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There is a need for affordable, widely deployable maternal-fetal ECG monitors to improve

maternal and fetal health during pregnancy and delivery. Based on the diffusion-based

channel selection, here we present the mathematical formalism and clinical validation

of an algorithm capable of accurate separation of maternal and fetal ECG from a

two channel signal acquired over maternal abdomen. The proposed algorithm is the

first algorithm, to the best of the authors’ knowledge, focusing on the fetal ECG

analysis based on two channel maternal abdominal ECG signal, and we apply it to

two publicly available databases, the PhysioNet non-invasive fECG database (adfecgdb)

and the 2013 PhysioNet/Computing in Cardiology Challenge (CinC2013), to validate the

algorithm. The state-of-the-art results are achieved when compared with other available

algorithms. Particularly, the F1 score for the R peak detection achieves 99.3% for the

adfecgdb and 87.93% for the CinC2013, and the mean absolute error for the estimated

R peak locations is 4.53 ms for the adfecgdb and 6.21 ms for the CinC2013. The method

has the potential to be applied to other fetal cardiogenic signals, including cardiac doppler

signals.

Keywords: de-shape short time Fourier transform, fetal electrocardiogram, maternal abdominal

electrocardiogram, nonlocal median, diffusion maps

1. INTRODUCTION

Fetal electrocardiogram (ECG) and the fetal heart rate (HR) provide enormous information about
fetal health. For example, the fetal distress monitoring (Jenkins, 1989) or the potential risk for fetal
hypoxia detection and alert by the ST analysis monitor (Belfort et al., 2015). Moreover, from clinical
studies and animal models, evidence is accumulating that perinatal brain injury originates in utero,
yet no means exist to detect its onset early, reliably and with simple, widely accessible means
(Anblagan et al., 2016). A harbinger of brain injury is the fetal inflammatory response (Hagberg
et al., 2015). There is an urgent need for early antenatal detection of fetal inflammatory response to
prevent or at least mitigate the developing perinatal brain injury. In adults and neonates, complex
mathematical features of heart rate fluctuations have proven promising as early diagnostic tools
(Bravi et al., 2013; Fairchild et al., 2014). For the fetal monitoring, our team addressed the challenge
by developing a series of biomarkers relying on non-invasively obtainable fetal HR. Our fetal
inflammatory index tracks inflammation along with the fetal plasma IL-6 temporal profile in a fetal
sheep model of subclinical chorioamnionitis (Durosier et al., 2015). We also derived a set of fetal
HR features that is specific to brain or gut inflammation (Liu et al., 2016). Such systemic and organ-
specific tracking of inflammation via fetal HR is possible due to the brain-innate immune system

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00277
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00277&domain=pdf&date_stamp=2017-05-16
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:mfrasch@uw.edu
mailto:hauwu@math.toronto.edu
https://doi.org/10.3389/fphys.2017.00277
http://journal.frontiersin.org/article/10.3389/fphys.2017.00277/abstract
http://loop.frontiersin.org/people/425362/overview
http://loop.frontiersin.org/people/43205/overview
http://loop.frontiersin.org/people/181600/overview


Li et al. Two Channel fECG via Diffusion

communication reflected in the fetal HR fluctuations, commonly
referred to as the cholinergic anti-inflammatory pathway
(Fairchild et al., 2011; Olofsson et al., 2012; Garzoni et al., 2013).

In spite of its broad usefulness in the fetal health, it is fair to
state that in the fetal HR monitoring realm, the technological
progress has been coming more gradually. This has been not
due to the plethora of studies attempting and testing various
approaches, but, rather, due to the intrinsic limitations of the
currently used fetal HR monitoring technology. This technology
is outdated, as it deploys the traditionally set low sampling rate
of heart rate or ECG signal. In animal model and human cohorts,
we showed that such sampling rate is bound to miss the faster
temporal fluctuations of vagal modulations of fetal HR variability
and leads to inaccuracies in detection of early fetal acidemia
(Durosier et al., 2014; Li et al., 2015). A sampling rate of the
ECG signal around 1,000 Hz is required to capture these vagal
influences and this is the commonly used sampling rate for
the postnatal studies and our above-cited studies on the fetal
inflammatory index.

Postnatal clinical studies are typically based on multi-lead
ECG recordings which, even in newborns, and certainly in adults,
poses no technical challenge to attach and record from. In fetuses,
however, this is not the case. Since the fetal cardiac electric field
strength is order of magnitude weaker than maternal ECG’s, and
the lack of clinical motivation in higher quality fetal HR data,
little development had been done to focus on fetal ECG (fECG)
signal in the clinical monitoring until today, except the Doppler-
based fetal HR extraction techniques that dominate the market.
The Doppler-based fetal HR extraction techniques, however,
suffer from low fetal HR sampling rates, largely due to the auto-
correlation algorithms deployed in the devices (Durosier et al.,
2014). Transabdominal ECG (aECG) machines overcome this
limitation by capturing the actual cardiac electric field and have
returned to the market during the last decade. However, their
arrival has been slower than we would have hoped. Perhaps this
is in part due to the general acceptance speed of new technology
in medicine (related to regulatory and safety testing as well as
the specific cultures), due to the high cost for each device to
upgrade a hospital’s delivery unit, or, more likely, the technical
limitation of the fetal ECG extraction from the aECG signals.
To make the technology of high quality and low-cost fetal ECG
widely accessible, we need algorithms for fetal ECG extraction
from easily deployable aECG devices. We refer the readers to
the up-to-date guidance (Behar et al., 2016) for more information
about the non-invasive fetal ECG extraction and analysis.

The current study addresses this challenge by proposing
an algorithm capable of working with only two composite
(maternal and fetal) aECG channels to derive the fetal signal
from it. It is based on the currently developed single-lead
fECG algorithm based on the modern time-frequency analysis
and manifold learning technique (Su and Wu, 2017) and a
novel proposed diffusion-based channel selection criteria. All
the proposed methods have rigorous mathematical backups, and
numerically they can be efficiently implemented to handle long
signal. We call the proposed algorithm SAVER, which stands
for Smart AdaptiVe Ecg Recognition. To validate SAVER, we
report the analysis results of two publicly available databases,

and compare the algorithm with other available algorithms in the
literature.

