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Aim: MicroRNA-126 (miR-126) exerts beneficial effects on vascular integrity,

angiogenesis, and atherosclerotic plaque stability. The purpose of this investigation was

to analyze the dose-response relationship of high-intensity interval training (HIIT) on

miR-126-3p and -5p levels.

Methods: Sixty-one moderately trained individuals (females = 31 [50.8%]; 22.0 ± 1.84

years) were consecutively recruited and allocated into three matched groups using

exercise capacity. During a 4-week intervention a HIIT group performed three exercise

sessions/week of 4× 30 s at maximum speed (all-out), a progressive HIIT (proHIIT) group

performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out) with

one extra session every week (up to 7 × 30 s) and a low-intensity training (LIT) control

group performed three exercise sessions/week for 25 min <75% of maximum heart

rate. Exercise miR-126-3p/-5p plasma levels were determined using capillary blood from

earlobes.

Results: No exercise-induced increase in miR-126 levels was detected at baseline,

neither in the LIT (after 25 min low-intensity running) nor the HIIT groups (after 4 min

of high-intensity running). After the intervention, the LIT group presented an increase in

miR-126-3p, while in the HIIT group, miR-126-3p levels were still reduced (all p < 0.05).

An increase for both, miR-126-3p and -5p levels (all p < 0.05, pre- vs. during and

post-exercise) was detected in the proHIIT group. Between group analysis revealed that

miR-126-3p levels after LIT and proHIIT increased by 2.12 ± 2.55 and 1.24 ± 2.46 units

(all p < 0.01), respectively, compared to HIIT (−1.05 ± 2.6 units).

Conclusions: LIT and proHIIT may be performed to increase individual miR-126 levels.

HIIT without progression was less effective in increasing miR-126.
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INTRODUCTION

MicroRNAs (miRNAs) are short (∼21 nucleotide-long)
endogenous non-coding RNAs that mediate mRNA degradation
and translational repression (Filipowicz et al., 2008; Huntzinger
and Izaurralde, 2011). In humans, miRNAs have been established
as vital regulator of almost every physiological process including
development, aging and disease (Alvarez-Garcia and Miska,
2005; Sayed and Abdellatif, 2011; Jung and Suh, 2014). Following
the identification of muscle-specific miRNAs such as miR-1 and
miR-133 and their role in skeletal muscle development, plasticity,
and regeneration (McCarthy and Esser, 2007; Simionescu-
Bankston and Kumar, 2016), miRNAs have only recently
been suggested as markers for individual exercise response
(Zacharewicz et al., 2013; Flowers et al., 2015; Polakovičová et al.,
2016). In addition, the discovery of inducible circulating miRNAs
in human plasma in combination with high-sensitive detection
methods have led to the concept of novel minimally invasive
approaches to monitor the physiological response to different
exercise regimes. Circulating plasma miRNAs are commonly
preserved by association with either RNA-binding proteins or
small membranous vesicles [i.e., exosomes, microvesicles (MVs)]
(Arroyo et al., 2011). In this conformation, miRNAs are involved
in inter-cell communication by miRNA-rich MVs shed from the
plasma membrane into the extracellular environment to regulate
targets in recipient cells (Zernecke et al., 2009). Significant
amounts of MVs are commonly released from endothelial cells
(ECs) into the plasma and thus ECs are an abundant source
of miRNA-rich MVs (Deregibus et al., 2007). One of the most
frequent and EC-specific miRNAs is miR-126 which is processed
from intron 7 of the EGF-like domain-containing protein 7
(EGFL7) gene (Wang et al., 2008). The precursor miR-126
molecule gives rise to two mature strands, miR-126-3p and
miR-126-5p (Wang et al., 2008; Zernecke et al., 2009). It has
been shown that endothelial microparticles contain and transfer
miR-126 as a highly bioactive molecule with considerable activity
to promote EC migration and proliferation (Wang et al., 2008;
Zernecke et al., 2009). As such, miR-126 mimics have already
been successfully used to limit atherosclerosis and increase
plaque stability in atherosclerotic mouse models (Zernecke
et al., 2009), which mark miR-126 as a functional biomarker for
anti-atherosclerotic training interventions in humans.

