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According to the International Association for the Study of Pain (IASP) pain is

characterized as an “unpleasant sensory and emotional experience associated with

actual or potential tissue damage”. The TRP super-family, compressing up to 28 isoforms

in mammals, mediates a myriad of physiological and pathophysiological processes, pain

among them. TRP channel might be constituted by similar or different TRP subunits,

which will result in the formation of homomeric or heteromeric channels with distinct

properties and functions. In this review we will discuss about the function of TRPs in

pain, focusing on TRP channles that participate in the transduction of noxious sensation,

especially TRPV1 and TRPA1, their expression in nociceptors and their sensitivity to a

large number of physical and chemical stimuli.
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INTRODUCTION

Cytosolic free Ca2+ concentration ([Ca2+]c) is a key factor for the regulation of a large variety
of cellular functions, ranging from short-term processes, such as muscle contraction, exocytosis,
or platelet aggregation, to long-term events, including cell proliferation or apoptosis (Berridge
et al., 2000). Physiological agonists modulate [Ca2+]c through the regulation of a number of
Ca2+ transport mechanisms, based on the activation of more or less Ca2+ selective channels
and transporters. Agonist-induced Ca2+ mobilization consist, among others, of (1) the release
of Ca2+ from agonist-sensitive Ca2+ stores, mostly the endoplasmic reticulum (ER) and acidic
organelles (Lopez et al., 2005; Galione, 2006; Aulestia et al., 2011), (2) extracellular Ca2+ entry
through plasma membrane permeable channels (Salido et al., 2009a), (3) cytosolic Ca2+ clearance
either by Ca2+ uptake into intracellular stores (Lipskaia et al., 2014) or Ca2+ extrusion across
the plasma membrane (Redondo et al., 2005), and (4) Ca2+ buffering with the participation
of the mitochondria (Montero et al., 2001). While Ca2+ release from the finite intracellular
Ca2+ compartments has been reported to regulate different cellular events, Ca2+ entry from the
extracellular medium is required for the replenishment of the internal stores and also for full
activation of different cellular functions. Ca2+ entry might occur through a variety of mechanisms,
which might be grouped in voltage-operated and receptor-operated Ca2+ influx processes. In
turn, according to the activation route, receptor-operated Ca2+ entry might be classified into
receptor-mediated, second messenger-operated and store-operated Ca2+ entry mechanisms. The
simplest mechanism is receptor-mediated Ca2+ influx, which occurs through channels allosterically
regulated by agonist binding. Second messenger-operated Ca2+ entry requires the generation
of a second messenger that directly gates the channel. On the other hand, store-operated Ca2+

entry (SOCE) is regulated by the filling state of the intracellular Ca2+ stores, mainly the ER
(Putney, 1986), but also acidic organelles (Zbidi et al., 2011). According to this, a reduction in
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the intraluminal Ca2+ concentration results in the opening of
channels in the plasma membrane (Putney, 1986).

Among the wide variety of Ca2+-permeable channels
identified, TRP channels play a relevant functional role in
mammalian cells. TRP channels were identified in a Drosophila
mutant with visual defects, where a mutation in a channel
permeable to Na+ and Ca2+ leads to transient, rather than
sustained, receptor potential in the photoreceptors (Minke,
1977). Since the identification of the mammalian homologs of
the Drosophila TRPs in 1995 (Wes et al., 1995; Zhu et al., 1995)
these channels have been proposed as candidates to conduct both
second messenger- as well as store-operated Ca2+ entry.

TRP channels are a group of ion channels located in the
plasma membrane as well as in the membrane of a number of
intracellular organelles, where they participate in the homeostasis
of intracellular Ca2+, as well as other ions, such as Mg2+ (Fleig
and Penner, 2004; Ambudkar et al., 2007; Salido et al., 2009b).
Since TRP proteins were first described a number of isoforms
have been identified, which are grouped into seven subfamilies:
TRPC, TRPV, TRPM, TRPP, TRPML, TRPA, and TRPN (the
latter only expressed in fish, flies, and worms) and each subfamily
includes one or more members (Montell et al., 2002; Li et al.,
2011).