The paper is organized in the following way. In Section 2, we
detail our proposed algorithm, describe the algorithms we will
compare, and describe the databases we validate the algorithm.
The results are shown in Section 3, and the discussions with the
future works are provided in Section 4. The paper closes with
the conclusion shown in Section 5. The necessary theoretical
background is provided in SAVER Section SI.1 in appendix,
particularly the diffusion-based channel selection criteria. We
refer the readers to Su and Wu (2017) for the details of the de-
shape short time Fourier transform (dsSTFT), beat tracking and
the nonlocal median.

2. METHODS

2.1. Two-Lead fECG Algorithm – SAVER
We now describe the proposed two-channel fECG algorithm,
which the authors coined as SAVER. The overall algorithm is
illustrated in Figure 1.

Denote two simultaneously recorded aECG signals as
x0, y0 ∈ R

N with the sampling rate ξ0Hz over the interval from
the 0-th second to the N/ξ0-th second. If the signal is sampled
more slowly than 1,000 Hz, to enhance the R peak detection
and the the nonlocal median (Su and Wu, 2017), the signal is
upsampled to 1,000Hz (Laguna and Sörnmo, 2000). We use the
same notations to denote the upsampled signal.

Step 0: pre-processing

To suppress the noise, the signal is low-pass filtered below 100
Hz. Then, subtract the estimated trend from x0, y0, where the
trends are estimated using median filter with window length
LMF > 0 s. If needed, the power-line interference is suppressed
by two notch-filters at 50 and 60 Hz, since the origin of the
tested database in this paper is unknown (if the resource of the
database is known, the notch-filter will be designed according
to the power system of that region). Denote the pre-processed
signal as x and y. Take a discrete finite subset I ⊂ (−1, 1].
Define zθ = θx +

√
1− θ2y, where θ ∈ I; that is, zθ is a linear

combination of two aECG signals. This linear combination could
be viewed as a generalization of the augmentation technique
considered in Andreotti et al. (2014, Section 2.3.3).

Step 1: maternal ECG estimation

We iterate the dsSTFT and nonlocal median algorithms proposed
in Su and Wu (2017) to decompose the maECG from each linear
combination in {zθ }θ∈I . The algorithm is summarized below. For
each θ we run the following three sub-steps.

1. (step 1-1) Apply the dsSTFT to zθ and extract the dominant
curve in the dsSTFT (Su and Wu, 2017, Section 3.1.2), which
represents the estimated maternal IHR.

2. (step 1-2) Compute the polarity of zθ , where the polarity is
either positive or negative. If the polarity of zθ is negative,
multiply zθ by −1; that is, flip the sign of zθ . We use the same
notation zθ to denote the polarity-corrected ECG signal. With
the estimated maternal IHR and the polarity-corrected ECG
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FIGURE 1 | The flow chart of the proposed two-channel fECG algorithm, SAVER. The x-axis of all figures are of the unit second. The data is the a2 recording

from the database used in the 2013 PhysioNet/Computing in Cardiology Challenge, and channel 1 and channel 4 are shown in this illustration. Only three linear

combinations are shown for the illustration purpose. The signal quality index for the channel selection is shown on the third block.
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signal, apply the beat tracking algorithm (Su and Wu, 2017,
Section 3.1.3) to zθ to compute the locations of maternal R-
peaks. Denote the timestamps of estimated maternal R peaks
as rmθ = (rmθ ,1, . . . , r

m
θ ,kθ ,m

), where kθ ,m ∈ N is the number of

estimated maternal R peaks.
3. (step 1-3) Adjust the estimated maternal R-peak locations by

searching the maximum of zθ over a small window around rmθ .
We use the same notation rmθ to denote the adjusted estimated
maternal R-peak locations. Apply the nonlocal median (Su
and Wu, 2017, Section 3.1.4) to estimate the maECG in
zθ based on the estimated R-peak locations rmθ . Denote the
estimated maECG as z̃θ ,m.

Step 2: channel selection

For each linear combination in {zθ }θ∈I , with the estimated
maECG, we obtain a rough fECG by a simple subtraction:

z̃θ ,f : = zθ − z̃θ ,m. (2.1)

Denote {z̃θ ,f }θ∈I to be the set of rough fECG signals estimated
from Step 1. We apply the lag map and the diffusion map (DM)
to each rough fECG in {z̃θ ,f }θ∈I and select the optimal linear
combination by the following procedure. See Section SI.1 in the
Appendix for the theoretical background of this approach.

For each rough fECG, say z̃θ ,f , we evaluate the signal quality
index (SQI) for the channel selection purpose in the following
way. Apply the L-step lag map to embed the interval [2,TCS + 2]
seconds of z̃θ ,f into R

L, where TCS > 0 is chosen by the user
and 2 is chosen to avoid the boundary effect associated with the
window in the dsSTFT approach. Here TCS is chosen to be short
enough to guarantee the computational efficiency and to avoid
the possibility non-stationarity inherited in the fECG signal, and
long enough to capture the periodicity of the fECG. Denote the
embedded point cloud as Xθ ,f ⊂ R

L. Apply the 1-normalization
DM to Xθ ,f , where the bandwidth of the kernel is chosen in the
following way suggested in Keller et al. (2010). We first set ǫ0
to be the smallest value such that each data point has at least
one neighbor within the distance ǫ0. Then we set the bandwidth
to be 2ǫ0. Denote φθ ,1 be the first nontrivial eigenvector of the
corresponding graph Laplacian. Compute the power spectrum of
φθ ,1, denoted as |φ̂θ ,1|2. Denote ξθ ,1, ξθ ,2, . . . , ξθ ,nCS > 0, where
nCS ∈ N is the number of peaks chosen by the user, to be the
frequencies associated with the highest nCS peaks in |φ̂θ ,1|2. Fix
LCS > 0 and denote Jθ : = ∪nCS

j=1[ξθ ,i − LCS, ξθ ,i + LCS]. The SQI

for the channel selection purpose is thus defined as

Sθ =
∫
[0,ξ0/4)∩Jθ

|φ̂θ ,1(ξ )|2dξ
∫
[0,ξ0/2)\Jθ

|φ̂θ ,1(ξ )|2dξ
. (2.2)

Under the assumption that the better the quality of the rough
fECG is, the closer the embedded point cloud is to the one-
dimensional circle, we know that the higher the SQI, the better
the rough fECG is. More precisely, if the embedded point
cloud is close to the one-dimensional circle, the first non-trivial
eigenvector should behave like an oscillatory function. With the
designed SQI, we could choose the optimal rough fECG as the
one with the highest SQI. Denote z̃∗

f
to be the optimal rough

fECG with the highest signal quality index we can obtain from
the given two channels.

