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Background: Short-term heart rate variability (HRV) is most commonly attributed to

physiologic vagal tone modulation. However, with aging and cardiovascular disease,

the emergence of high short-term HRV, consistent with the breakdown of the

neuroautonomic-electrophysiologic control system, may confound traditional HRV

analysis. An apparent dynamical signature of such anomalous short-term HRV is frequent

changes in heart rate acceleration sign, defined here as heart rate fragmentation.

Objective: The aims were to: (1) introduce a set of metrics designed to probe the degree

of sinus rhythm fragmentation; (2) test the hypothesis that the degree of fragmentation of

heartbeat time series increases with the participants’ age in a group of healthy subjects;

(3) test the hypothesis that the heartbeat time series from patients with advanced

coronary artery disease (CAD) are more fragmented than those from healthy subjects;

and (4) compare the performance of the new fragmentation metrics with standard time

and frequency domain measures of short-term HRV.

Methods: We analyzed annotated, open-access Holter recordings (University of

Rochester Holter Warehouse) from healthy subjects and patients with CAD using these

newly introduced metrics of heart rate fragmentation, as well as standard time and

frequency domain indices of short-term HRV, detrended fluctuation analysis and sample

entropy.

Results: The degree of fragmentation of cardiac interbeat interval time series increased

significantly as a function of age in the healthy population as well as in patients with CAD.

Fragmentation was higher for the patients with CAD than the healthy subjects. Heart

rate fragmentation metrics outperformed traditional short-term HRV indices, as well as

two widely used nonlinear measures, sample entropy and detrended fluctuation analysis

short-term exponent, in distinguishing healthy subjects and patients with CAD. The same

level of discrimination was obtained from the analysis of normal-to-normal sinus (NN) and

cardiac interbeat interval (RR) time series.

Conclusion: The fragmentation framework and accompanying metrics introduced here

constitute a new way of assessing short-term HRV under free-running conditions, one

which appears to overcome salient limitations of traditional HRV analysis. Fragmentation

of sinus rhythm cadence may provide new dynamical biomarkers for probing the integrity

of the neuroautonomic-electrophysiologic network controlling the heartbeat in health and

disease.
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INTRODUCTION

Heart rate variability (HRV) in healthy subjects, particularly
over short time scales, is primarily attributable to fluctuations
in vagal tone. The most recognizable manifestation of this
parasympathetic influence is the oscillatory RR interval pattern
(Figure 1) termed respiratory sinus arrhythmia (RSA) that
results from the coupling between breathing and heart rate
(Angelone and Coulter, 1964; Hirsch and Bishop, 1981; HRV,
1996; Stauss, 2003). However, beat-to-beat changes in the heart
rate of healthy subjects not synchronized with respiration are
also vagally mediated (Angelone and Coulter, 1964; Hirsch and
Bishop, 1981). Therefore, a central interpretative framework
underlying contemporary HRV analyses is one in which the
degree of short-term variability of normal-to-normal (NN) sinus
beats is used as a dynamical biomarker of cardiac vagal tone
modulation (HRV, 1996; Billman, 2011).

This topic is of particular importance because
parasympathetic regulation of sinus rhythm decreases with
aging and organic heart disease (HRV, 1996; Kuo et al.,
1999; Thayer et al., 2010). However, paradoxically, for some
subjects in these high risk groups the amount of short-term
variability actually increases (Figure 1). An apparent difference
in the time series of vagally and non-vagally mediated HRV
dynamics is their degree of smoothness, or conversely, their
degree of fragmentation. Vagal tone modulation changes the
heart rate in a progressive way. For example, with RSA, heart
rate gradually increases and decreases with inspiration and
expiration, respectively. When the coupling between heart rate
and respiration is not as apparent, but the changes in heart rate
are still driven by vagal tone modulation, the changes in heart
rate are also gradual. In contrast, non-vagally mediated, short-
term heart rate variability has a distinct dynamical signature,
namely more frequent changes in heart rate acceleration sign
(Figure 1). In the “extreme” case of sinus alternans, the sign of
heart rate acceleration changes every beat (Lewis, 1920; Geiger
and Goerner, 1945; Friedman, 1956; Binkley et al., 1995). The
presence of these abnormal variants of sinus rhythm limits
the utility of traditional HRV analysis, since an increase in the
overall amount of short-term variability can no longer be solely
attributed to enhanced vagal tone modulation.

Abbreviations: α1, detrended fluctuation analysis short-term exponent; a.u.,

Arbitrary units; AUC, Area under the receiver operating characteristic curve;

CAD, Coronary artery disease; DFA, Detrended fluctuation analysis; ECG,

Electrocardiogram; F(n), DFA root-mean-square fluctuation function of the

integrated and detrended data, computed using windows of length n; HF, High

frequency spectral power; HRV, Heart rate variability; IALS, Inverse of the

average length of the acceleration/deceleration segments; IDEAL, Intercity Digital

Electrocardiogram Alliance; NN, Normal-to-normal (sinus) interbeat interval;

ORn, Normalized odds ratio; PAS, Percentage of NN intervals in alternation

segments; PIP, Percentage of inflection points; pNN20, Percentage of differences

between successive NN intervals above 20 ms; pNN50, Percentage of differences

between successive NN intervals above 50 ms; PSS, Percentage of NN intervals in

short segments; RR, Cardiac interbeat interval; RSA, Respiratory sinus arrhythmia;

rMSSD, Root mean square of successive differences; SA, Sino-atrial node; SampEn,

Sample entropy; SDSD, Standard deviation of successive differences; SVPB, Supra-

ventricular premature beat; THEW, Telemetric and Holter ECGWarehouse.

Stein et al. (Domitrovich and Stein, 2002; Stein, 2002), coined
the term “erratic sinus rhythm” to refer to prominent but
apparently random variations in sinus cadence not attributable
to vagal tone modulation and proposed a semi-quantitative
approach to help identify them (Stein et al., 2005, 2008).
However, despite their association with increased cardiovascular
risk and sick sinus syndrome (Bergfeldt and Haga, 2003), erratic
sinus rhythm, sinus alternans, and their variants, have received
scant clinical attention and the underlying mechanisms remain
obscure.

As shown in Figure 1, the distinctions between the different
classes of sinus arrhythmia may be difficult or impossible to
discern from standard ECG recordings. The graphs of the NN
interval time series and other representations of the data, such
as Poincaré plots and Fourier spectra (not shown) may reveal
clear differences in the structure of the fluctuations between
physiologic and anomalous variability. However, in many cases,
the differences are difficult to identify and especially to quantify.

These considerations led to the development of a novel
approach to the analysis of short-term heart rate variability,
termed heart rate fragmentation, accompanied by a set of
simple-to-implement statistical metrics. A framework for the
proposed approach is the concept that adaptive control of the
heartbeat, particularly on short time scales, requires a hierarchy
of interacting networks comprising neuroautonomic (especially
the parasympathetic) and electrophysiologic components (sinus
node pacemaker cells and their connections to the atrial
syncytium). The integrity of these networks allows for their
correlated function, evinced in part by the smoothness (fluency)
of the output. At the same time, their functionality provides for
sufficiently rapid (short-term or high frequency) responsiveness
to physiologic stresses, while protecting against excessive
volatility on a beat-to-beat basis.