It was initially assumed that only the miRNA-3p strand with
weaker 5′ thermostability was actively involved in the regulation
of cellular processes, while the miRNA-5p strand would be
degraded without further usage (Poissonnier et al., 2014).
However, a recent study by Poissonnier and coworkers provided
evidence that endothelial miR-126-5p is functional and regulates
leucocyte adhesion and transmigration (Poissonnier et al., 2014).
In addition, the group of Weber and colleagues reported that
miR-126-5p promotes endothelial proliferation and also limits
atherosclerosis independent of the -3p molecule (Schober et al.,
2014). With respect to these results, which suggest a strong and
specific atheroprotective capacity of miR-126, the current study
focused on the effect of physical exercise on circulating miR-
126 levels. It is well-known that physical activity has widespread
health benefits and is an important factor in primary and

secondary prevention of cardiovascular disease (Myers et al.,
2002; Haskell et al., 2007). High-intensity interval training (HIIT)
has been identified to be efficient for increasing health-related
fitness in general (Burgomaster et al., 2008; Costigan et al., 2015;
Milanović et al., 2015) and in lifestyle-induced chronic diseases
such as coronary artery disease, heart failure, diabetes mellitus,
hypertension, obesity, and metabolic syndrome (Weston et al.,
2014). However, exercise-induced miRNA-dependent processes
triggering these protective effects remain only partly understood.
Therefore, the aim of this study was to explore the dose-
response relationship of HIIT on miR-126-3p and miR-126-5p
plasma levels in humans. We hypothesized that progressive HIIT
(proHIIT) would result in increasedmiRNA-126 levels compared
to HIIT performed at constant intensity.

METHODS

Participants
Sixty-one young healthy moderately trained female and male
students of the universities’ physical education department were
consecutively recruited at the Institute of Sports Medicine of the
University Hospital Muenster in April 2015. All investigations
were performed in accordance with the declaration of Helsinki
and after the approval of the Ethical Committee of the medical
association Westfalen-Lippe and the Westphalian Wilhelms-
University ofMuenster (project-no. 2013-231-f-S, study acronym
SPORTIVA). Written informed consent of participants was
obtained prior to subjects’ participation in the study. Participants’
baseline characteristics were as follows. Female = 31 (50.8%),
age = 22.0 ± 1.84 years, height = 177.0 ± 9.70 cm, mass =

70.7 ± 11.46 kg. In total 11 participants dropped out of the
study, four from the HIIT group, four from the proHIIT group
and three from the LIT group due to several reasons including
injury unrelated to the intervention program. Due to scheduling
problems at retest, post-training data of two participants of the
proHIIT group was not available.

Randomization Procedure
Participants were randomized to one of the three training groups
using exercise capacity as primary parameter determined by
a standardized incremental continuous running test (ICRT, as
maximum performance test). The ICRT is a highly reproducible
field test method and was performed as described elsewhere
(Léger and Boucher, 1980; Berthoin et al., 1994; McGehee
et al., 2005) with modifications (Schmitz et al., 2017). The
test was performed indoors on a synthetic 200m running
track at ambient temperature (20–24◦C, ∼60m above sea level)
in groups of 4–6 individuals. Subjects were fitted with HR
monitors combined with a wireless receiver module (Polar
Team2, Polar Electro Oy, Kempele, Finland). The test started
at 2.22 m·s−1, increasing by 0.56 m·s−1 every 3 min until
total exhaustion of the participant. The pace was indicated
by an automated acoustic device. Blood was sampled from
participants’ earlobes (20µl heparinized capillary) for blood
lactate concentration measurements (automated on analyzer
Biosen S-line, EKF Diagnostics, Magdeburg, Germany) after each
interval (3 min). Exercise capacity at individual lactate threshold
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(baseline lactate + 1.5 mmol·L−1; Roecker et al., 1998; Dickhuth
et al., 1999) was calculated using Winlactat software version
5.0.0.54 (Mesics, Münster, Germany).