Step 3: fetal R peaks estimation

With the rough fECG z̃∗
f
obtained from the optimal linear

combination, we finish the algorithm by estimating the fetal R
peaks and fECG by again applying the dsSTFT and the nonlocal
median algorithm. This part of the algorithm is essentially the
same as that for the maternal ECG estimation, and we repeat the
three sub-steps below for the sake of completeness.

1. (step 3-1) Apply the dsSTFT to z̃∗
f
and extract the dominant

curve in the dsSTFT, which represents the estimated fetal IHR.
2. (step 3-2) Compute the polarity of z̃∗

f
. If the polarity of z̃∗

f
is

negative, multiply z̃∗
f
by −1, and use the same notation z∗

f
to

denote the polarity-corrected ECG signal. With the estimated
fetal IHR and the polarity-corrected ECG signal, apply the beat
tracking algorithm to z̃∗

f
to compute the locations of maternal

R-peaks. Denote the timestamps of estimated fetal R peaks as

rf = (r
f
1, . . . , r

f

kf
), where kf ∈ N is the number of estimated

fetal R peaks.
3. (step 3-3) Adjust the estimated fetal R-peak locations by

searching the maximum of z̃∗
f
over a small window around rf ,

and use the same notation rf to denote the adjusted estimated
fetal R-peak locations. Finally, output the fetal R peaks.

Remark 2.1. We mention that by applying the nonlocal median
again based on rf , we could denoise the optimal rough fECG
waveform z̃∗

f
and obtain a clean fetal waveform. However, since

the result is similar to that shown in Su and Wu (2017), and
the focus of this paper is the fetal R peak detection, we skip the
details of the fECG reconstruction in this study, and leave the
fetal waveform reconstruction in the future work.

2.2. Comparison with Benchmark
Algorithms
There have been several algorithms proposed in the field suitable
for analyzing fECG from multiple channel aECG signals. Note
that the two-channel aECG signals fall in the category of the
blind source separation (BSS) (De Lathauwer et al., 2000; Akhbari
et al., 2013; Di Maria et al., 2014; Varanini et al., 2014) and
its variations (Sameni et al., 2008; Haghpanahi and Borkholder,
2013; Akbari et al., 2015). It is well known that usually we need
more than 4 channels to have a reasonable result (Andreotti et al.,
2016). Due to the stationarity assumption of the ICA, the input
signal should be truncated to be short enough, like 30 s long. An
important step in the BSS approach is channel selection, which
is critical to identify the decomposed channel that contains the
maternal or fetal ECG. Although we only have two channels,
for the comparison purpose, we still show the results of the BSS
approaches, including the joint approximation diagonalization of
eigen-matrices (JADE) for the independent component analysis
(ICA) and the principal component analysis (PCA). Since there
are only two decomposed signals, we do not carry out the channel
selection algorithms proposed in, for example, Andreotti et al.
(2014); instead, we take the ground truth annotation to select the
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optimal channel that is more likely to be the fECG, and report
the detected R peaks from this detected channel. Note that we do
not take the ground truth annotation into account in any other
algorithms considered in this paper except this BSS approach,
due to the limited number of channels. We apply the publicly
available codes provided in http://www.fecgsyn.com, and call the
PCA method BSSPCA and the ICA method BSSICA following the
terminologies suggested in Andreotti et al. (2016).

Another set of algorithms allow us to take only single mECG
signal, but need to simultaneously acquire the maternal thoracic-
lead ECG signal (tECG). Examples include adaptive methods
(AM) based on the least mean square (LMS) (Widrow et al.,
1975) or the recursive least square (RLS) (Behar et al., 2014a)
and its variations, like the echo state neural network (ESN)
(Behar et al., 2014a), blind adaptive filtering (Graupe et al.,
2008), extended Kalman filter (EKF) (Sameni, 2008; Niknazar
et al., 2013; Andreotti et al., 2014), etc. In these algorithms, the
maternal thoracic ECG signal (mtECG) is needed and is viewed as
the reference channel. The mtECG contains the maternal cardiac
activity information that we want to remove from the aECG.
Based on the assumption that the mtECG and the maternal
cardiac activity in the aECG are linearly related, the LMS or
RLS helps to extract the fECG from the aECG by removing
the maternal cardiac activity in the aECG. If the relationship
between the tECG and the maternal cardiac activity in the aECG
is nonlinear, then ESN could help. However, it is not always the
case that we could get the mtECG, particularly in our setup, so
these algorithms could not be directly applied for our purpose.
Since it has been shown in Su and Wu (2017) that by combining
the dsSTFT and nonlocal median, we are able to estimate the
maECG signal accurately, we could thus view the estimated
maECG signal as the reference. This consideration can also be
found in, for example, Rodrigues (2014). For the LMS or ESN,
we take the publicly available code from http://www.fecgsyn.com,
and call the LMS method AMLMS and the ESN method AMESN

following the terminologies suggested in Andreotti et al. (2016).
We thus consider the following combinations of the proposed
two channel fECG algorithm and the LMS or ESN. Precisely, in
our proposed algorithm, we replace the direct subtraction (2.1)
in Step 2 by the LMS or ESN, by taking the estimated maECG
as the reference channel to get the rough fECG. We call the
combined algorithm ds-AMLMS or ds-AMESN. Note that under
the assumption that the nonlocal median does a good job to
recover the maECG, the reference channel should be the same as,
or linearly related to, the maternal cardiac activity in the aECG,
so the LMS could be applied. The same idea could be applied
to other algorithms, like RLS, but to keep the discussion simple,
we focus on the above-mentioned two typical algorithms, LMS
and ESN.

We could also consider the EKF algorithm. In the EKF
algorithm, the information of the maternal R peak location is
needed to cancel the maternal cardiac activity. Again, since it has
been shown that by combining the dsSTFT and nonlocal median,
we are able to estimate the maternal R peaks location accurately
(Su and Wu, 2017), we could use the estimated maternal R
peaks as the input to the EKF algorithm, and replace the direct
subtraction (2.1) in Step 2 by the EKF. For the EKF, we take the

publicly available code from http://www.fecgsyn.com, and call
the EKF method TSEKF following the terminologies suggested
in Andreotti et al. (2016). The combined algorithm is called the
ds-TSEKF.