A corollary concept is that network dysfunction, in general,
and of the heart rate control system, in particular, is more likely
to occur as the components of the network and their physiologic
coupling start to break down. This degradative process should
lead to increasing degrees of fragmentation. A key aspect of the
fragmentation paradigm is that dysfunction or actual breakdown
of one or more system components allows for the emergence of
high frequency fluctuations that compete with or even exceed
the shortest-termmodulatory responsiveness of the vagal system.
Therefore, a marker of this fragmentation on the surface ECG
should be abrupt changes in the sign of heart rate acceleration,
which may be periodic (as with classic sinus node alternans) or
more random appearing (as with what has been termed “erratic
sinus rhythm”). Such markers of fragmentation may be useful
as correlates of cardiovascular aging and/or underlying organic
heart disease.

Accordingly, we developed a set of fragmentation indices
(see Methods) and applied them to beat-annotated, well-
characterized 24-h Holter monitor recordings obtained from two
very distinct clinical groups: healthy subjects and those with
coronary artery disease (CAD). We analyzed three different time
periods: the full day, putative awake and sleep periods. The
primary hypotheses were that: (1) heart rate fragmentation would
be higher in healthy old subjects than in younger ones for all
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FIGURE 1 | Examples of respiratory sinus arrhythmia and anomalous sinus rhythm. Electrocardiograms (Holter lead) from a healthy subject (top) and a

patient with coronary artery disease (CAD) (middle), both from the present study. Normal-to-normal (NN) sinus interval time series from the healthy subject (bottom

left) and of the patient with CAD (bottom right). The fluctuation patterns of the former time series are characteristic of phasic (respiratory) sinus arrhythmia, while that

of the latter are indicative of an abnormal non-phasic sinus arrhythmia. To assist in visual comparisons, pale gray backgrounds are used for data from the healthy

subject and light red for data from the patient with CAD, respectively. ECG voltage is given in arbitrary units (a.u).

three time periods; and (2) heartbeat time series from patients
with CAD would be more fragmented than those from healthy
subjects. We also tested whether the fragmentation indices would
outperform standard time and frequency domain measures, as
well as nonlinearmeasures of short-termHRV in classifying heart
rate time series from healthy subjects vs. those from patients
with CAD.

METHODS

Databases
We employed two long-term (∼24-h) ECG ambulatory databases
from the Intercity Digital Electrocardiogram Alliance (IDEAL)
study. The recordings are made available via the University
of Rochester Telemetric and Holter ECG Warehouse (THEW)
archives (http://thew-project.org/databases.htm).

1. Healthy Subjects Database (THEW identification: E-HOL-03-
0202-003)
The database comprises 24-h Holter recordings from 202
ostensibly healthy subjects (102 males). Subjects were not
pregnant and had (1) no overt cardiovascular disease
or history of cardiovascular disorders; (2) no reported
medications, (3) a normal physical examination, (4) a 12-lead
ECG showing sinus rhythm with normal waveforms (or a

normal echocardiogram and normal ECG exercise testing in
the presence of any questionable findings ECG changes). The
ECG signals were recorded at a sample frequency of 200
Hz. Automated beat annotations were manually reviewed and
adjudicated. We excluded 45 subjects with more than 1% non-
sinus beats, 37 younger than 25 years old, ten with body mass

index >30 Kg/m2 and one with < 12 h of data. Overall, we

analyzed data from 109 healthy adult subjects (60 male), age
(median, 25–75th percentiles) 40, 33–49 years.

2. Coronary Artery Disease Subjects Database (THEW

identification E-HOL-03-0271-002)
This database comprises 24-h Holter recordings from 271

patients (223 males). Subjects had an abnormal coronary
angiogram (at least one vessel with luminal narrowing >

75%) and either exercise-induced ischemia or a documented
previous myocardial infarction. Exclusion criteria included
a history of coronary artery bypass surgery or major co-

morbidity. Patients were clinically stable and in sinus rhythm
at the time of the enrollment. For our analysis, we also
excluded 11 subjects whose Holter recordings contained ≥

20% non-sinus beats and 4 with less than 12 h of data. Overall,
we analyzed 256 subjects (208 male), age (median, 25–75th

percentiles): 60; 51–67 years; left ventricular ejection fraction
56.5, 50–66%.
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Putative waking and sleeping periods were estimated as the six
consecutive hours of highest and lowest heart rates, respectively.
These periods were calculated from the NN interval time series
using a 6-h moving average window, shifted 15min at a time.

HRV Analysis: Heart Rate Fragmentation
Indices
From the ECG of each subject, the time series of the NN
intervals, {NNi} = {tNi − tNi− 1}, where tNi represents the time

of occurrence of the ith normal sinus beat, and the time series of
the differences between consecutive NN intervals (increments),
{1NNi} = {NNi − NNi− 1}, were derived.

The following four fragmentation indices were then computed
from these time series:

• The percentage of zero-crossing points in the increment time
series, or equivalently, the percentage of inflection points (PIP)
in the NN interval time series. (A tNi represents an inflection
point if 1NNi × 1NNi+ 1 ≤ 0, that is, if tNi is an instant of
inversion of heart rate acceleration sign or of change to or from
zero.)

• The inverse of the average length of the
acceleration/deceleration segments (IALS). An acceleration,
deceleration segment is a sequence of NN intervals between
consecutive inflection points for which the difference between
two NN intervals is < 0 and > 0, respectively. The length of a
segment is the number of NN intervals in that segment.

• The complement of the percentage of NN intervals in
acceleration and deceleration segments with three or more
NN intervals. This quantity is termed the percentage of short
segments (PSS).

• The percentage of NN intervals in alternation segments. An
alternation segment is a sequence of at least four NN intervals,
for which heart rate acceleration changes sign every beat.
Such sequences follow an “ABAB” pattern, where “A” and
“B” represent increments of opposite sign. This quantity is
abbreviated, PAS.

By definition, the more fragmented a time series is, the higher
the PIP, IALS, PSS, and PAS indices will be. We note that PAS
quantifies the amount of a particular sub-type of fragmentation
(alternation). A time series may be highly fragmented and have a
small amount of alternation. However, all time series with large
amount of alternation are highly fragmented.

Given that the presence of non-sinus beats will increase
fragmentation, we excluded segments encompassing non-sinus
beats that started and ended at the inflection points preceding
and following these non-sinus beats, respectively.

Finally, to assess the importance of beat annotation on
fragmentation analyses, we also examined the full RR time series
that include normal sinus beats as well as any supraventricular
and ventricular ectopic beats.

