarity graphs are obtained from distance
matrices by using graph-theoretical sparsifications that preserve
the topological and geometrical structure of the data (Beguerisse-
Diaz et al., 2013). The structure of the similarity graphs from the
data can then be analyzed using multiscale community detection
algorithms leading to highly nonlinear clustering of symptoms
and individuals describing the observed pathways of disease
progression (Schaub et al., 2012).

Social Networks in Health Policy
Twitter provides a platform to interact directly with a large
audience, and to sample and address public opinion and
responses around specific issues and questions. However,
it is critical to understand the different communities and
conversations on Twitter, so as to target them appropriately.
For example, a recent example following conversations
on diabetes (Beguerisse-Díaz et al., 2017) used a unified
mathematical framework (Delvenne et al., 2010; Beguerisse-
Diaz et al., 2013; Beguerisse-Díaz et al., 2014; Lambiotte
et al., 2015) that brings notions from stochastic processes on
graphs and optimization to the analysis of Twitter networks.
In this particular study, 2.5 million diabetes-related tweets
were analyzed and found to fall within five broad thematic
groups: health information, news, social interaction, commercial,
and humor. Indeed, humorous messages and references to
popular culture appear consistently, more than any other type
of tweet, revealing the specific characteristics of social media
interactions. The analysis of the temporal “hub” and “authority”
scores of Twitter users revealed that the hub landscape is
diffuse whereas the landscape of authorities is highly persistent.
The Twitter authorities comprise not only bloggers, advocacy
groups and NGOs related to diabetes, but also for-profit entities
without specific diabetes expertise which influence the online
exchanges. The top authorities fall into seven interest groups,
as derived from their Twitter follower network revealing the
flow of information with specific audiences. A similar analysis
was carried out on the network of retweets generated by the
debate surrounding the proposed adoption of the “care.data”
(https://www.england.nhs.uk/ourwork/tsd/care-data/) scheme
of personalized health care records by NHS England (Amor et al.,
2016). In that case, a series of interest groups and conversations
were identified revealing the different roles of users within and
across communities, including the limited reach of some of the
public policy accounts in the debate. Such findings could be used
by public health professionals and policy makers to use social
media as an engagement tool and to inform policy design. A
similar analysis have been carried out in Beguerisse-Díaz et al.
(2017) following other social movements.

Spreading of Vaccine Sentiment and Spreading of

Vaccine Preventable Disease
Vaccine hesitancy and a vaccine preventable disease can be
thought of as two distinct types of processes and they propagate
through distinct media. We suppose that sentiment is spread

socially (and is influenced by media outlets) but involves the
slow evolution of beliefs rather than something as simple as
the infectious propagation of a meme. In contrast, disease
spread need not respect social network structure. An integrated
intervention would not only target vaccination where the
disease has been reported and vaccine coverage rates are low
(de Figueiredo et al., 2015) but also where it is predicted to
appear. Predictions would be based on integrated multi-variate
“precision” data. Similarly, negative vaccine sentiment (Larson
et al., 2016) could be targeted not only where it has been
reported but also where it is predicted to appear given the social
network structure. The coupling between belief dynamics and
epidemiology now has an established theoretical presence (Wang
et al., 2016) and importantly it has been observed that anti-
vaccination behavior is socially clustered (Onnela et al., 2016)
thereby undermining herd immunity (Salathé and Bonhoeffer,
2008); it is important to coordinate a public health response
that can incorporate belief and behavior dynamics as well as the
spread of infection.