Training and Testing
Training Interventions

The study included three different groups with a 4-week training
intervention performing three exercise sessions/week (1 day off
between sessions).

1. High-intensity interval training (HIIT): HIIT participants
were instructed to run at maximum speed for 4× 30 s (all-out)
with 30 s of active recovery periods at warm-up speed between
bouts.

2. Progressive high-intensity interval training (proHIIT):
proHIIT participants started at 4 × 30 s (all-out), increasing
by one extra interval each week to a final set of 7 × 30 s
(all-out) with 30 s of active recovery periods at warm-up speed
between bouts.

3. Low-intensity training (LIT, control group): The LIT group
was used as control group and performed a continuous run
at 74.75% of HRmax (147± 12 b·min−1) for 25 min.

All participants were students of the physical education
department and had free access to the universities’ athletic
facilities during the intervention. Training was unsupervised and
participants documented exercise sessions in individual training
logs (HIIT/proHIIT, rating of perceived exertion [RPE] on 15-
grade Borg scale; Borg, 1982; LIT, HR). Participants were free
to perform their three exercise sessions/week during any time
of the day but had to comply to the 1 day exercise/1 day of
schedule. Participants were seen and interrogated at least once a
week during their regular seminars. Training logs were evaluated
at the end of the intervention and revealed no difference in
compliance between the three groups: HIIT, 92.2 ± 12.35% vs.
proHIIT, 91.7 ± 11.28% vs. LIT, 88.7 ± 18.22%; p = 0.793.
HIIT and proHIIT participants reported RPE at 19.1 ± 0.8.
Participants were involved in different other irregular activities
such as resistance training, team sports, etc. which had already
been performed prior to the training intervention and were
distributed equally over the three training groups. Additional
training was also documented in training logs. Information on
participants’ medication was interrogated by questionnaire. One
participant reported use of allopurinol (proHIIT), one reported
use of budesonide (LIT), one reported iodine supplementation
(proHIIT) and three reported use of levothyroxin (2 × proHIIT
and 1× LIT). Participants’ diet was not controlled.

Testing

Baseline and follow-up examinations were performed at the first
(1-week after the initial ICRT randomization) and after the last
exercise session (described above), respectively. Blood sampling
for miRNA and lactate determination in the LIT group was
performed before and after a 25 min low-intensity run <75% of
HRmax (controlled by HRmonitors). HIIT and proHIIT pre- and
post-exercise sampling was identical at baseline as both groups
performed four high-intensity runs at maximum speed for 30 s
(all-out) with 30 s of active recovery (Supplemental Figure 1). At

follow-up, HIIT and proHIIT participants’ blood was sampled
at three different time points, before, after 4 min and after 7
min for comparison. The HIIT group stopped after 4 min (=4
bouts of exercise) and the 7 min time point equaled 3 min of
rest post-exercise (Supplemental Figure 1). The proHIIT group
was sampled after 4 min during exercise (30 s of passive rest
for sampling instead of 30 s of active recovery) and after the
7th (final) exercise bout. To monitor performance during high-
intensity runs, running speed was continuously recorded using
the SmarTracks Diagnostics remote exercise monitoring and bio-
feedback system (Humotion, Münster, Germany). Blood lactate
concentrations are presented in Table 1.