HRV Analysis: Standard Measures
Standard techniques of HRV analysis are grouped into time and
frequency (spectral) domain methods (HRV, 1996). A subset
of the former, intended to quantify short-term variability, is
based on the difference between consecutive normal-to-normal

intervals (1NN, also termed NN increments); the latter on the
spectral power of the NN intervals.

The following four traditional time and frequency HRV
measures of short-term fluctuations were computed using open-
source software (Goldberger et al., 2000) available at the
PhysioNet website (www.physionet.org):

• Time domain

– pNNx measures: the percentage of 1NN > x ms. Here, we
used x = 20 and 50 ms (Mietus et al., 2002).

– rMSSD (“root mean square of successive differences”):
square root of the mean of the squares of 1NN intervals.

– SDSD (“standard deviation of successive differences”):
standard deviation of the 1NN time series.

• Frequency domain

– HF (“high frequency”): spectral power of the NN interval
time series between 0.15 and 0.4 Hz.

These sets of time and frequency domain measures are widely
interpreted to represent cardiac vagal tone modulation (HRV,
1996; Billman, 2011). By comparison, longer time scale
fluctuations, are attributable to both sympathetic and
parasympathetic influences (HRV, 1996; Thayer et al., 2010;
Billman, 2013) and were, therefore, not considered here.

HRV Analysis: Non-linear Dynamical
Indices
The following two widely used nonlinear short-term dynamical
indices were computed:

• Short-term detrended fluctuation analysis (DFA) exponent,
α1. This measure (Peng et al., 1995) quantifies the correlations
properties of a time series. The method is based on the
assessment of the slope of the linear regression line of the
log-log graph of F(n) vs. n. The function F(n) is the root-
mean-square fluctuation of the integrated and detrended data,
computed using windows of length n. For the analysis of heart
rate time series, two indices, α1 and α2, quantifying short and
long-term behavior, respectively, have been proposed. Here,
we focus on α1, which encompasses scales ranging from 4 to
11 beats, inclusively (Pikkujamsa et al., 1999). The correlation
properties of time series with α ≃ 1.5 are similar to those
of Brownian noise. In contrast, time series with α < 0.5 are
anti-correlated. The former are smoother than the latter.

• Sample entropy (SampEn). This measure (Richman and
Moorman, 2000) quantifies the degree of irregularity of a
signal. A higher SampEn value implies a more irregular,
less predictable signal. Sample entropy is the negative of the
natural logarithm of the conditional probability that the (m+

1)th components of two distinct segments match (‖xi+m −

xj+m‖ < r) within the tolerance r, given that the first
m components match within the same tolerance (‖xi+ l −

xj+ l‖ < r, for 0 ≤ l ≤ m− 1).

Statistical Analysis
Spearman’s rank and Pearson’s product-moment correlation
coefficients were used to quantify the dependence of: (i) the
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four novel indices of heart rate fragmentation, (ii) the traditional
measures of short-term HRV, and iii) the two non-linear
dynamical indices, short-term DFA exponent α1 and SampEn,
with the participants’ age, using the THEW Healthy Subject
Database. Statistical significance was set at a p-value <0.05.

Logistic regression analysis methods were used to assess
the relationships between presence of CAD and traditional,
nonlinear and fragmentation indices in unadjusted models and
models adjusted for age and gender. To facilitate comparisons
among various HRV measures, we report normalized odds ratios
(i.e., the odds ratio for a one standard deviation change in the
measure).

The area under the receiver operating characteristic (AUC)
curve was used to assess the goodness of fit of each model.
The likelihood-ratio test was used to compare the goodness of
fit of two nested models. All analyses were performed using
raw measures except in the case of skewed variables whose
logarithmic or quadratic transformation improved the models’
goodness of fit. This improvement was only noted in the case of
24-h and daytime HF, 24-h and daytime SDSD and nighttime α1.

RESULTS

Changes in Heart Rate Dynamics with the
Participants’ Age in the Healthy Population
All four fragmentation indices significantly increased with the
participants’ age, for all three time periods, using either NN or
RR interval time series (Table 1, Figure 2).

Traditional short-term HRV indices significantly decreased
with the participants’ age, for all three time periods.

The fractal α1 exponent significantly increased with the
participants’ age during putative sleep time. For the other
time periods, linear correlation analysis indicated an inverse
relationship. However, in these cases, the Spearman coefficients
were not significant.

Sample entropy significantly decreased with the participants’
age during the putative wake and sleep periods. However,
analyses of the 24-h period did not reveal any significant
association between the two variables.

The percentage of supraventricular and ventricular premature
beats significantly increased with the participants’ age (Spearman
rs = 0.27, p = 0.004 and rs = 0.29, p = 0.002, respectively).

Changes in Heart Rate Dynamics with
Coronary Artery Disease
The values (median, 25 and 75th percentiles) of the new
fragmentation indices for the groups of healthy subjects and
patients with CAD, as well as of the traditional HRV and
nonlinear indices, are presented in Table 2.

All fragmentation indices significantly (p < 0.0001) increased
with the participants’ age for all time periods in the group of
patients with CAD, regardless of using NN or RR time series
(Figure 2). The Pearson correlation coefficients varied between
0.250 and 0.529 for the NN time series and between 0.246 and
0.531 for the RR time series. The correlations for the 24-h and

TABLE 1 | Spearman rank and standardized Pearson product-moment correlation coefficients for the relationships between traditional short-term HRV,

nonlinear and fragmentation indices with cross-sectional age for the group of healthy subjects.

Variables Spearman Pearson

24-h Day Night 24-h Day Night

rs p-value rs p value rs p-value r p-value r p-value r p-value

F
ra
g
m
e
n
ta
io
n

(u
si
n
g
N
N
) PIP 0.614 <0.0001 0.582 <0.0001 0.418 <0.0001 0.659 <0.0001 0.624 <0.0001 0.469 <0.0001

IASL 0.577 <0.0001 0.555 <0.0001 0.343 0.0003 0.629 <0.0001 0.603 <0.0001 0.392 <0.0001

PSS 0.568 <0.0001 0.595 <0.0001 0.193 0.0445 0.597 <0.0001 0.637 <0.0001 0.216 0.0240

PAS 0.430 <0.0001 0.326 0.0006 0.432 <0.0001 0.450 <0.0001 0.324 0.0006 0.416 <0.0001

F
ra
g
m
e
n
ta
tio

n
(u
si
n
g
R
R
) PIP 0.612 <0.0001 0.583 <0.0001 0.421 <0.0001 0.659 <0.0001 0.623 <0.0001 0.470 <0.0001