The structure of TRP channels comprises six membrane-
spanning helices with a pore-forming loop between the last two
transmembrane segments. The N- and C-terminal segments are
located in the cytosol and vary in the number of amino acids and
the functional motifs among the different subfamilies. Thus, the
N termini of TRPC, TRPA, TRPV, and TRPN subfamilies contain
between 4 and 30 tandem copies of ankyrin repeat domains,
involved in protein-protein interaction (Latorre et al., 2009).
Furthermore, the cytoplasmic N and/or C-termini of TRPC,
TRPM, TRPP, and TRPV channels have been reported to contain
coiled coil domains, which play an important role in the assembly
of homomeric and heteromeric complexes (Lepage and Boulay,
2007; Schindl and Romanin, 2007) as well as in the interaction
with the ER Ca2+ sensor STIM1 (Lee et al., 2014). TRPC, TRPV,
and TRPM subfamilies also contain a conserved TRP box, a
short hydrophobic region located just C-terminal of the putative
last transmembrane segment (Nilius et al., 2006). Certain TRP
members are regulated by cytosolic Ca2+ through the interaction
with C-terminal located EF-hand motifs, including TRPA1,
TRPML1, and TRPP2 (Tsiokas, 2009), or calmodulin and IP3
receptor-binding regions, this is the case of TRPC, TRPM,
and TRPV members (Tang et al., 2001; Dionisio et al., 2011).
Finally, other more restricted motifs have been reported in
different TRP members, including the tubulin-binding domain
reported in TRPV1 (Sardar et al., 2012), the kinase domain
of TRPM6 and TRPM7 (Schlingmann and Gudermann, 2005),
the conserved proline-rich region, downstream of the EWKFAR
motif, responsible for the interaction with Homer proteins and
immunophilins (Yuan et al., 2003; Sinkins et al., 2004; Jardin
et al., 2013; Lopez et al., 2013; Dionisio et al., 2015) or the
voltage sensing domain reported in TRPV1, TRPV3, TRPM8,
and TRPM4 (Nilius et al., 2003, 2005), among others.

TRP channels are activated and modulated by a wide
variety of chemical and physical stimuli including receptor

occupation via activation of phospholipase C, which, in turn,
leads to the hydrolysis of phosphatidylinositol 4,5-bisphospate
(PIP2) and the generation of lipid messengers, biosynthesis
of IP3, and subsequent Ca2+ release from the intracellular
stores, the activation of serine/threonine or tyrosine kinases
or ligand binding, including exogenous ligands, such as
capsaicin or allyl isothiocyanate, and endogenous molecules,
including eicosanoids, diacylglycerol, phosphoinositides, purine
nucleotides, or inorganic ions, such as Ca2+ and Mg2+

(Harteneck et al., 2011; Vetter and Lewis, 2011).
The sensitivity of TRP channels to a number of physical

and chemical stimuli allows these channels to be essential
components of different sensory processes, such as vision,
hearing, taste, tactile and thermal sensation, redox status, or pain
(Voets et al., 2005; Woodard et al., 2007; Wetsel, 2011; Feng,
2014; Ogawa et al., 2016).

TRP CHANNELS AND NOCICEPTION

Pain and Nociception
Pain is a subjective unpleasant sensory experience that might
be associated to real or potential damage. Noxious stimuli
are detected by pain receptors or nociceptors, nerve endings
that specifically respond to damaging stimuli and transmit the
information to the spinal cord, through which the message
is transmitted to higher nerve centers, including the brain
stem reticular formation, thalamus, somatosensory cortex, and
limbic system (Osterweis et al., 1987). Nociception, therefore,
is the process of transmission of noxious signals by nociceptors
in the primary afferent nerve fibers (Dai, 2016). Noxious
stimuli are classified into chemical, mechanical and thermal.
The transduction of nociception includes several chemical
compounds that might be released by damaged tissue, such as
K+, histamine and serotonin, or generated by enzymes activated
by tissue damage, including prostaglandins, leukotrienes, or
bradikinin (Schaible et al., 2011; Viguier et al., 2013).