miRNA Extraction and Quantification
Blood was sampled from participants’ earlobes immediately at
the testing site using a 20µl K2 EDTA capillary (Sarstedt,
Nürnbrecht, Germany) and miRNA was extracted using 750µl
peqGOLD TriFast (VWR, Darmstadt, Germany) according to
the manufacturer’s instruction. Wehmeier and Hilberg (2014)
have shown that the expression levels of miRNAs using
standard immediate venous blood sampling compared to
capillary blood sampling are nearly identical. Most importantly,
the applied method allows the sensitive detection of acute
changes in circulating miRNA levels during and directly after
exercise and prevents the bias of hemolysis. Each sample
was immediately supplemented with 10 nM Caenorhabditis
elegans cel-miR-39-3p spike-in control following manufacturer’s
instruction (Thermo Fisher Scientific, Darmstadt, Germany)
for normalization. This approach was chosen since internal
reference controls have so far not been validated and it remains
uncertain which transcript/control might be affected by the
performed training interventions. Spike-in controls such as
cel-miR-39 have been successfully applied as reference for
circulating miRNAs including miR-126 (Fichtlscherer et al.,
2010; Schlosser et al., 2015), but cannot control for pre-
analytical variations (sample collection, storage and/or transport;
Schlosser et al., 2015). As the performed sample preparation
procedure had a high level of standardization in our setting
(in-field 20µl capillary sampling with immediate preparation)
pre-analytical variations were reduced to a minimum. RNase-
free glycogen (70µg/sample; VWR) was used as carrier to
optimize extraction efficiency as reported (McAlexander et al.,
2013). Isolated RNA was resuspended in 20µl of nuclease-free
water. Quantification of mature hsa-miR-126-3p, hsa-miR-126-
5p, and cel-miR-39-3p was performed by quantitative real-time
polymerase chain reaction (qRT-PCR) using TaqMan Advanced

TABLE 1 | Exercise blood lactate (LA) concentration pre- and post-intervention.

Group LA pre-intervention (mmol·L−1) LA post-intervention (mmol·L−1)

LIT 1.22 ± 0.4 1.46 ± 0.5

HIIT 10.96 ± 2.1 10.82 ± 2.1

proHIIT 10.81 ± 2.7 9.81 ± 3.1

Data are mean± SD. LA-values were determined after four bouts of high-intensity running

in the HIIT and proHIIT group and after 25 min of low-intensity running in the LIT group.
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MicroRNA Reverse Transcription Kit for cDNA generation and
TaqMan Advanced MicroRNA Assays (Thermo Fisher Scientific,
Darmstadt, Germany) blinded to participants’ parameters. The
Advanced MicroRNA Assay uses 5′ adaptor ligation to mature
miRNAs offering the benefit to generate cDNA for all miRNAs
in a single reaction, limiting the failure of cDNA generation in
the analysis. In brief, 2.5µl of RNA solution was used for qRT-
PCR reactions performed in a 384-well format in duplicates on
anABI7500 fast RT- PCR system (Life Technologies Corporation,
Carlsbad, USA). Relative quantification was performed using the
1Ct method and miR-126 values were expressed as (1/1Ct)∗ 100
for presentation. Duplicates with a difference >2 Ct were
excluded from the analysis.

Statistical Data Analysis
Statistical analyses were performed using SPSS, version 22.0
(Statistical Package for Social Science, Chicago, USA) and
GraphPad PRISM V5.0 software (GraphPad Software Inc., La
Jolla, USA). Eleven datasets were incomplete (missing test or
retest data) and were not included in the post-training analysis.
Data are presented as mean ± SD or 95% confidence interval
(running speed data). For miR-126 measurements, qRT-PCR
data is presented in duplicates with the number of analyzed
subjects for miR-126-3p given in each figure (minimal number
per analysis). Differences between and within groups were
determined using one-way ANOVA and Bonferroni’s Multiple
Comparison Test. Data were tested for normal distribution
using D’Agostino-Pearson normality test (omnibus K2 test).
Significance was declared at p < 0.05.

RESULTS

miR-126 Exercise Levels at Baseline
No exercise-induced increase in miR-126 levels was detected at
baseline, neither in the LIT (after 25 min low-intensity running)
nor the HIIT groups (after 4 min of high-intensity running,
Figure 1). Instead, a slight but significant (all p < 0.05, rest vs.

post-exercise) reduction for miR-126-3p and miR-126-5p was
detected in all groups. No differences in miR-126 levels between
male and female participants were detected (Supplemental
Figure 2).