IASL 0.576 <0.0001 0.555 <0.0001 0.346 0.0002 0.628 <0.0001 0.603 <0.0001 0.396 <0.0001

PSS 0.568 <0.0001 0.596 <0.0001 0.197 0.0399 0.597 <0.0001 0.636 <0.0001 0.218 0.0230

PAS 0.434 <0.0001 0.328 0.0005 0.437 <0.0001 0.450 <0.0001 0.322 0.0007 0.422 <0.0001

Tr
a
d
iti
o
n
a
l

sh
o
rt
-t
e
rm

H
R
V rMSSD −0.529 <0.0001 −0.468 <0.0001 −0.538 <0.0001 −0.524 <0.0001 −0.449 <0.0001 −0.537 <0.0001

pNN20 −0.487 <0.0001 −0.439 <0.0001 −0.505 <0.0001 −0.496 <0.0001 −0.434 <0.0001 −0.558 <0.0001

pNN50 −0.536 <0.0001 −0.491 <0.0001 −0.529 <0.0001 −0.518 <0.0001 −0.444 <0.0001 −0.516 <0.0001

SDSD −0.530 <0.0001 −0.450 <0.0001 −0.476 <0.0001 −0.523 <0.0001 −0.434 <0.0001 −0.475 <0.0001

HF −0.520 <0.0001 −0.439 <0.0001 −0.568 <0.0001 −0.466 <0.0001 −0.404 <0.0001 −0.481 <0.0001

N
o
n
-l
in
e
a
r

α1 −0.148 0.124 −0.118 0.224 0.418 <0.0001 −0.246 0.0101 −0.211 0.0277 0.384 <0.0001

SampEn 0.071 0.462 −0.251 0.0086 −0.225 0.0186 0.075 0.440 −0.271 0.0044 −0.265 0.0054

PIP, percentage of inflection points; IALS, inverse of the average length of the acceleration/deceleration segments; PPS, percentage of NN intervals in short segments; PAS, percentage

of NN intervals in alternation segments. rMSSD, root mean square of the successive differences; pNN20 and pNN50, percentage of differences between successive NN intervals above

20 and 50 ms, respectively; SDSD, standard deviation of successive differences; HF, high frequency spectral power; α1, detrended fluctuation analysis short-term exponent; SampEn,

sample entropy.
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FIGURE 2 | Scatter plots of the traditional heart rate variability (rMSSD, pNN50, and HF), nonlinear (α1 and SampEn) and fragmentation (PIP, IALS,

PPS, and PAS) indices vs. the participants’ age for the group of healthy subjects and patients with coronary artery disease (CAD), derived from the

analysis of the full (∼ 24-h) period. The solid lines are the linear regression lines. rMSSD, root mean square of the successive differences; pNN50, percentage of

differences between successive NN intervals above 50 ms; HF, high frequency spectral power; α1, detrended fluctuation analysis short-term exponent; SampEn,

sample entropy; PIP, percentage of inflection points; IALS, inverse of the average length of the acceleration/deceleration segments; PPS, percentage of NN intervals in

short segments; PAS, percentage of NN intervals in alternation segments.

TABLE 2 | Measures of heart rate variability in healthy subjects and those with coronary artery disease (CAD).

Healthy CAD

24-h Day Night 24-h Day Night

Variable Median, 25-75th Median, 25-75th Median, 25-75th Median, 25-75th Median, 25-75th Median, 25-75th

F
ra
g
m
e
n
ta
tio

n
(u
si
n
g
N
N
)

PIP (%) 55.4, 52.1–59.1 56.5, 52.1–61.5 54.0, 51.4–58.3 65.4, 60.1–69.4 67.0, 61.0–72.7 61.9, 57.7–67.8

IASL 0.52, 0.49–0.56 0.53, 0.48–0.58 0.51, 0.49–0.56 0.63, 0.57–0.68 0.65, 0.58–0.72 0.59, 0.55–0.66

PSS (%) 62.5, 56.4–68.8 61.1, 53.6–68.9 66.4, 59.5–73.7 78.1, 70.4–84.9 79.4, 69.5–87.8 77.3, 69.9–83.9

PAS (%) 3.79, 2.66–5.10 4.36, 3.24–6.52 1.85, 1.17–3.49 7.04, 4.27–10.8 7.89, 4.80–13.2 4.29, 2.41–7.24

F
ra
g
m
e
n
ta
tio

n
(u
si
n
g
R
R
)

PIP (%) 55.5, 52.2–59.2 56.8, 52.1–61.4 54.1, 51.4–58.4 65.7, 60.3–69.6 67.2, 61.1–72.8 62.1, 57.8–68.0

IASL 0.52, 0.49–0.56 0.53, 0.48–0.58 0.51, 0.49–0.56 0.63, 0.57–0.68 0.65, 0.58–0.72 0.60, 0.55–0.66

PSS (%) 62.5, 56.4–68.6 61.0, 53.3–68.7 66.4, 59.5–73.7 78.1, 70.1–84.5 79.1, 69.4–87.6 77.0, 69.7–83.7

PAS (%) 3.84, 2.71–5.10 4.36, 3.24–6.55 1.84, 1.20–3.68 7.17, 4.43–11.4 8.24, 4.86–13.7 4.48, 2.54–7.48

Tr
a
d
iti
o
n
a
l

sh
o
rt
-t
e
rm

H
R
V rMSSD (ms) 30.7, 23.1–42.5 22.5, 16.5–31.7 42.1, 29.5–62.0 25.6, 18.4–34.7 20.0, 15.0–28.3 28.8, 21.5–43.6

pNN20 (%) 32.0, 21.5–44.6 22.4, 11.8–36.1 52.6, 33.0–64.1 25.2, 15.0–37.2 17.7, 8.46–30.4 35.7, 19.9–51.9

pNN50 (%) 7.65, 3.04–15.2 2.81, 1.03–8.13 16.0, 5.80–29.6 3.48, 1.07–8.44 1.60, 0.45–4.99 4.90, 1.40–15.6

SDSD (ms) 31.4, 23.1–42.6 22.7, 16.2–31.8 39.9, 26.3–58.4 26.4, 18.9–36.2 20.2, 15.7–29.0 28.0, 20.6–39.7

HF (msec2) 322, 173–603 159, 85.9–330 608, 283–1452 255, 128–492 140, 67.7–293 311, 156–672

N
o
n
-

lin
e
a
r α1 1.17, 1.07–1.27 1.44, 1.32–1.52 1.21, 1.04–1.34 1.02, 0.81–1.15 1.23, 1.02– 1.38 1.23, 1.02–1.37

SampEn 0.84, 0.68–1.05 0.84, 0.63–1.07 1.32, 1.12–1.52 0.86, 0.64–1.05 0.85, 0.63– 1.02 1.21, 1.03–1.42

Values are reported as median, 25–75th percentiles. PIP, percentage of inflection points; IALS, inverse of the average length of the acceleration/deceleration segments; PPS, percentage

of NN intervals in short segments; PAS, percentage of NN intervals in alternation segments. rMSSD, root mean square of the successive differences; pNN20 and pNN50, percentage

of differences between successive NN intervals above 20ms and 50ms, respectively; SDSD, standard deviation of successive differences; HF, high frequency spectral power; α1,

detrended fluctuation analysis short-term exponent; SampEn, sample entropy.
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putative awake periods were relatively stronger than those for the
sleep period.