A major function of the nociceptors is to detect potentially
damaging stimuli with a threshold that allows perform activities
without pain but sensitive enough to warn of the risk of damage
(Patapoutian et al., 2009). The detection of noxious stimuli by
nociceptors involves the expression of nociceptive ion channels,
which basically define the functional properties of nociceptors.
The largest group of nociceptive ion channels is the TRP channel
family (Clapham, 2003; Patapoutian et al., 2009), especially
TRPV1 and TRPA1 members. Activation of nociceptive TRP ion
channels in sensitive (i.e., dorsal root ganglion, DRG) neurons
leads to the influx of Na+ and Ca2+ across the plasma membrane
resulting in membrane depolarization that, in turn, might trigger
voltage-gated ion channel-dependent action potentials (Gees
et al., 2010) that transmit the information to the spinal cord and
the higher nerve centers as described above.

Nociceptive TRP Ion Channels
TRPV1

TRPV1 is one of the six members of the TRPV subfamily and
is involved in the detection of noxious sensation (Caterina and
Julius, 2001). TRPV1 has been found to be highly expressed in
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the plasma membrane of nociceptive DRG neurons (Caterina
and Julius, 2001). Furthermore, functional expression of this
channel has also been reported to be expressed in the ER of
DRG neurons, where it is involved in Ca2+ efflux from the
ER upon stimulation with vanilloids; although its sensitivity to
agonists is smaller when located in the ER membrane probably
due to a mechanism mediated by calmodulin, which might be
important for neuronal biology (Gallego-Sandin et al., 2009). The
structure of TRPV1 follows the pattern of the TRP channels,
with six transmembrane spanning domains, six ankyrin repeats
in the N-terminus and a large C-terminal region (Cao et al.,

2013; Figure 1). Three splice variants of TRPV1 have been
described: VR.5’sv, TRPV1b, and TRPV1var. VR.5’sv (vanilloid
receptor 5’ splice variant) shows a shorter N-terminal region due
to both an alternative initiation of translation and the lack of
transcription of an exon resulting in loss of 60 amino acids in
the N-terminus (Schumacher et al., 2000) and do not respond
to capsaicin (Eilers et al., 2007). TRPV1b shows a modification
in the N-terminal region encoded by exon 7 that leads to loss of
10 amino acids (Wang et al., 2004) and, as well as the VR.5’sv
variant, has been propose to function as a dominant-negative
channel subunit (Pecze et al., 2008; Schumacher and Eilers, 2010).

FIGURE 1 | Molecular structure of TRPA1 and TRPV1. (A) Scheme of TRPV1 and TRPA1 channels depicting individual domains. Numbers correspond to amino acids

positions of human TRPV1 and TRPA1, respectively. (B) Cartoon representing TRPV1 and TRPA1 monomers morphology within a bilayer membrane. The channel

spans the membrane up to six times with the pore located between transmembrane domains (TM) 5 and 6, and both N-terminal and C-terminal domains situated in

the cytosol. (C,D) Cartoons depicting the tetrameric assembly of TRPV1 subunits based on the X-ray crystal structure of Rattus norvegicus as described in Cao et al.

(2013). As mentioned above, the ion permeation pathway is formed by TM5 and TM6, while the remaining TM domains 1–4, surround the pore. (C) Represents a

frontal view of the channel while (D) sketches an upside-down perspective.
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TRPV1var is generated by a failure to splice out intron 5, thus
leading to translation of a portion of the N-terminal region that
lacks the transmembrane spanning domains and the C-terminal
intracellular region (Tian et al., 2006). It has been reported
that TRPV1var, when coexpressed with the full-length TRPV1
subunits, might modulate its responses, for instance, it has been
shown to increase the response of TRPV1 to resiniferatoxin (Tian
et al., 2006).