Influencing Beliefs and Influencing Networks
Health outcomes for chronic conditions are modulated by health
behavior, which in turn might be expected to show covariation
sensitive to underlying social network structure (Centola, 2010;
Shalizi and Thomas, 2011; Christakis and Fowler, 2013). It
has further been suggested, independent of unhealthy behavior,
that social position can modulate health outcomes (Snyder-
Mackler et al., 2016). There are thus a number of possible
types of social interventions to improve health: (1) influencing
modes of thinking to encourage critical appraisal of apparently
acceptable but unhealthy behavior (changing the models that
individuals use) (2) influencing health beliefs about particular
topics (changing the data individuals access) (3) influencing
network structure (but not social co-ordinates) to build bridges
between communities for the exchange of health behavior (4)
influencing the social co-ordinates of individuals (or sectors
of society) and thereby altering their network neighborhood
(or the gross social network structure). Changes to (3) and
(4) might also affect possible physiological consequences of
status comparisons (Pickett and Wilkinson, 2015). While we
can cite examples of each class of intervention, these can be
remarkably challenging to effect: for example showing some
extreme vaccine sceptics information about the consequences of
vaccine preventable disease can increase their vaccine scepticism
(Nyhan et al., 2014); overwhelming evidence has been presented
of health inequities (Marmot and Commission on Social
Determinants of Health, 2007; Adler et al., 2016) but the problem
persists. Challenges (1–4) constitute challenges in contemporary
network science and its interface with optimal control: ideal
interventions will optimally control processes on networks and
optimally influence the network structure itself (Liu and Barabási,
2016).

Genomic Epidemiology for Outbreak Reconstruction
Recent advances in sequencing technologies have driven changes
in many biological domains, including epidemiology (Jombart
et al., 2014; Kao et al., 2014; Colijn and Cohen, 2016). It
is now feasible to obtain DNA or RNA sequences from
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viruses, bacteria and other pathogens, and to use these data
to detect drug resistance, optimize treatments for individual
patients (Vanderkooi et al., 2005; Perez et al., 2016), and
to understand how pathogens are spreading and evolving
by tracking small variations in the pathogen as it moves
between individuals. To understand transmission, isolates are
collected from patients alongside clinical data such as times of
symptom onset. The isolates are sequenced and processed with
bioinformatics tools, capturing even small levels of variation
between patients (e.g., in a multiple sequence alignment). These
can be integrated with evolutionary models to infer phylogenetic
trees, describing patterns of shared ancestry among the isolates.
An epidemiological model is used to define how likely a set of
infection events are. This incorporates clinical information–for
example, it is very unlikely that an individual would transmit
an infection years before showing any symptoms, or while
living in another area. Finally, mathematical models that link
the phylogenetic and epidemiological information are used to
compute the joint likelihood of the genetic data and the set of
transmission events. This is embedded in a Bayesian approach,
so the result is a posterior collection of transmission trees (who
infected whom, and when), consistent with the data. There is a
rapidly-growing body of work on these inference problems (Hall
et al., 2015; Worby et al., 2015; De Maio et al., 2016; Klinkenberg
et al., 2016; Worby et al., 2016; Didelot et al., 2017); Figure 1
is based on the approach in Didelot et al. (2017). There are
natural precision healthcare applications of these tools: if more
transmission is inferred to have occurred in particular locations,
interventions such as improved ventilation and cleaning, early
screening and active case fining can be directed there. If risk
factors such as community membership, age, or co-morbidities
are identified, these can be managed similarly. But perhaps
the most exciting applications of these tools will happen when
sequencing can be done in a matter of hours or even days.
Identifying where there are likely missing cases could allow
us to identify cases early, treat them, and prevent onward
transmission. Real-time sequencing and infection-tracing has
already had impact in the recent Ebola epidemic (Quick et al.,
2016), setting the stage for this direction in public health (Gardy
et al., 2015).

DISCUSSION

We have framed precision healthcare to describe the development
of precision approaches which, while capturing the complexity
of individual data and its societal context, extract reduced
dimensionality descriptions at the relevant resolution while
preserving a measure of intelligibility of the models. This can
enable practitioners in the loop to use these precision approaches
effectively. Such methods should be transparent, robust and
able to adapt to errors and uncertainties. In bridging from
the individual to the population, the methodologies should
take advantage of the multivariate data sources at the heart of
precision medicine, yet take the social context and population
levels into account. Through several case studies in this domain
of precision healthcare, we argue that this vision requires the

development of newmathematical frameworks, both inmodeling
and in data analysis and interpretation.