Out of the 15 relationships tested, between each of the five
traditional HRV measures and the participants’ age, for each of
the three time periods, only two were statistically significant.
We found that pNN20 and pNN50 significantly decreased with
the participants’ age during the putative sleep period. Of the
nonlinear indices, only DFA α1 showed a significant association
with participants’ age. In this group, α1 significantly decreased
with the participants’ age for all time periods.

A 1-year increase in age was associated with an increase of 14%
in the odds of having CAD (odds ratio = 1.14, 95% confidence
interval: 1.11–1.17, p < 0.0001). The AUC for the model with
age as the only covariate was 0.853. Male sex carried a 3.54 fold
increase in the odds of CAD (odds ratio = 3.54, 95% confidence
interval: 2.17–5.78, p < 0.0001). The AUC for the null model with
age and gender as the sole independent variables was 0.882.

Unadjusted analyses

In unadjusted analyses (Table 3), higher fragmentation indices
were significantly associated with presence of CAD, for all
time periods, using both NN and RR interval time series.
Depending of the specific index and time period considered,
a one-standard deviation increase in any of the fragmentation
indices was associated with a 2.84–7.34-fold increase in the odds
of CAD.

In comparison, the traditional short-term time and frequency
domain HRV measures were inversely associated with presence

of CAD for all time periods. However, only a subset of these
measures, rMSSD and SDSD during sleep time, pNN50 during
sleep and the 24-h period and pNN20 for all time periods,
were significantly associated with CAD in unadjusted models.
Of note, these models consistently performed worse than those
with the fragmentation indices. For example, for pNN20, the
best performing of the HRV measures, a one-standard deviation
increase in the value of this variable was only associated with a
26, 77, and 44% increase in the odds of CAD, for the awake, sleep
and 24-h periods, respectively.

Lower values of α1, for the awake and 24-h periods, and of
SampEn for the sleep period were also significantly associated
with presence of CAD. Overall, α1 was a stronger correlate of
CAD than traditional HRV measures, but not as strong as the
fragmentation indices. SampEn, even for the sleep period, was
among the weakest correlates of CAD.

Figure 3 shows the normalized histograms of the traditional
heart rate variability (rMSSD, pNN50, and HF), nonlinear (α1

and SampEn) and fragmentation (PIP, IALS, PPS, and PAS)
indices for the groups of healthy subjects and patients with
coronary artery disease, for the 24-h period.

Adjusted Analyses

Fragmentation indices remained positively associated with CAD
in models adjusted for age and sex (Table 4). Furthermore, the
models with any of these indices fitted the data better than the
ones with only age and sex, for all time periods, regardless of
whether NN or RR time series were used.

TABLE 3 | Logistic regression analysis and area under the ROC curve for unadjusted models of CAD.

24-h Day Night

CAD ORn 95% CI AUC ORn 95% CI AUC ORn 95% CI AUC

F
ra
g
m
e
n
ta
tio

n
(u
si
n
g
N
N
)

PIP 5.86 3.97–8.66 0.850 4.28 3.06–5.99 0.822 4.50 3.11–6.52 0.806

IASL 6.72 4.40–10.3 0.854 4.66 3.25–6.68 0.823 4.66 3.16–6.88 0.804

PSS 6.16 4.16–9.11 0.863 4.69 3.33–6.59 0.840 2.88 2.16–3.83 0.755

PAS 6.60 3.58–11.4 0.762 4.14 2.57–6.69 0.727 6.42 3.21–12.8 0.750

F
ra
g
m
e
n
ta
tio

n
(u
si
n
g
R
R
)

PIP 6.06 4.08–9.00 0.854 4.42 3.15–6.12 0.826 4.61 3.17–6.69 0.809

IASL 6.77 4.42–10.4 0.856 4.72 3.29–6.77 0.825 4.66 3.16–6.86 0.805

PSS 6.12 4.14–9.04 0.862 4.69 3.33–9.59 0.840 2.84 2.14–3.77 0.752

PAS 7.34 4.02–13.4 0.774 4.54 2.79–7.38 0.739 7.13 3.55–14.3 0.760

Tr
a
d
iti
o
n
a
l

sh
o
rt
-t
e
rm

H
R
V rMSSD 0.835 0.673–1.04 0.616 0.957 0.769–1.19 0.556 0.735 0.589– 0.917 0.653

pNN20 0.693 0.551–0.871 0.610 0.792 0.634–0.989 0.574 0.565 0.443– 0.720 0.656

pNN50 0.696 0.560–0.867 0.648 0.826 0.668–1.02 0.602 0.597 0.477– 0.746 0.664

SDSD 0.827 0.663–1.03 0.598 0.901 0.722–1.12 0.549 0.778 0.626– 0.967 0.641

HF 0.821 0.654–1.03 0.565 0.909 0.726–1.14 0.540 0.872 0.704– 1.08 0.653

N
o
n
-

lin
e
a
r α1 0.332 0.237–0.465 0.734 0.224 0.148–0.341 0.776 1.03 0.820– 1.28 0.521

SampEn 1.08 0.858–1.35 0.513 0.997 0.797–1.25 0.508 0.737 0.586– 0.927 0.591

Values presented are normalized odds ratio (ORn), 95% confidence intervals (95% CI) and area under the receiver operating characteristic curve (AUC). PIP, percentage of inflection

points; IALS, inverse of the average length of the acceleration/deceleration segments; PPS, percentage of NN intervals in short segments; PAS, percentage of NN intervals in alternation

segments. rMSSD, root mean square of the successive differences; pNN20 and pNN50, percentage of differences between successive NN intervals above 20ms and 50ms, respectively;

SDSD, standard deviation of successive differences; HF, high frequency spectral power; α1, detrended fluctuation analysis short-term exponent; SampEn, sample entropy. The analysis

was performed using raw measures except in the case of 24-h and daytime HF, 24-h and daytime SDSD and nighttime α1 variables, for which the models with the transformed variables

(log in the case of HF and SDSD, and square in the case of α1 ) fitted the data better than those with the raw variables.
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FIGURE 3 | Normalized histograms of the traditional heart rate variability (rMSSD, pNN50, and HF), nonlinear (α1 and SampEn) and fragmentation (PIP,

IALS, PPS, and PAS) indices for the groups of healthy subjects (blue) and patients with coronary artery disease (red), for the 24-h period. rMSSD, root

mean square of the successive differences; pNN50, percentage of differences between successive NN intervals above 50 ms; HF, high frequency spectral power; α1,

detrended fluctuation analysis short-term exponent; SampEn, sample entropy; PIP, percentage of inflection points; IALS, inverse of the average length of the

acceleration/deceleration segments; PPS, percentage of NN intervals in short segments; PAS, percentage of NN intervals in alternation segments.

TABLE 4 | Logistic regression analysis and AUC for models of CAD adjusted for age and sex.