miR-126 Exercise Levels at Follow-Up
After 4-weeks of training, the LIT group presented a significant
(p < 0.01, rest vs. post-exercise) increase in miR-126-3p levels
in response to the 25 min low-intensity run (Figure 2A). The
concentration for miR-126-5p did not change significantly in
response to exercise during follow-up (Figure 2A). In the HIIT
group, miR-126-3p levels were again reduced (p < 0.05, rest
vs. run 4) while miR-126-5p levels did not change in response
to exercise during follow-up (Figure 2B). A prominent increase
for both, miR-126-3p and -5p levels (p < 0.05, rest vs. during
exercise) was seen in the proHIIT group after four bouts of
exercise (i.e., 4 min, Figure 2C). For miR-126-3p, the increase
remained significant (p < 0.05) post-exercise (Seven bouts,
Figure 2C). An additional between group analysis of the follow-
up data confirmed our findings. miR-126-3p levels in the LIT
and proHIIT group were significantly increased in response to
exercise by 2.12 ± 2.55 and 1.24 ± 2.46 units (LIT vs. HIIT,
p < 0.001; proHIIT vs. HIIT, p < 0.01), respectively, compared
to reduced miR-126-3p levels in the HIIT group (−1.05 ± 2.60
units). miR-126-5p levels also increased significantly in response
to exercise in the LIT and proHIIT group by 1.48 ± 2.13 and
0.87 ± 1.90 units (LIT vs. HIIT, p < 0.01; proHIIT vs. HIIT,
p < 0.05), respectively, compared to reduced miR-126-5p levels
in the HIIT group (−0.45 ± 1.8 units). Between group analysis
did not indicate any differences of the training effect on miR-
126 levels between LIT and proHIIT. To control if changes in
miR-126 levels depended on exercise intensity, running speed
during high-intensity runs was continuously recorded. Notably,
no differences in running speed existed, neither in comparison
to baseline nor between HIIT and proHIIT groups at follow-up
(Figure 3).

FIGURE 1 | miR-126 levels were slightly reduced in response to exercise at baseline. The acute effect of a single exercise session on miR-126-3p and 5p levels

before the intervention was determined in (A) the LIT group and (B) the HIIT groups. A significant decrease of miR-126-3p/-5p was detected post-exercise. LIT

participants were tested before and after a 25 min low-intensity run, HIIT participants before and after 4 × 30 s (all-out) high-intensity runs with 30 s of active recovery

periods at warm-up speed. Data are represented as mean ± SD. P-values are rest vs. post-exercise using ANOVA. *p < 0.05; **p < 0.01.
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FIGURE 2 | miR-126 levels were increased in response to exercise in the LIT and proHIIT group post-training. After the 4-week training intervention, a significant

increase of acute miR-126 levels was detected post-exercise (A) in the LIT group and (C) in the proHIIT group (run 7), while miR-126-3p levels were still reduced in

(B) the HIIT group (run 4). Elevated miR-126-5p levels were only detected during exercise (run 4) in the proHIIT group. miRNA levels at follow-up were analyzed

directly after the last run (run 4) and after 3 min of recovery (post-exercise) in the HIIT group. In the proHIIT group, miRNA levels were analyzed during the exercise (run

4) and directly after the exercise (run 7, post-exercise). Data are represented as mean ± SD. P-values are rest vs. post-exercise using ANOVA. *p < 0.05; **p < 0.01.

FIGURE 3 | Running speed during high-intensity runs. Running speed was

continuously recorded during high-intensity runs at baseline and retest to

monitor exercise intensity. No significant differences in running speed at

baseline and retest or between groups (bout 1–4) was detected.

HIIT Effects on Resting miR-126-3p Levels
A within-group comparison of baseline vs. post-training miR-
126 resting levels in the HIIT and proHIIT group did not reveal
a lasting training effect on miR-126-3p of either HIIT protocol
(Figure 4).

Exercise Blood Lactate Concentrations
Exercise blood lactate concentrations pre- and post-intervention
for the three training groups are presented in Table 1. In the
HIIT group, post-intervention lactate concentration after 3 min
of passive recovery increased to 13.02 ± 5.9 mmol·L−1. In the
proHIIT groupmaximum lactate concentration after seven bouts
of high-intensity running was 13.86 ± 4.57 mmol·L−1. Incline
in blood lactate concentration (rest vs. post-exercise) did not
change significantly in the LIT and HIIT group, whereas it was
significantly lowered in the proHIIT group post-intervention
(p = 0.0488, Supplemental Figure 3), despite identical running
speed (Figure 3).