To have a complete comparison, we also consider the template
subtraction (TS) algorithm, which is suitable for the single lead
mECG signal, and replace the direct subtraction (2.1) in Step 2
by the TS algorithm. In this work, the TS method we apply is the
singular value decomposition approach proposed in Kanjilal et al.
(1997) and nominated in Behar et al. (2014b) and Andreotti et al.
(2016) as TSPCA. For TSPCA, we take the publicly available code
from http://www.fecgsyn.com. We call the combined algorithm
ds-TSPCA. Other TSmethods could be combined in the same way
and we do not report the results to simplify the discussion.

We follow the suggested optimized parameters accompanying
the code without any modification; for example, the input signal
to the AM algorithms, like LMS or ESN, is resampled to 250 Hz1,
the input signal to the TSEKF and TSPCA algorithms is resampled
to 1000Hz, and we do not change the suggested initialization of
the TSEKF code.

2.3. Materials
We validate the proposed two-channel algorithm on two publicly
available databases of aECG signals.

The first database is the PhysioNet non-invasive fECG
database (adfecgdb), where the aECG signals with the annotation
provided by experts are publicly available https://www.physionet.
org/physiobank/database/adfecgdb/ (Goldberger et al., 2000;
Kotas et al., 2010). There are five pregnant women between
38 and 40 weeks of pregnancy in this database. Each has 4
aECG channels and one direct fECG signal recorded from the
Komporel system (ITAM Institute, Zabrze, Poland)2. The four
abdominal leads are placed around the navel, a reference lead
is placed above the pubic symphysis, and a common mode
reference electrode with active-ground signal is placed on the
left leg. See Figure 2 for an illustration of the leads placement.
The signal lasts for 5 min and is sampled at a fixed rate
1,000 Hz with the 16 bit resolution. The R peak annotation is
determined from the direct fECG recorded from the fetal scalp
lead.

The second database is the 2013 PhysioNet/Computing
in Cardiology Challenge (https://physionet.org/challenge/2013/#
data-sets), abbreviated as CinC2013. We focus on the set A
composed of 75 recordings for an assessment of our proposed
algorithm since it is the only one with the provided the R peak
annotation with reference to a direct FECG signal, acquired from
a fetal scalp electrode. Each recording includes four noninvasive
mECG channels that were obtained from multiple sources using
a variety of instrumentations with differing frequency response,
resolution, and configurations. Although they are from different
resources, all recordings are resampled at the sampling rate 1,000
Hz and last for 1 min. There is no publicly available information

1We mention that the publicly available code for AM algorithms is optimized

for the 250 Hz signal, and it is likely that the results would be improved if the

corresponding parameters had been optimized for 1,000Hz.
2http://www.itam.zabrze.pl/developments-english-version-233/665-komporel.
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FIGURE 2 | The lead placement for the adfecgdb.

about where the leads are placed on the maternal abdomen.
Note that some recordings come from the adfecgdb database,
but no detail is available publicly. More details about these two
databases can be found on the website. We follow the suggestion
in Andreotti et al. (2014) to disregard the recording a54 since
it was discarded by the Challenge’s organizers, and focus on the
remaining 74 recordings.

2.4. Evaluation Metrics
In the whole analysis, the R peak detection result is evaluated
by beat-to-beat comparisons between the detected beats and
the provided annotations. We follow the criterion in Guerrero-
Martinez et al. (2006) and choose a matching window of
50 ms. Denote TP, FP, and FN to be true positive rate,
false positive rate, and false negative rate, where TP means
correctly detected peaks, FP means nonexistent peaks that were
falsely detected, and FN means existing peaks that were not
detected.

We report the sensitivity (SE) and the positive predictive value
(PPV) defined as

SE: = TP

TP + FN
, PPV = TP

TP + FP
, (2.3)

and the F1 score, which is the harmonic mean of PPV and SE,

F1: =
2TP

2TP + FN + FP
. (2.4)

We also report the mean absolute error (MAE) of the estimated
R peak locations. We follow the suggestion in Andreotti et al.
(2016) to report the MAE only on true positive annotations to
make the evaluation independent of the detection accuracy. Thus,
the MAE is defined as

MAE: = 1

nTP

nTP∑

j= 1

|rfi − r̃
f
i |, (2.5)

where nTP is the number of true positive annotations, and r̃
f
i and

r
f
i are the temporal location of the i-th true positive reference R-
peak and temporal location of the i-th true positive detected R
peak.

For each database, we will report two sets of statistics. First,
for each subject, we record the best F1 result among all pairs
of available channels, denoted as F1(1) and report the mean
and median of the F1(1) of all subjects, and the corresponding
summary statistics of the MAE, denoted as MAE(1). To see how
stable the algorithm is, we also record the median F1 result
among all pairs of available channels, called F1(0.5), and report
the mean and median of the F1(0.5) of all subjects, as well as
the corresponding summary statistics of the MAE, denoted as
MAE(0.5). Second, to evaluate the lead placement issue, for each
pair of available channels, we report the the mean and median of
the F1 of all subjects, and the corresponding summary statistics of
the MAE. To avoid the boundary effect inevitable in the dsSTFT
algorithm due to the window length, the first and last 2 s in every
recording are not evaluated. The notation a ± b indicates the
mean a with the standard deviation b.

2.5. Parameters
For a fair comparison and the reproducibility purposes, here we
summarize the parameters for SAVER. The parameters are fixed
for all signals throughout the paper unless otherwise stated. For
the linear combination of two channels, we fix I = {−1 +
k/6}12

k = 1
. The window length LMF of the median filter for the

baseline wandering removal is chosen to be 0.1 s. For the dsSTFT,
the beat tracking, and the nonlocal median, the parameters are
set to be the same as those reported in Su and Wu (2017).

For the channel selection, we set the lag to L = 7 for the lag
map; we choose the Gaussian kernel and α = 1 normalization
for the DM; we choose TCS = 40, nCS = 6 and LCS = 0.1375
Hz for the adfecgdb database, and TCS = 10, nCS = 6 and
LCS = 0.25 Hz for the CinC database. We mention that the
above parameters are chosen in the ad-hoc fashion without any
optimization pursue. Those parameters could be optimized based
on the application field and the environment.

The algorithms are tested on MacBook Air (13-inch,
Mid 2013) with Processor 1.3GHz Intel Core i5, Memory 4
GB1600MHz DDR3, Mac OS Sierra (Version 10.12.2), and
Matlab R2015b without implementing the parallel computation.