24-h Day Night

CAD ORn 95% CI AUC p ORn 95% CI AUC p ORn 95% CI AUC p

F
ra
g
m
e
n
ta
tio

n
(N
N
)

PIP 2.99 1.84–4.85 0.904 8.2E-7 2.20 1.44–3.36 0.896 1.3E-4 2.64 1.70–4.10 0.901 2.0E-6

AISL 3.31 1.97–5.55 0.906 2.0E-7 2.29 1.48–3.55 0.897 5.6E-5 2.83 1.80–4.47 0.903 5.7E-7

PSS 3.68 2.26–5.98 0.912 2.2E-9 2.48 1.62–3.80 0.900 7.7E-6 2.51 1.74–3.63 0.905 1.0E-7

PAS 2.04 1.13–3.66 0.890 0.0057 1.85 1.10–3.13 0.889 0.0090 1.72 0.91–3.26 0.885 0.0558

F
ra
g
m
e
n
ta
tio

n
(R
R
)

PIP 3.12 1.91–5.10 0.905 4.1E-7 2.29 1.49–3.52 0.897 6.0E-5 2.68 1.72–4.18 0.901 1.5E-6

AISL 3.35 1.99–5.62 0.907 1.6E-7 2.33 1.50–3.62 0.897 4.5E-5 2.81 1.78–4.43 0.902 6.6E-7

PSS 3.66 2.26–5.94 0.912 2.3E-9 2.49 1.62–3.81 0.900 7.4E-6 2.48 1.72–3.59 0.904 1.4E-7

PAS 2.20 1.19–4.06 0.891 0.0032 1.98 1.16–3.38 0.890 0.0049 1.81 0.95–3.45 0.885 0.0399

Tr
a
d
iti
o
n
a
l

sh
o
rt
-t
e
rm

H
R
V rMSSD 1.06 0.730–1.53 0.882 0.76 1.24 0.825–1.86 0.884 0.28 0.929 0.661–1.31 0.881 0.68

pNN20 1.19 0.863–1.65 0.884 0.28 1.25 0.900–1.72 0.884 0.18 1.04 0.751–1.43 0.882 0.83

pNN50 1.09 0.787–1.50 0.882 0.61 1.14 0.807–1.60 0.883 0.46 0.974 0.718–1.32 0.882 0.87

SDSD 1.43 0.554–3.71 0.884 0.21 1.66 0.586–4.72 0.884 0.24 0.934 0.664–1.31 0.881 0.70

HF 1.39 0.723–2.66 0.884 0.26 1.69 0.723–3.95 0.885 0.15 0.968 0.665–1.41 0.882 0.87

N
o
n
-

lin
e
a
r α1 0.454 0.292–0.707 0.897 1.39E-4 0.293 0.171–0.500 0.906 3.61E-7 0.810 0.566–1.16 0.884 0.24

SampEn 1.16 0.845–1.58 0.883 0.36 1.57 1.14–2.17 0.890 0.0048 1.16 0.843–1.60 0.883 0.36

The analysis was performed using raw measures. Values presented are the normalized odds ratio (ORn ) and the 95% confidence intervals (95% CI) for the variables listed in the

header column, in models adjusted for age and sex; the area under the receiver operating characteristic curve (AUC) and the p-value for the likelihood-ratio test of the null hypothesis

that the addition of the HRV measure does not improve the fit of the model with age and sex alone. PIP, percentage of inflection points; IALS, inverse of the average length of the

acceleration/deceleration segments; PPS, percentage of NN intervals in short segments; PAS, percentage of NN intervals in alternation segments. rMSSD, root mean square of the

successive differences; pNN20 and pNN50, percentage of differences between successive NN intervals above 20 and 50 ms, respectively; SDSD, standard deviation of successive

differences; HF, high frequency spectral power; α1, detrended fluctuation analysis short-term exponent; SampEn, sample entropy.

Adding any of the fragmentation indices derived from NN
interval time series to a model of CAD with the percentages
of supraventricular premature beats (% SVPBs) significantly

increased its performance (p < 0.00001) for all time periods.
Specifically, while the AUC for the model with the % SVPBs was
0.754, the AUCs for the models that also included PIP, IALS, PPS,
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or PAS derived from NN intervals time series, were 0.852, 0.856,
0.866, and 0.771, respectively.

None of the associations between traditional time and
frequency domain measures and CAD remained significant for
any of the time periods when the models were adjusted for age
and sex (Table 4). For the nonlinear measure α1, the associations
remained significant during the 24-h and awake periods. For
SampEn, the association with CAD during awake was significant,
while the relationship during sleep time lost significance. The
adjusted models with α1, for the 24-h and awake periods, and
with SampEn, for the awake period, were superior to the model
with only age and sex.

Relationship between HRV Measures and
Mean Heart Rate
In both healthy subjects and those with CAD, the fragmentation
indices, PIP, IASL, and PSS, were not significantly correlated with
24-h mean heart rate (Figure 4). The same was true for the group
of patients with CAD. PAS was weakly correlated with mean
heart rate in both healthy subjects and patients with CAD. The
correlation was positive, r = 0.221 (p = 0.021), for the group
of healthy subjects and negative, r = −0.146 (p = 0.020) in the
group of those with CAD.

In contrast, the traditional time and frequency domain
measures were strongly correlated with mean heart rate. The
standardized Pearson correlation coefficients varied between
0.501 and 0.676 (p < 0.0001) in the group of healthy subjects

and between 0.111 and 0.574 in the group of patients with CAD
(p < 0.0001 for all correlations, but the one with SDSD).

SampEn was only weakly correlated with mean heart rate.
The correlation was negative in the healthy group, r = −0.185,
p = 0.054 and positive in the CAD group, r = 0.287, p < 0.0001.
α1 was positively correlated with mean heart rate in patients
with CAD r = 0.156, p < 0.013. For the healthy subjects, the
correlation was not significant.

DISCUSSION

This study is of potential interest because it presents a
new way of assessing short-term HRV under free-running
(spontaneous) conditions. The novel methodology and findings
are described under the rubric of sinus rate fragmentation (or
conversely, smoothness or “fluency”). The conceptual framework
is described in the Introduction. We found that the degree of
fragmentation of the NN and RR time series, derived from 24-h
Holter monitoring, varied directly as a function of cross-sectional
age in a cohort of healthy young to elderly male and female
subjects in sinus rhythm. In this group, older age was associated
with increased fragmentation. This correlation was noted for the
entire 24-h period, as well as, during putative wake and sleep
periods. Furthermore, we found that the fragmentation indices
outperformed standard time and frequency domain measures,
as well as, two widely used nonlinear measures (DFA α1 and
SampEn), in separating healthy subjects from patients with CAD.