FIGURE 4 | Resting miR-126-3p levels in the HIIT and proHIIT group. No

significant difference between resting miR-126-3p levels was detected within

each group (baseline vs. post-training; HIIT, n = 15; proHIIT n = 9). Data are

represented as mean ± SD compared by ANOVA.

DISCUSSION

In this 4-week interventional study, we analyzed the dose-
response relationship of HIIT on circulating anti-atherosclerotic
miR-126-3p/-5p levels in young healthy moderately trained
females and males. Our main findings are: (1) A single low- or
high-intensity running exercise bout at baseline did not elevate
miR-126 levels, instead miR-126 levels were slightly reduced;
(2) proHIIT led to increased miR-126-3p and -5p exercise levels
while no elevated miR-126 levels were observed in the HIIT
group; (3) the LIT group also presented increased exercise miR-
126-3p levels after the intervention; and (4) bothmature miR-126
forms, -3p and -5p can be elevated by regular running exercise.

While a number of studies investigated the effects of acute or
prolonged exercise on miRNA abundance in tissue or plasma,
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only few studies have addressed changes in miRNA levels in
response to specific training interventions (for review see Flowers
et al., 2015; Polakovičová et al., 2016). Among other miRNAs
regulated in response to physical activity, miR-126 is of particular
interest as it exerts beneficial effects on vascular integrity,
angiogenesis, and atherosclerotic plaque stability (Wang et al.,
2008; Zernecke et al., 2009). So far, some studies focused on the
effect of prolonged physical activity on miR-126 levels in rodents.
The group of Oliveira reported an intensity-dependent increase
of cardiac miR-126 levels after a 10-week swimming protocol
imposed on female Wistar rats (Da Silva et al., 2012). The
authors also documented increased capillary/fiber ratio in the
heart, suggesting a relationship between the induced angiogenesis
and miRNA-126 expression. By contrast, they did not observe
significant changes of skeletal muscle miR-126 in male Wistar
rats after the 10-week swimming protocol (Fernandes et al.,
2012). However, they detected normalization of reduced skeletal
muscle miRNA-126 levels in spontaneously hypertensive rats
(SHR) in response to the protocol, which was paralleled by
revascularization and a reduction of blood pressure (Fernandes
et al., 2012). In male ApoE null C57BL/6 J mice, miR-126 levels
were reported to be increased in vascular tissue after a 12-week
treadmill protocol (Wu et al., 2014). In humans, Uhlemann
et al. (2014) reported plasma concentrations of miR-126 after
different single exercise bouts. The authors analyzed miR-126
levels after cycling in healthy individuals using a symptom-
limited test and in well-trained men after cycling for 4 h at
70% of the individual anaerobic threshold as well as in trained
runners after a marathon race and in trained subjects after
a single resistance training. They found increased miR-126
levels in all conditions except for the resistance training, an
observation in line with another report on miR-126 upregulation
during prolonged aerobic exercise (Baggish et al., 2014). The
group of Hilberg analyzed competitive adolescent male cyclists
performing a single high-volume or high-intensity interval
session reporting that the single acute high-intensity exercise
did not increase miR-126 levels (Kilian et al., 2016). Taken
together, these data indicate that prolonged aerobic exercise
can induce elevated miR-126 levels. So far, an investigation on
the effects of short intensive running exercises bouts on miR-
126 is missing from the literature and most studies have not
differentiated their investigations toward the two mature miR-
126 forms, miR-126-3p and miR-126-5p, most likely because the
anti-atherosclerotic potential of the -5p form has only recently
been revealed. The group of Weber and colleagues reported that
miR-126-5p affects different cellular target molecules compared
to miR-126-3p and suppresses the notch1 inhibitor delta-like 1
homolog (Dlk1) inducing atheroprotective effects by promoting
endothelial proliferation (Schober et al., 2014). Thus, it seems
conceivable that bothmaturemiR-126 forms act synergistically in
endothelial gene expression regulation exerting cardioprotective
effects.