TRPV1 is a polymodal channel sensitive to different physical
and chemical stimuli, including heat (see above), pH under 5.9
(Tominaga et al., 1998), and mechanical stimuli (Walker et al.,
2003). In addition, TRPV1 is activated by a variety of ligands
(Table 1) including vanilloids, such as capsaicinoids (the most
representative is capsaicin, the major pungent constituent of
Capsicum fruit; Caterina et al., 1997) and resiniferanoids (Szallasi
and Blumberg, 1989), α, β-unsaturated dialdehydes isolated
from a variety of plants, fungi, algae, sponges, arthropods, and

molluscs (Jonassohn et al., 1995), cannabinoids from Cannabis
sativa (Bisogno et al., 2001), ginsenosides found in the ginseng
Panax ginseng (Jung et al., 2001), a number of animal-derived
toxins, such as VaTx1, VaTx2, and VaTx3 found in the venom of
the tarantula Psalmopoeus cambridgei activates TRPV1 channels
(Siemens et al., 2006) while other toxins, including agatoxin 489
and agatoxin 505, from the spider Agelenopsis aperta, and the
analgesic polypeptide HC1, from the see anemona Heteractis
crispa, elicits TRPV1 inhibition (Kitaguchi and Swartz, 2005;
Andreev et al., 2008). Furthermore, a number of endogenous
molecules, known as endovanilloids, including leukotriene B4
and 12-S-HPETE and anandamide (a cannabinoid receptor
agonist) have been found to be potent activators of TRPV1
channels (Di Marzo et al., 2002; Hermann et al., 2003). On the
other hand, alkaloids, such as nicotine (from Nicotiana tabacum)
or yohimbine (from the bark of the tree Pausinystalia yohimbe),
phenols like grifolin, neogrifolin, and albaconol (present in the

TABLE 1 | Agonists and antagonists of TRPV1 and TRPA1 channels.

Channel Agonist Potency (EC50) Antagonist Potency (IC50) References

TRPV1 Capsaicin 0.04–1 µM Agatoxin 489 0.3 µM Jung et al., 2001; Behrendt et al., 2004; Varga et al., 2005;

Rami et al., 2006; Harteneck et al., 2011; Planells-Cases

et al., 2011; Vetter and Lewis, 2011; Xia et al., 2011
Eugenol 1 mM Agatoxin 505 0.3 µM

Resiniferatoxin 39 nM APHC1 54 nM

Polygodial 5 µM Capsazepine 420 nM

Cinnamodial 0.6 µM Nicotine 1 mM

Isovelleral 100 nM Yohimbine 25 µM

Cannabidiol 3 µM Acetylsalicylic acid 1 µM

Ginsenoside Rc ? Grifolin 26 µM

VaTx1 12 µM Neogrifolin 7 µM

VaTx2 3 µM Albaconol 17 µM

VaTx3 0.3 µM BCTC 35 nM

Leukotriene B4 30 µM AMG-517 32 nM

12-S-HPETE 10 µM SB366791 651 nM

Anandamide 30 µM

TRPA1 Allyl isothiocyanate 1–6.5 µM Camphor 0.6 mM Karashima et al., 2007; Trevisani et al., 2007; Cruz-Orengo

et al., 2008; Eid et al., 2008; Sculptoreanu et al., 2010;

Harteneck et al., 2011; Vetter and Lewis, 2011; Trevisan

et al., 2014; Wei et al., 2009; McGaraughty et al., 2010;

Brenneis et al., 2011; Sisignano et al., 2012

Cinnamaldehide 60µM HC-030031 6.2 µM

Methyl salicylate 600 µM A-967079 67 nM

Allicin 7.5 µM Chembridge-5861528 ?