FIGURE 4 | Scatter plots of the traditional heart rate variability (rMSSD, pNN50, and HF), nonlinear (α1 and SampEn) and fragmentation (PIP, IALS,

PPS, and PAS) indices vs. mean heart rate (in beats per minute, bpm) for the group of healthy subjects (blue dots) and those with coronary artery

disease (CAD, red circles), derived from the analysis of 24-h NN interval time series. The blue and red lines are the linear regression lines for the healthy and

CAD groups, respectively. rMSSD, root mean square of the successive differences; pNN50, percentage of differences between successive NN intervals above 50 ms;

HF, high frequency spectral power; α1, detrended fluctuation analysis short-term exponent; SampEn, sample entropy; PIP, percentage of inflection points; IALS,

inverse of the average length of the acceleration/deceleration segments; PPS, percentage of NN intervals in short segments; PAS, percentage of NN intervals in

alternation segments.
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In this study, we chose to analyze open access Holter data from
groups of subjects whose clinical status was well-characterized
and presented very sharp population differences: a group of
healthy subjects and a group of patients with overt CAD. The
healthy subjects were, on average, 20 years younger than the
patients with CAD. Therefore, these two group were robustly
separated by a model that simply incorporated age and gender
(AUC = about 0.88). We expected the combination of older age
and overt cardiovascular disease in the CAD group to enhance
the ability of quantitative methods of HRV to unambiguously
discriminate between patients and healthy individuals.

A potential link between aging and a variety of overt
cardiovascular disease processes is the role of inflammation
and fibrosis (Biernacka and Frangogiannis, 2011; Ghiassian
et al., 2016), which decrease the amount and/or effectiveness of
physiologic vagal tone modulation and promote the breakdown
of regulatory networks, such as those controlling heart rate.
Therefore, all short-termHRVmeasures were expected to change
in the same directional way with aging and cardiovascular
disease, for all time periods. In this regard, and in accord
with “canonical” HRV precepts (HRV, 1996; Stauss, 2003;
Billman, 2011), we hypothesized that traditional short-term
HRV measures would decrease with cross-sectional age in the
healthy group and that these measures would be lower for
the patients with CAD than healthy subjects. In addition, we
hypothesized that the fragmentation indices would increase with
the participants’ age in the healthy group and that they would be
higher for patients with CAD than healthy subjects.

We found strong correlations between traditional HRV
measures and the participants’ age in the healthy group, for all
time periods. These findings were in agreement with the generally
accepted idea that HRV measure are useful to assess changes
in heart rate dynamics with healthy aging (Pikkujamsa et al.,
1999). In contrast, for the group of patients with CAD, traditional
HRV indices, with only two exceptions, pNN20 and pNN50
during putative sleep, did not significantly change with the
participants’ age. This counterintuitive finding (Figure 2) may be
due to the confounding effects of heart rate fragmentation, which
may increase high-frequency variability not due to physiologic
respiratory-vagal modulation (Domitrovich and Stein, 2002;
Stein, 2002; Stein et al., 2005, 2008).

Furthermore, the ability of traditional short-term HRV
measures to separate the healthy and CAD groups was also
surprisingly poor. In models adjusted for age and sex, none of the
traditional HRV measures significantly discriminated these two
groups. Even in unadjusted models, the discriminatory power
of conventional HRV measures was not consistent across time
periods. In particular, HF power, traditionally interpreted as a
measure of vagal tone modulation, did not discriminate the
two groups for any of the time periods considered. Our results
are consistent with previous cautionary reports about the utility
of traditional HRV measures to assess vagal tone modulation
especially with advanced age or underlying heart disease (Stein,
2002; Stein et al., 2005; Burr, 2007; Billman, 2013).

The nonlinear indices also did not provide consistent results.
For example, α1 significantly increased with the participants’ age
during sleep, in both Pearson and Spearman correlation analyses.

However, an inverse relationship was found for the awake and 24-
h periods, in Pearson but not in Spearman analyses. In addition,
lower α1 values were significantly associated the presence of
CAD during the awake and 24-h periods, but not during sleep.
The degree of randomness of heart rate time series, measured
by SampEn, significantly decreased with the participants’ age
during the awake and sleep periods. Furthermore, while in an
unadjusted model, a one standard deviation increase in the
degree of randomness of heart rate time series was associated with
a 36% decrease in the odds of CAD during sleep time, in a models
adjusted for age and sex, a one standard deviation increase in
SampEn was associated with a 57% increase in the odds of CAD
during awake period. For the other time periods, the associations
were not significant.

The inconsistencies of the two nonlinear methods, α1

and SampEn, are not entirely unexpected. For example, the
fluctuation function, F(n), in DFA analysis of 24-h NN interval
time series usually presents a crossover separating “short-term”
from “longer-term” behavior. However, the scale at which that
crossover occurs may vary substantially from subject to subject.
In addition, the degree of linearity of F(n) also tends to vary from
subject to subject. SampEn, on the other hand, can be affected by
nonstationarities that are common in real world data. In addition,
fragmented time series can be highly predictable (leading to
low SampEn), as in the case of those with a high density of
alternation, or highly irregular, as in the case of “erratic” sinus
rhythm (leading to increased SampEn).

The limitations of traditional and newer HRV methods,
exemplified by the results reported above and those described
by other investigators (Stein, 2002; Stein et al., 2005; Burr,
2007; Billman, 2013), help motivate the on-going searches for
alternative approaches. The introduction of the concept of
fragmentation of heart rate dynamics, accompanied by a set of
metrics for its quantification, are part of this exploration.

Speculatively, possible mechanisms of the observed
fragmentation include the breakdown of one or more
components of the regulatory network controlling heart
rate dynamics. An obvious first question would be whether
the higher fragmentation values in CAD vs. the healthy group
could simply be due to SVPBs mislabeled as normal sinus
beats. While the THEW website describes that three lead Holter
monitor recordings were first processed using an automated
beat annotation program and then subjected to visual review
and adjudication, the possibility that some of the beats labeled
as N are actually subtle SVPBs, and not sinus beats, cannot be
absolutely excluded. To address this possible confounder, one
would assume that the recordings with the highest likelihood
of containing hidden SVPBs would be those with the highest
percentage of labeled SVPBs. Therefore, to assess whether our
results were likely a consequence of mislabeled SVPBs, we
compared the performance of a model of CAD with the %
SVPBs, as the sole independent variable to that of a model with
the % SVPBs and each fragmentation index. We found that
all fragmentation indices added significant information to the
model with % SVPBs. This finding supports the contention
that fragmentation is not a surrogate measure of “hidden”
supraventricular ectopy.
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A second question would be whether abnormalities in
breathing dynamics could be responsible for the fragmentation
of heart rate dynamics through respiratory-cardiac coupling.
Since we did not have a direct measure of respiration, we
cannot exclude the possibility that inter-breath interval time
series were themselves fragmented. However, such a mechanism
is unlikely since beat-to-beat changes in the sign of heart rate
acceleration are above the frequency response of the vagal-
sinus modulatory system. In fact, the coupling between the
sinus node and the vagus tends to drop-off at high respiratory
rates (Angelone and Coulter, 1964; Hirsch and Bishop, 1981).
Furthermore, the most erratic variants of sinus rhythm are seen
in the populations of older healthy subjects and those with
organic heart disease (Stein et al., 2005, 2008), groups with
the most impaired vagal modulatory capacity and, therefore,
those least likely to show very high frequency coupling between
autonomic and electrophysiologic components.