Recently, “precision public health” has been characterized
as delivering the right intervention to the right population at
the right time (Desmond-Hellmann, 2016; Khoury et al., 2016),
mirroring the oft-cited characterization of precision medicine.
With support from the Gates Foundation (Cisneros, 2016),
precision public health aims to apply precision (data-centered)
approaches to improve the health of populations and to reduce
health disparities. Public health thinkers are concerned about
precision medicine’s current emphasis on individual approaches,
its focus on extending the use of costly genetics and other
omics’, and the development of tailored drug treatments (Khoury
et al., 2016). Bayer and Galea report that the number of NIH
projects with “public” or “population” in the title has dramatically
declined, and that in 2014, research areas described with the
words “genetic,” “genome,” or “gene” received 50% more funding
than those with “prevention”. They are concerned that the focus
on precision medicine is misguided (Bayer and Galea, 2015), and
argue that improving health requires addressing persistent social
realities that are not covered by access to clinical medicine (Adler
et al., 2016). Persistent social inequalities can also be expected
to be a major barrier in bringing advances from omics-based
precision medicine to low-income countries, although recent
use of rapid genomics-based tools in the Ebola outbreak (Quick
et al., 2016) points to the potential to develop precision-based
approaches for low-income settings.

Precision public health places emphasis on addressing such
disparities, and (as with public health more generally) on
prevention. In many ways, data-centered approaches have
already been adopted by epidemiologists and public health
practitioners and, as precision public health incorporates more
individual-level data, it will require the envisaged scientific
tools of precision healthcare. These methodologies will allow
public health methods to integrate data on vaccine belief and
social context with individual health records, genetic data,
other biomarkers, and individual risk factors. Importantly, it
is realistic to envision that the use of mobile and social
network technologies will enable public health interventions
typically considered at the level of populations to instead be
tailored to individuals. We believe that an important aspect
of the success of precision public health will depend on
meeting the mathematical challenges we have outlined as
precision healthcare. Identifying the right population for the
right intervention will require data analysis, stratification, and
modeling at the right scale: too fine, and there would be
impractically many populations; too coarse, and the precision
advantage is lost. It will require intelligible, transparent methods
that can be communicated to public health practitioners, easily
updated in the face of new data and human judgment. It
will require using the right data to answer the right question,
and avoiding mis-use of data to treat some populations
unfairly.

It is no longer the case that the timescales of individual disease
progression and the timescale of changes in health policy or
social behavior are distinct. Chronic conditions from cancer to
diabetes are managed over years and decades. Years and decades
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FIGURE 1 | Mathematical modeling is central to genomic epidemiology. In precision healthcare, models that link clinical, epidemiological, and sequencing data

and produce interpretable results—such as predictions for where cases have been missed—can be used to direct public health interventions.

are equally the timescales on which other chronic problems are
resolved: detrimental individual beliefs about healthy behavior, or
disadvantageous social policies. The comparability of timescales
of chronic diseases and chronic social problems, combined
with the increase of chronic disease in the population, presents
both policy, and mathematical challenges: parsimonious and
predictive model choice for these slow coupled processes is an
open challenge with important implications for the design of
public health protocols and policies. Such problems are specific to
precision healthcare: While precision medicine might integrate
multiple individual-level datasets to improve treatment for a
diabetic patient, it does not aim to consider the changing
relevant environment and behavior (including beliefs about diet
and obesity, food quality and availability, urban environments,
and access to exercise). The research outlined above on social
networks and health policy also exemplifies precision healthcare:
it has a core set of mathematical challenges that are directly linked
to healthcare (vs. medicine) and integrates opinion, engagement,
delivery, and policy. While precision medicine and healthcare
naturally have some overlap, the coupling of scales from

individual information to societal behavior and intervention will
be characteristic of precision healthcare. However, even with
the best intentions, a version of precision healthcare that is
highly dependent on advanced tools might be used to reduce,
rather than enhance, health equity. A key challenge for precision
healthcare is thus to create technologies and practices to drive us
toward health equity.
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