3. RESULTS

For the adfecgdb database, the direct fECG measurement was
lost between 187 and 191 s and between 203 and 211 s in the
r10 record, and these two segments were discarded in the
evaluation. The evaluation results of our proposed algorithm for
each combination of two channels out of four available channels
of all subjects in the adfecgdb database are shown in Table 1 for a
clear comparison purpose. Except the combination of Channel
2 and Channel 3 in r01 and r08, all the other combinations
have the F1 consistently greater than 94%. For the MAE, the
result is always smaller than 9ms except the combination of
Channel 2 and Channel 3 in r08. Table 2 shows the comparison
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TABLE 1 | The results of SAVER: F1 score, mean absolute error (MAE),

positive predictive value (PPV), and sensitivity (SE) of all pairs of two

channels out of four available channels and all subjects over the whole 5

min signals in the adfecgdb database.

Subject Channel F1 (%) MAE (ms) PPV (%) SE (%)

r01 1 and 2 99.45 1.35 99.22 99.69

1 and 3 99.69 1.98 99.53 99.84

1 and 4 99.37 2.44 99.22 99.53

2 and 3 86.94 4.44 85.87 88.03

2 and 4 98.74 2.13 98.59 98.9

3 and 4 99.21 2.17 99.06 99.37

r04 1 and 2 97.68 8.08 97.44 97.91

1 and 3 97.52 8.18 97.28 97.75

1 and 4 98.72 7.42 98.56 98.88

2 and 3 98.4 7.78 98.24 98.56

2 and 4 98.4 8.4 98.09 98.72

3 and 4 98.72 7.42 98.56 98.88

r07 1 and 2 98.38 8.68 98.23 98.54

1 and 3 99.03 7.47 99.03 99.03

1 and 4 99.84 8.06 99.84 99.84

2 and 3 99.11 8.55 99.03 99.19

2 and 4 99.27 8.59 99.19 99.35

3 and 4 99.84 8.44 99.84 99.84

r08 1 and 2 97.6 2.18 96.78 98.44

1 and 3 99.3 2.22 98.92 99.69

1 and 4 99.69 1.87 99.38 100

2 and 3 28.55 10.63 34.83 24.18

2 and 4 97.05 2.01 96.46 97.66

3 and 4 94.36 4.87 93.43 95.32

r10 1 and 2 98.88 2.85 98.41 99.36

1 and 3 98.88 2.85 98.41 99.36

1 and 4 98.88 2.85 98.41 99.36

2 and 3 98 3.37 97.46 98.55

2 and 4 94.67 4.51 93.7 95.66

3 and 4 94.67 4.51 93.7 95.66

of the proposed method with other available algorithms. The
F1(1) and F1(0.5) of all 6 pairs for each subject are recorded,
and the summary statistics of all subjects are shown. It is clear
that SAVER is consistently better than the other algorithms.
The average running time is 141.55 s for SAVER, 194.44 s for
the ds-AMLMS, 589.83 s for the ds-AMESN, 308.93 s for ds-
TSEKF, 78.30 s for ds-TSPCA, 10.01 s for BSSICA, and 10.98 s for
BSSPCA.

For the CinC2013 database, in Table 3 we compare SAVER
with the other available algorithms in the CinC2013 database.
The F1(1) of all recordings of our method is 92.99 ± 16.0% and
the corresponding MAE(1) is 5.38 ± 4.52 ms, which are both
better than the other compared methods. The median F1(0.5) of
all recordings of our method is 85.44±22.42% and the MAE(0.5)
of our method is 6.54 ± 4.92 ms, which are both better than the
best result determined by other methods. It should be noted that

TABLE 2 | The summary statistics of different methods’ performance,

including F1 and mean absolute error (MAE), evaluated in the adfecgdb

database.

Method Mean Std Q1 Median Q3

SAVER 99.36 0.52 98.84 99.69 99.73

ds-AMLMS 99.55 0.74 99.44 99.84 99.88

F1(1) (%) ds-AMESN 99.00 1.21 98.36 99.36 99.88

ds-TSEKF 96.85 3.71 95.00 98.61 99.01

ds-TSPCA 98.52 1.55 97.57 99.36 99.55

Over 6 pairs BSSICA 39.34 34.90 17.30 18.64 58.85

BSSPCA 50.14 41.98 18.54 22.08 95.11

SAVER 4.44 3.05 1.96 2.85 7.58

ds-AMLMS 4.42 3.02 2.12 2.49 7.64

MAE(1) (ms) ds-AMESN 4.85 2.68 2.61 4.18 7.62

ds-TSEKF 12.98 4.19 8.65 13.61 16.92

ds-TSPCA 4.53 2.82 2.46 2.52 7.60

Over 6 pairs BSSICA 16.54 10.49 6.33 23.41 24.43

BSSPCA 14.24 10.50 3.51 16.32 24.01

SAVER 98.53 0.79 98.13 98.44 99.22

ds-AMLMS 98.46 1.69 98.01 98.91 99.40

F1(0.5) (%) ds-AMESN 96.66 3.99 95.03 98.41 99.00

ds-TSEKF 94.51 6.23 90.14 97.98 98.67

ds-TSPCA 95.33 2.83 93.89 96.15 97.02

Over 6 pairs BSSICA 21.95 7.54 16.54 17.81 28.11

BSSPCA 21.41 8.40 17.55 17.90 22.69

SAVER 4.78 3.16 2.19 3.11 8.07

ds-AMLMS 5.09 2.57 3.18 3.93 7.80

MAE(0.5) (ms) ds-AMESN 5.64 2.30 3.74 4.94 7.97

ds-TSEKF 13.02 4.04 8.96 13.17 16.97

ds-TSPCA 5.35 2.03 3.90 4.04 7.43

Over 6 pairs BSSICA 21.58 5.64 16.48 24.39 25.76

BSSPCA 20.52 4.94 17.74 19.60 25.18

The F1 (1) result from the six pairs of two channels is recorded for each subject, and the

summary statistics of all subjects is reported in the top half rows; the F1 (0.5) result from

the six pairs of two channels is recorded for each subject, and the summary statistics of

all subjects are reported from the bottom half rows. For the adaptive method (AM) part of

ds-AMLMS or ds-AMESN, the TSEKF part of ds-TSEKF, and the TSPCA part of ds-TSPCA, we

take the publicly available code from http://www.fecgsyn.com, and follow the suggested

optimized parameters accompanying the code without any modification; for example, the

input signal to the AM algorithms is resampled to 250 Hz, the input signal to the TSEKF

and TSPCA algorithms is resampled to 1,000 Hz, and we do not change the suggested

initialization of the TSEKF code. std, standard deviation; Q1, the first quartile; Q3, the third

quartile.