Ajoene 0.5 µM

Diallyl trisufphide 0.5 µM

Hydroxy-α-sanshool 69 µM

Acrolein 5 µM

Crotonaldehyde 16 µM

19 tetra-hydrocannabinol 12 µM

Cannabinol 20 µM

Hydrogen peroxide ?

Nitrooleic acid ?

4-hydroxy-2-nonenal 27 µM

15-deoxy- 112,14-PGJ2 ?

5,6-EET ?

8,9-EET ?

?
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mushroom Albatrellus confluens) or acetylsalicylic acid have
been found to inhibit the activity of TRPV1 channels, for a
review see Vetter and Lewis (2011). Endogenous modulators
of TRPV1 activity include noradrenaline, which is able to
attenuate capsaicin-activated response by ∼60%, a mechanism
mediated by activation of α2 adrenergic receptors that has been
reported to underlie the inhibition of the incoming noxious
stimuli at the dorsal horn of the spinal cord (Chakraborty et al.,
2017).

TRPA1

TRPA1, also known as P120 and ANKTM1, is the sole member of
the TRPA subfamily. It was first described in human fibroblasts
where its expression is lost after oncogenic transformation
(Jaquemar et al., 1999). TRPA1 has been found to be expressed
in peptidergic nociceptors, as well as in a number of non-
neuronal cells, including keratinocytes (Atoyan et al., 2009),
megakaryocytes (Albarran et al., 2013) or enterochromaffin cells
(Nozawa et al., 2009), and tissues (for a review see Benemei et al.,
2014).

In addition to TRPV1, TRPA1 is specialized in the
transduction of noxious stimuli in mammals. In fact, a certain
degree of interaction between both channels has been reported.
TRPV1 is expressed in most TRPA1-expressing neurons and
about 30% of TRPV1-expressing sensory neurons also exhibit
TRPA1 expression (Story et al., 2003). Furthermore, TRPV1 has
been reported to influence several features of the TRPA1 channel,
such as voltage–current relationships and open probability
(Staruschenko et al., 2010). Further pieces of evidence for the
functional interaction between both channels comes from studies
reporting that the biophysical properties of TRPA1 are different
when TRPA1 is expressed alone or coexpressed with TRPV1 and
that the TRPV1 and TRPA1 agonists, capsaicin and mustard oil,
are able to induce heterologously desensitization of TRPA1 and
TRPV1 via calcineurin-dependent and independent pathways,
respectively (Ruparel et al., 2008).

The structure of TRPA1 shows the features of the TRP family
and consists of six membrane-spanning domains and a presumed
pore-forming region between the fifth and sixth transmembrane
domains. Its N- and C-terminal segments are predicted to be
located in the cytoplasm (Figure 1). In addition, an unusual and
characteristic feature of TRPA1 is the presence of a very long
N-terminus, which contains at least 16 predicted ankyrin repeat
domains (Story et al., 2003; Paulsen et al., 2015). It is the only
mammalian TRP channel with such high number of ankyrin
repeats, which might provide the protein a certain degree of
elasticity, as well as, the ability to interact with other proteins,
especially those of the cytoskeleton (Corey et al., 2004; Sotomayor
et al., 2005).

TRPA1 is a polymodal ion channel that can be activated by
a number of physical and chemical stimuli. Among the physical
stimuli, TRPA1 is sensitive to temperature. The 10 thermo-
TRP channels identified to date, including TRPV1-4, TRPM2,
TRPM4, TRPM5, TRPM8, TRPC5, and TRPA1, are activated by
different temperature ranges. The mammalian TRPs activated by
heat are TRPV2 (activated at temperatures over 52◦C), TRPV1
(sensitive to temperatures over 42◦C), TRPV4 (activated by