Our data indicate that a single exercise bout in moderately
trained individuals is not sufficient to induce elevated levels
of miR-126 as a direct response. Instead, at the first exercise
session, miR-126-3p and -5p levels were slightly reduced
immediately after the exercise in all groups. This observation

is partly in line with a report on moderately trained men by
Radom-Aizik et al. (2010) who also observed a subsequent
reduction of miR-126 levels in response to 30 min of cycle
ergometry. In our study, we observed a distinct difference
between the HIIT and proHIIT group after the intervention.
After 4-weeks of training, the proHIIT group presented
increased exercise miR-126 levels during and directly after
the exercise while the HIIT group still presented slightly
lowered miR-126-3p levels. Notably, exercise intensity at
follow-up was not different to baseline or in comparison to
the HIIT group. Since we observed a significant difference
in miR-126 levels between the proHIIT and HIIT group,
a dose-response effect of HIIT on miR-126 levels can be
suggested.

A comparison of resting miR-126 levels between the two HIIT
groups did not suggested that any of the training programs
induced a permanent increase of miR-126-3p levels. Notably,
when comparing the resting levels of the two HIIT groups after
the training intervention we noticed a significant difference of
miR-126-3p resting levels before the intervention in that the
resting levels of the designated proHIIT group were significantly
lower. We investigated different parameters that could explain
this difference (including baseline exercise capacity, sex, age,
height, activity level, medication) but detected no obvious reason
for the different levels. However, it does not seem conceivable that
this might have affected the diverse training response detected
between HIIT and proHIIT participants as the stimulus in the
proHIIT group appeared strong enough to induce higher miR-
126 levels despite the lower resting levels.

The physiological model underlying exercise induced mir-
126 levels might be characterized by our two main findings.
mir-126 levels were not increased by the stimulus of a single
exercise bout at baseline but increased quickly in only 4 min
of high-intensity running after the training intervention. This
rather rapid increase points to a release or secretion mechanism
of miR-126 as de novo expression would most likely require
more time (Baggish et al., 2011). With respect to the observed
high reactivity it is noteworthy that the process of miRNA
release into the blood stream especially in response to physical
exercise is largely unknown (Chen et al., 2012; Makarova et al.,
2014). However, it has been suggested that miRNA-releasing
cells possess a sorting mechanism that guides specific miRNAs
to enter exosomes resulting in a concentration of selected
miRNAs (Zhang et al., 2015). It also seems conceivable that
regular exercise training could results in modified (i.e., elevated)
basal miRNA expression (Makarova et al., 2014) and thus an
increased pool of concentrated miRNAs to be secreted. In
particular, the molecular mechanisms involved in mammalian
miR-126 expression regulation are still under debate. Pre-miR-
126 is located to intron 7 of the EGFL7 gene and promoter
studies have revealed different transcription factors involved in
its expression regulation including ETS1/2 (Harris et al., 2010).
High shear stress has been discussed to be an activator of
miR-126 expression as miR-126 is inducible by flow-sensitive
Krüppel-like Factor 2 (KLF2) in zebrafish (Hergenreider et al.,
2012). However, no flow or KLF2-dependent regulation of miR-
126 has been detected in human ECs (Hergenreider et al.,
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2012). Notably, a connection between the lactate anion and
miR-126 levels may be suggested based on the observation
that hypoxia targets transcription factor ETS1 (Oikawa et al.,
2001), while blockade of the endothelial lactate transporter
MCT1 led to inhibition of hypoxia-inducible factor-dependent
angiogenesis (Sonveaux et al., 2012). Preliminary in vitro data
from our laboratories suggest that low lactate levels of ∼1.5
mM have the potential to induce miR-126 expression, while
lactate concentrations of 3–4 mM seem to have an inhibitory
effect. Notably, blood lactate levels of our LIT group were in
the potentially activating range while lactate levels in the HIIT
group were quickly exceeding this range. High lactate levels were
also observed in the proHIIT group after exercise, however the
slope of lactate increase in this group was significantly lower
after the training intervention at identical exercise intensities
compared to the HIIT group. Future studies will be needed to
address the potential mechanism underlying miR-126 expression
regulation.