the median of F1(0.5) over 6 pairs of our proposed algorithm is
still as high as 96.32%, while other methods decline dramatically
to less than 60%3. This result suggests the stability of the proposed

3It is suggested in Behar et al. (2014b) that the TSPCA algorithm performs better

if we applied the 10 Hz high pass filter to remove the baseline wandering before

applying the TSPCA algorithm. If we replace the median filter in Step 0 by the

10 Hz high pass filter to remove the baseline wandering, over all subjects except

a54, we have F1(1) = 93.19 ± 14.19%, MAE(1)= 5.16 ± 3.85 ms, F1(0.5) =
74.79±27.74%, andMAE(0.5)= 9.26±6.34ms. Note that while the results of F1(1)

and MAE(1) are both better than all algorithms under comparison, the results of

F1(0.5) and MAE(0.5) are worse. This discrepancy might be caused by the carried

out optimization in Behar et al. (2014b). Since the baseline wandering algorithm

is out of the scope of this paper, in all tables we only report the results with the

median filter as mentioned in Step 0.
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TABLE 3 | The summary statistics of different methods’ performance,

including F1 and mean absolute error (MAE), evaluated in the CinC2013

database.

Method Mean Std Q1 Median Q3

SAVER 92.99 16.00 95.39 99.21 100

ds-AMLMS 72.77 27.52 51.56 85.50 98.92

F1(1) (%) ds-AMESN 72.04 27.61 50.88 82.54 99.20

ds-TSEKF 86.67 23.70 89.66 99.24 100

ds-TSPCA 91.72 16.84 94.20 99.28 100

Over 6 pairs BSSICA 36.13 23.74 20.73 26.11 43.81

BSSPCA 35.35 23.89 20.16 24.00 37.97

SAVER 5.38 4.52 1.96 4.03 7.82

ds-AMLMS 7.06 6.13 2.93 5.36 7.62

MAE(1) (ms) ds-AMESN 6.18 4.59 2.86 5.54 7.42

ds-TSEKF 8.96 6.43 3.88 6.75 12.25

ds-TSPCA 5.81 4.36 2.73 4.48 7.32

Over 6 pairs BSSICA 15.22 7.18 8.42 15.82 21.93

BSSPCA 16.04 7.19 9.59 18.00 21.75

SAVER 85.43 22.42 83.27 96.32 99.57

ds-AMLMS 56.34 30.51 25.69 51.55 90.38

F1(0.5) (%) ds-AMESN 58.22 30.85 36.69 54.55 89.54

ds-TSEKF 73.21 29.27 44.51 88.23 99.15

ds-TSPCA 79.70 25.74 63.56 93.42 99.59

Over 6 pairs BSSICA 26.67 20.52 16.88 19.51 24.74

BSSPCA 26.59 21.31 15.96 19.24 25.19

SAVER 6.54 4.92 2.55 5.70 5.53

ds-AMLMS 11.63 8.03 5.70 8.50 18.66

MAE(0.5) (ms) ds-AMESN 9.85 6.57 4.67 7.88 13.96

ds-TSEKF 12.18 7.34 6.22 9.93 17.86

ds-TSPCA 9.14 7.26 3.71 6.94 13.16

Over 6 pairs BSSICA 20.44 6.46 16.80 22.17 24.97

BSSPCA 20.59 7.07 15.64 22.61 25.24

The subject a54 is removed from the datasets. The F1 (1) result from the six pairs of

two channels is recorded for each subject, and the summary statistics of all subjects

is reported in the top half rows; the F1 (0.5) result from the six pairs of two channels is

recorded for each subject, and the summary statistics of all subjects are reported from

the bottom half rows. For the adaptive method (AM) part of ds-AMLMS or ds-AMESN, the

TSEKF part of ds-TSEKF, and the TSPCA part of ds-TSPCA, we take the publicly available

code from http://www.fecgsyn.com, and follow the suggested optimized parameters

accompanying the code without any modification; for example, the input signal to the AM

algorithms is resampled to 250Hz, the input signal to the TSEKF and TSPCA algorithms is

resampled to 1,000Hz, and we do not change the suggested initialization of the TSEKF

code. std, standard deviation; Q1, the first quartile; Q3, the third quartile.

method4. The average running time is 20.29 s for SAVER, 27.26
s for the ds-AMLMS, 100.35 s for the ds-AMESN, 75.83 s for
ds-TSEKF, 17.52 s for ds-TSPCA, 3.29 s for BSSICA, and 3.20 s for
BSSPCA.

To further evaluate the influence of the lead placement, or
to answer if we could design the best lead placement scheme

4It is suggested in Behar et al. (2014b, p. 1569) to remove six more recordings, a33,

a38, a47, a52, a71, and a74, in addition to a54, because of some inaccurate reference

annotations identified by the visual inspection of authors in Behar et al. (2014b).

The F1(1) of all recordings of our method is 94.80 ± 13.17% and the MAE(1) is

5.04 ± 3.88 ms, and the F1(0.5) of all recordings of our method is 87.04± 21.27%

and the MAE(0.5) of our method is 6.29± 4.56 ms.

for the proposed two-channel algorithm, we report the summary
statistics of all pairs of two channels for the adfecgdb database in
Table 4 and the CinC2013 database in Table 5. It is interesting
to see that for the adfecgdb database, except for the combination
of channel 2 and channel 3, the mean F1 accuracy is great than
97%. The outlier of the combination of channel 2 and channel 3
comes from the fact that the fECG is strong in case r08, which
confuses the channel selection step. As a result, SAVER extracts
the maternal ECG as the fECG, which leads to a wrong fECG
estimation5. While determining the role of each component is a
common issue for the fetal-maternal ECG separation algorithms
and commonly we need more information to handle it, we leave
this open problem for the future work.