The specific electrophysiologic bases for fragmentation of
heart rate dynamics remain to be determined. More than
one mechanism may be contributory. For example, alternans
phenotypes could be due to sinus node exit block or to very
subtle atrial bigeminy with SVPBs originating near or even
within the sino-atrial (SA) node (Geiger and Goerner, 1945).
Another mechanism that could account for fragmentation would
be modulated sinus node parasystole (Jalife et al., 1986), an
arrhythmia in which two pacemaker sites in the SA area show
bidirectional coupling and appear to “compete” for control of
the heartbeat. Under certain parameter regimes, such coupling
may induce a variety of alternating NN patterns (Jalife et al.,
1986). The underlying electrophysiologic mechanisms to account
for fragmentation may also involve perturbations of internal
pacemaker “clocks” in the SA node (Lakatta et al., 2010). From
a pathophysiologic viewpoint, mechanisms related to altered
conduction and/or abnormal automaticity all reflect instabilities
in the parasympathetic-SA node-atrial network. Given this
substrate of instability, highly fragmented (whether erratic or
periodic) types of NN patterns may represent pre- or even pro-
arrhythmicmarkers. Our findings that fragmentation is increased
in the elderly and in those with established CAD support
this contention. Fragmentation would be of high interest if it
were a forerunner of arrhythmias such as atrial fibrillation or
other tachyarrhythmias in which the control network becomes
so unstable that sinus node function is overridden by ectopic
stimuli. Whether fragmentation is an independent risk marker
of cardiovascular mortality related to heart failure also remains
to be determined, as does any relationship to classical sick sinus
syndrome.

More generally, the findings here support a modification
in the standard classification of sinus rhythm into “phasic”
and “non-phasic” variants (Faulkner, 1930; Hirsch and Bishop,
1981; Fisch and Knoebel, 2000). The first category refers to the
oscillations in heart rate that are coherent with respiration and
are most marked in younger individuals at rest, during deep sleep
or with meditation (classic RSA). Non-phasic sinus arrhythmia,
a term that has largely disappeared from the clinical lexicon, has
been used to refer to a variety of sinus variants without this strict
periodicity, including erratic sinus rhythm, and usually connotes

abnormal sinus function (Stein et al., 2005). However, non-phasic
types of sinus arrhythmia may also occur as physiologic variants,
e.g., during exercise and recovery.

An alternative schema would be classify sinus rhythm into
phasic and non-phasic types, and then sub-divide non-phasic
into either physiologic due to short term trends but without
tight respiratory coupling and non-physiologic, i.e., fragmented
categories. However, we emphasize that fragmentation analysis
per se does not separate phasic and non-phasic variants into two
discrete bins. Rather, it quantifies, in a continuous way, the degree
to which fragmentation is present.

Heart rate fragmentation may account for some of the
abnormal patterns in Poincaré and other maps previously
reported (Woo et al., 1992; Brouwer et al., 1996; Huikuri et al.,
1996; Domitrovich and Stein, 2002; Stein et al., 2005, 2008;
Gladuli et al., 2011; Makowiec et al., 2015). Such maps contain
important information about the temporal structure of a time
series. However, they are difficult to quantify in a physiologically
interpretable way. Commonly employed metrics such as SD1,
SD2, and SD1/SD2, only measure linear properties of the data
that are also captured by time domain HRV measures such
as rMSSD and SDSD (Brennan et al., 2001). If heart rate
fragmentation is found to be one of the mechanisms underlying
such abnormal patterns, the metrics introduced here may help
identify, in a fully automated way, the time series associated with
certain types of anomalous Poincaré plots.

Other fragmentation-related indices may also prove useful.
Examples include the densities of: (i) “hard edges,” defined as
inflection points for which1NNi×1NNi+ 1 < 0; (ii) “soft edges,”
defined as 1NNi × 1NNi+ 1 = 0, where 1NNi 6= 1NNi+ 1; (iii)
“short segments,” defined as acceleration/deceleration segments
encapsulated between “hard edges” or “soft edges;” and (iv)
segments for which heart rate does not change. Additionally,
symbolic dynamical analysis of heart rate increment time series,
where words are analyzed in terms of the number of edges they
contain may also prove useful in this context.

Finally, the fragmentation indices have a number of attractive
features. First, these indices are independent of the mean
heart rate (Figure 4). The only exception is PAS, which is
not a general fragmentation index, but quantifies a particular
type of fragmentation (pattern of the type “ABAB,” where “A”
and “B” represent increments of opposite sign). In contrast,
traditional short-term time and frequency domain measures
showed highly significant negative associations with mean heart
rate, both in the group of healthy subjects and of those
with CAD. These results are in line with those reported in
other studies (Monfredi et al., 2014; Sacha, 2014). Second, by
construction, the fragmentation indices (including PAS) are also
independent of the amplitude of the time series. This feature is
due to the fact that accelerations/decelerations were defined as
increments/decrements in heart rate of anymagnitude. Thus, two
time series with fluctuation patterns that only differ in amplitude
(e.g., time series, ui and vi, for which ui/vi = c, where c is a
constant) will have exactly the same degree of fragmentation.
Future studies will be needed to explore whether the use of a
threshold > 0 in the definition of accelerations and decelerations
further increases the discriminatory power of these measures

Frontiers in Physiology | www.frontiersin.org 11 May 2017 | Volume 8 | Article 255

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Costa et al. Heart Rate Fragmentation

in HRV analyses. Third, the fragmentation indices are among
the measures least affected by nonstationarities. The reason
is that the operation of calculating the increment time series,
used to detect the inflection points (i.e., changes in heart rate
acceleration sign), detrends the data. Fourth, the fragmentation
indices can be computed using NN or RR interval time series.
Indeed the use of the latter did not impair the discriminatory
power of the fragmentation indices for the populations studied
here. This finding, if validated, may facilitate fully automated
implementations of the method. Future studies will also help
determine the effect of data length on the confidence intervals
of the fragmentation indices.

CONCLUSION

Analysis of short-term HRV is enhanced by a set of
computational tools that quantify the fragmentation of heartbeat
variability, defined by abrupt changes in the sign of HR
acceleration. In a Holter monitor database from healthy subjects,
the degree of fragmentation increased with the participants’ age.

Furthermore, fragmentation measures outperformed traditional
short-term measures of HRV in discriminating a group of
patients with CAD and from the healthy subjects. Fragmentation
of sinus rhythm cadence may support a new class of dynamical
biomarkers that probe the integrity of the regulatory network
comprising neuroautonomic, sinus node and atrial components.
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