Different pathophysiological conditions have been associated
with decreased miR-126 plasma levels including type 2 diabetes
mellitus (Zampetaki et al., 2010). Vice versa, increased levels of
miR-126 have been associated with a lower rate of cardiovascular
events in patients with stable coronary artery disease (Jansen
et al., 2014). HIIT, in particular, has been suggested to improve
skeletal muscle insulin sensitivity (Eskelinen et al., 2015)
and to increase health-related fitness in general (Burgomaster
et al., 2008; Costigan et al., 2015; Milanović et al., 2015).
While HIIT has also been proposed for patients with lifestyle-
induced chronic diseases such as coronary artery disease, heart
failure, diabetes mellitus, hypertension, obesity, and metabolic
syndrome (Weston et al., 2014), it may be even detrimental
for cardiac insulin sensitivity and blood flow capacity as shown
for healthy but untrained middle-aged men (Eskelinen et al.,
2016). It will therefore be of interest to investigate the benefits
and limitations of different HIIT forms (running or cycling,
progressive vs. no increment) in the general population and
different patient groups in future studies. If cardioprotective
effects of HIIT in healthy subjects (primary protection) and
patients with different cardiovascular disease manifestations
(secondary protection) can be substantiated, miR-126 could be
a useful marker to control and optimize individual training
interventions.

CONCLUSIONS

We conclude that LIT and proHIITmay be performed to increase
plasma levels of miR-126 in healthy females and males. Standard
HIIT performed without progression may be less effective to
increase miR-126 levels. The value of miR-126 as a marker to

optimize individual cardioprotective training will be the scope of
future studies.

LIMITATIONS

Our results may not be directly translated to other groups or
populations as our results were detected in a population of young
healthy female and male Caucasians. The presented results are
based on the determination of circulating miRNAs from blood.
As miR-126 in particular can be highly concentrated inMVs with
the potential to shuttle into target cells with high efficiency, future
studies are needed to investigate the effect of physical exercise on
miRNA concentrations inMVs. Even if the applied novel method
for miRNA determination in the field allows for an efficient
screening of a larger number of individuals, the sample size of our
three training groupsmight be some limitation and future studies
involving larger groups and longer observation periods post-
exercise may generate additional insight. Our participants were
free in their daily diet. Although training was not controlled, our
study involved highly motivated university students with high
training compliance (>90%). However, we cannot completely
exclude effects of extra non-prescribed training. In addition, the
extent to which participants complied with the intensity of the
intervention was not measured and therefore quantification of
the exercise dose was not performed.
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Milanović, Z., Sporiš, G., and Weston, M. (2015). Effectiveness of High-Intensity

Interval Training (HIT) and continuous endurance training for VO2max

improvements: a systematic review andmeta-analysis of controlled trials. Sports

Med. 45, 1469–1481. doi: 10.1007/s40279-015-0365-0

Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., and Atwood, J. E.

(2002). Exercise capacity andmortality amongmen referred for exercise testing.

N.Engl. J. Med. 346, 793–801. doi: 10.1056/NEJMoa011858

Oikawa, M., Abe, M., Kurosawa, H., Hida, W., Shirato, K., and Sato, Y.

(2001). Hypoxia induces transcription factor ETS-1 via the activity of

hypoxia-inducible factor-1. Biochem. Biophys. Res. Commun. 289, 39–43.

doi: 10.1006/bbrc.2001.5927

Poissonnier, L., Villain, G., Soncin, F., andMattot, V. (2014). miR126-5p repression

of ALCAM and SetD5 in endothelial cells regulates leucocyte adhesion and

transmigration. Cardiovasc. Res. 102, 436–447. doi: 10.1093/cvr/cvu040
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