Compared with the result of the adfecgdb database, the
performance of SAVER in the CinC2013 database is not uniform
cross different combinations of channels. Note that the lead
placement scheme is unknown for the CinC2013 database, so
it is not possible to conclude which pair of channels is the
best. However, if we assume that the lead placement scheme
for all recordings in the CinC2013 database is the same as the
lead placement scheme shown in Figure 2, then the CinC2013
database results suggest that the best combination is channel 1
and channel 4; the F1 has the mean of 87.93% with the standard
deviation 22.64%, and the median 97.60% with the interquartile
range 6.92%; the MAE has the mean of 6.21 ms with the standard
deviation 6.03 ms, and the median 4.34 ms with the interquartile
range 5.62 ms6. Another finding deserves a discussion is that
unlike the adfecgdb database, we can see the discrepancy between
the best F1 out of the 6 pairs reported in Table 3 and the average
F1 of each pair reported in Table 5. This might suggest that the
lead system applied in the CinC2013 database is heterogenous
across the recordings.

4. DISCUSSION

The encouraging results of SAVER indicate the possibility to
design a “two-lead system” for the noninvasive, and long term
fECG monitoring purpose. To the best of our knowledge, less
is published about two aECG channels approach (for example,
in Rodrigues, 2014, the considered algorithm can be applied to
the two channel aECG), and our proposed method focuses on
this direction. The main innovation of our approach, compared
with other methods, is twofold. First, based on the geometry
of the inherited oscillatory structure of the cardiac activity, the
diffusion-based manifold learning technique is applied to do the

5If we are allowed to use the physiological information that both the fetus and the

mother are healthy so that the fetal IHR is on average higher than maternal IHR,

then we could correct this confusion by swapping the fetal IHR and maternal IHR.

This leads to the mean F1 of the combination of channel 2 and channel 3 93.44%

with the standard deviation 6.99% and the mean MAE 5.57 ms with the standard

deviation 2.41 ms, and the results of other combinations unchanged.
6If we remove a33, a38, a47, a52, a54, a71, and a74 from the CinC2013 database

(Behar et al., 2014b), for the combination of channel 1 and channel 4, the F1 has the

mean 89.81%with the standard deviation 20.84%, and themedian becomes 98.41%

with the interquartile range 5.10%; the MAE has the mean of 5.74 ms with the

standard deviation 5.33 ms, and the median 4.20 ms with the interquartile range

5.48 ms.
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TABLE 4 | The summary statistics of SAVER, including F1 and mean

absolute error (MAE), for six pairs of four available channels in the

adfecgdb database.

Channels Mean Std Q1 Median Q3

F1 (%) 1 and 2 98.40 0.79 97.66 98.38 99.02

1 and 3 98.88 0.82 98.54 99.03 99.40

1 and 4 99.30 0.49 98.84 99.37 99.73

2 and 3 82.20 30.41 72.34 98.00 98.58

2 and 4 97.63 1.85 96.46 98.4 98.88

3 and 4 97.36 2.63 94.59 98.72 99.37

MAE (ms) 1 and 2 4.63 3.47 1.98 2.85 8.23

1 and 3 4.54 3.02 2.16 2.85 7.64

1 and 4 4.53 2.96 2.30 2.85 7.58

2 and 3 6.95 3.00 4.17 7.78 9.07

2 and 4 5.13 3.23 2.10 4.51 8.45

3 and 4 5.48 2.49 3.93 4.87 7.67

std, standard deviation; Q1, the first quartile; Q3, the third quartile.

TABLE 5 | The summary statistics of SAVER, including F1 and mean

absolute error (MAE), for six pairs of four available channels in the

CinC2013 database.

Channels Mean Std Q1 Median Q3

F1 (%) 1 and 2 81.69 25.82 72.60 95.62 99.36

1 and 3 82.93 26.28 83.27 96.24 99.36

1 and 4 87.93 22.64 93.08 97.60 1

2 and 3 74.40 30.63 36.10 93.33 99.67

2 and 4 81.50 26.64 66.95 96.51 99.36

3 and 4 79.83 28.49 58.78 96.96 99.67

MAE (ms) 1 and 2 7.72 7.03 2.53 5.04 9.32

1 and 3 7.83 7.45 2.42 6.08 8.74

1 and 4 6.21 6.03 2.04 4.34 7.66

2 and 3 9.44 6.88 4.12 8.05 12.97

2 and 4 7.93 6.62 3.61 6.28 9.67

3 and 4 7.85 6.85 2.31 5.92 9.97

The subject a54 is removed from the datasets. std, standard deviation; Q1, the first

quartile; Q3, the third quartile.

channel section. While other channel selection criteria mainly
are based on the power spectral distribution, wave morphology
entropy, root mean square error, etc, to find the clearest and
most enhanced QRS complexes (Di Maria et al., 2014; Ghaffari
et al., 2015), our approach is different since we carefully examine
the nontrivial underlying geometric structure hosting the cardiac
activity by the DM and look for the linear combination that is
most like a simple closed curve. Second, we apply the modern
time-frequency analysis technique, the dsSTFT, and the beat
tracking algorithms detailed in Su and Wu (2017) to obtain
an accurate R peak locations, and the nonlocal median, to
better estimate the maternal ECG morphology and fetal ECG
morphology. Compared with other available algorithms, we use
more information hidden in the aECG, including decomposing
the non-sinusoidal oscillatory pattern from the time-varying
frequency, and the low dimensional parametrization of all

possible cardiac oscillations. We mention that an important
advantage of the approach in Su and Wu (2017) is the ability to
separate mECG and fECG with temporal overlap by the nonlocal
median. Furthermore, due to its nonlocal nature, it can directly
handle a long signal without dividing it into small fragments.
Notice that unlike the traditional AF-like methods, SAVER does
not cancel the maternal ECG in one channel by designing a filter
from another channel; instead, it directly cancels the maternal
ECG in a single linear combination, as is mentioned in Step 1.

Our results deserve a discussion and comparison with the
previous reported findings. For the adfecgdb database, our result
is overall compatible with, or better than, the state-of-art result
reported in the field. For example, if we choose the pair of channel
1 and channel 2, our result is better than the best channel result
based on the continuous wavelet transform based single-channel
algorithm (Table 5, Castillo et al., 2013). However, it is not a fair
comparison since the algorithm used in Castillo et al. (2013) is a
single-channel algorithm. On the other hand, if we compare with
the methods based on ICA on four channels (Table 1, Poian et al.,
2015), our result is compatible. The MAE, which is less reported
in the literature, is as small as 10 ms, which indicates the potential
of applying the SAVER to do the fetal heart rate variability (HRV)
analysis.

For the CinC2013 database, our result is compatible, or better
than, the reported results. At the first glance, it is not the case,
since by the ICA-based algorithms (Andreotti et al., 2014; Behar
et al., 2014b), the accuracy could be as high as have the mean
F1 = 96%, under the same setup that a detected R-peak was
labeled as TP if within 50 ms of a reference R-peak. However,
we mention that unlike SAVER, these algorithms are ICA-based
and four channels are simultaneously used. Specifically, in Behar
et al. (2014b, Table 3), among different combinations of different
algorithms, the algorithm FUSE-SMOOTH achieved the best
result – the mean F1 over all recordings is 96%, after removing
a33, a38, a47, a52, a54, a71, and a74; in Andreotti et al. (2014,
Table 1), the augmentation, the ICA, the template adaptation
or TSEKF, and other techniques are applied, and the result with
the mean F1 = 97.3% over all recordings with the standard
deviation 0.108 is reported based on the template adaptation,
after removing a54. Our proposed algorithm, on the other hand,
outperforms the algorithm based on four channels and the
BSSPCA, for example, Di Maria et al. (2014). In Di Maria et al.
(2014, Section 3.2), the accuracy of the proposed algorithm in
detecting the fetal heart beats gives the mean F1 = 89.8% over
all recordings, under the setup that a detected R-peak was labeled
as TP if within 100 ms of a reference R-peak and removing 9
recordings, including a29, a38, a54, a56, a33, a47, a52, a71, and
a74. Another novel method based on the channel selection over 4
channels followed by the sequential total variation denoising (Lee
and Lee, 2016,Table 5) leads to the accuracy with F1 = 89.9% and
the MAE = 9.3 ms7 under the setup that a detected R-peak was

7In a private communication, the authors confirmed that this F1 is the “overall F1,”

which is evaluated by collecting all beats from all recordings, and evaluate the F1
on all collected beats. If we follow the same procedure and remove a33, a38, a47,

a52, a54, a71, and a74, the overall F1 of SAVER for the combination of channel 1

and channel 4 is 89.77% and the MAE is 4.91 ms.
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labeled as TP if within 50 ms of a reference R-peak and removing
a33, a38, a47, a52, a54, a71, and a74. We emphasize that while
our algorithm does not outperform some of the above-mentioned
algorithms, based on two channels, SAVER leads to the MAE
as small as 6.21 ms in channel 1 and channel 4 combination in
the CinC2013 database, which again indicates the potential of
applying the SAVER to do the fetal HRV analysis.

As discussed above, theoretically, the chance is low that the
fetal cardiac axis orientation would be so much orthogonal
to the 2-dim affine subspace spanned by the two leads that
no fECG shape can be reconstructed. This is a big advantage
compared with the single-lead system, as the chance that the
fetal cardiac axis orientation is orthogonal to the 1-dim affine
subspace spanned by the single lead is much higher. Thus, while
there have been several successful algorithms for the one aECG
channel, like (Castillo et al., 2013; Behar et al., 2014a; Su andWu,
2017) and the citations inside, if the recorded one channel signal
does not have fECG information, there is nothing the algorithm
can do. From the practical viewpoint, since only two leads are
needed, the corresponding hardware could be lighter and more
deployable than the currently available four-lead or multiple-
lead systems. While it is certainly possible to generalize our
algorithm to a three-lead or four-lead system (and the algorithm
can be changed directly according to the setup), to have a better
balance between the prediction accuracy, the hardware design,
and practical purposes, we focus on the two-lead system in our
research.

Despite of the above-mentioned benefits, there are several
challenges we need to solve until this possible system is clinically
usable. As is shown above, the performance of SAVER depends
on how the two leads are put on the abdomen. The fECG
situation is clearly different from the adult ECG system, like
the widely applied 12 lead ECG system. Since fetus does move
and rotate inside the uterus, the uterus differs from female
to female, and the maternal body profile varies, we may not
expect to have a two-lead system universal for all women.
Therefore, for the practical purpose, particularly for the long
term monitoring purpose and the future digital health, like the
wearable biosensors (Li et al., 2017), it is important to ask if
we could adaptively find the best lead placement scheme for
different females. For the practical purpose, due to the inevitable
non-stationary noise of different types, like the motion artifact
and uterine contraction, an automatic system providing a SQI
to alarm/warn the low quality of the lead system, and hence
improve the overall fECG extraction quality, is urgently needed.
We leave this important engineering problem to the future work.
Another interesting question naturally raises from the current
work is if we could generalize the current algorithm to study
the twin dataset. Theoretically it is possible, if we take the fact
that geometrically the twin will locate in different positions.
We would expect to study this problem when the dataset is
available.

From the algorithmic viewpoint, there are several directions
we could improve the proposed two-channel fECG algorithm.
The main ingredient in SAVER is the diffusion geometry.
Since we have more than one aECG channel, we could
consider modern diffusion-based manifold learning techniques
to extract information common in two channels, like the

alternating diffusion (Papyan and Talmon, 2016; Talmon and
Wu, 2016; Lederman and Talmon, in press). The non-stationary
nature of the fECG signal, which often presents itself as a
time-varying frequency, might jeopardize the diffusion-based
approach. We could consider to entangle the nontrivial time-
varying frequency nature of the signal by further applying the
modern nonlinear-type time-frequency analysis technique, like
the synchrosqueezing transform or concentration of frequency
and time (see Daubechies et al., 2016 and the citations inside). In
this work, the parameters for the channel selection are chosen in
the ad hoc fashion and are fixed across different algorithms for
a fair comparison. For the practical purpose, we may optimize
these parameters to improve the results. A systematic survey of
this issue will be reported in the future work.

Another important algorithmic question left unanswered in
this paper is how to improve the nonlocal median algorithm
so that the reconstructed fECG could provide more accurate
electrophysiological information about the heart, for example,
the ECG morphology like the Q wave and ST-segment section
information (Amer-Wåhlin et al., 2001). The main difficulty
encountered in this problem is the lack of the “ground truth,” and
a careful design of the clinical trial to acquire a reliable ground
truth for the morphological study of the fetal cardiac activity is
needed. As important as this clinical information could be, we
will focus on it as an independent research and report the result
in the future work.

Last but not the least, the databases we tested are small and not
specifically designed for our purpose. We thus need a large scale
and well designed prospective study to confirm the result.

5. CONCLUSION

A novel two-channel fetal-maternal ECG signal separation
algorithm, SAVER, is proposed. The potential of the proposed
algorithm is supported by the positive validation results
on two publicly available databases. The algorithm is both
computationally efficient and is supported by the underlying
rigorous mathematical model and theory. Its clinical applicability
will be evaluated in the future work.
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