temperatures between 27 and 42◦C), TRPV3 (by temperature
over 33◦C), TRPM2 (sensitive to temperatures between 35
and 42◦C), TRPM4 and TRPM5 (sensitive to temperatures
between 15 and 35◦C). On the other hand, TRPC5 activity is
potentiated at temperatures below 30◦C, TRPM8 is sensitive to
temperatures below 25◦C and TRPA1 is activated at temperatures
below 17◦C (Caterina et al., 1999; Dhaka et al., 2006; Vriens
et al., 2014). As TRPV1 has been associated to painful heat,
TRPA1 has been reported to be associated to noxious cold
sensation (Patapoutian et al., 2003). The thermal sensitivity of
TRPA1 is conserved throughout evolution, although the range
of temperatures that activates the channel differs among the
distinct vertebrates, thus, in reptiles and amphibians TRPA1 is
sensitive to heat and, in certain snakes, TRPA1 provides sufficient
thermal sensitivity for infrared detection (Poletini et al., 2015;
Kang, 2016).

In addition, TRPA1 can be activated by a number of chemical
stimuli (Table 1), including exogenous compounds, such as
isothiocyanates, cinnamaldehyde, and methyl salicylate (the
pungent compounds associated to burning sensation present
in mustard oil, wasabi, horseradish, cinnamon and wintergreen
oil; Bandell et al., 2004), allicin, ajoene, and diallyl sulfides
(organosulfur compounds present in garlic; Bautista et al., 2006),
acrolein, and crotonaldehyde (present in cigarette smoke; Andre
et al., 2008), cannabinoids, such as 1

9 tetra-hydrocannabinoland
cannabinol (Jordt et al., 2004), alkylamides, including hydroxy-
α-sanshool (one of the compounds of the Szechuan pepper; Riera
et al., 2009; Vetter and Lewis, 2011), or endogenous compounds
such as hydrogen peroxide (Trevisan et al., 2014), nitro-oleic
acid, a byproduct of nitric oxide (Sculptoreanu et al., 2010), 4-
hydroxy-2-nonenal (Trevisani et al., 2007), the cyclopentenone
prostaglandin D2 metabolite 15-deoxy- 1

12,14-prostaglandin J2
(Cruz-Orengo et al., 2008), and different epoxyeicosatrienoic
acids (EET), including 5,6-EET (Sisignano et al., 2012) and 8,9-
EET (Brenneis et al., 2011). By contrast, a number of TRPA1
antagonists have been identified, including the synthetic HC-
030031, its derivative chembridge-5861528 or A-967079, among
others (Table 1). Most exogenous compounds activate TRPA1
channels by covalent modification of cysteines and lysines in
the N-terminus (Hinman et al., 2006; Macpherson et al., 2007;
Nilius et al., 2011), although it remains to be determined the
mechanism of activation of the channel by certain endogenous
compounds.

In addition to TRPV1 and TRPA1, other TRP members
have been associated to noxious sensation, including TRPM3,
expressed in a number of small-diameter sensory neurons
from dorsal root and trigeminal ganglia where it is involved
in the nocifensive response to heat (Vriens et al., 2011),
TRPV4, presented as an osmo-transducer in primary afferent
nociceptive nerve fibers (Alessandri-Haber et al., 2003), TRPC1
and TRPC6, which cooperate with TRPV4 in the mediation of
hyperalgesia to mechanical and hypotonic stimuli induced by
inflammatory mediators (Alessandri-Haber et al., 2009), TRPV3,
a channel sensitive to farnesyl pyrophosphate that is involved
in the sensitivity to noxious heat (Bang et al., 2010) TRPM8,
involved in cold hyperalgesia and tactile allodynia (Salat and
Filipek, 2015), TRPC3, associated to the mediation of store-
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and receptor-operated Ca2+ entry in DRG neurons (Alkhani
et al., 2014), TRPC4, which is required for the detection or
transmission of colonic visceral pain sensation, and TRPC5,
which, together with TRPC4, is relevant for pain hypersensitivity
and neuropathic pain (Westlund et al., 2014; Wei et al., 2015);
however, the involvement of these channels in pain detection or
transmission has been less characterized than that of TRPV1 or
TRPA1.

NOCICEPTIVE TRP CHANNELS AND PAIN
PATHOLOGIES

Nociceptive TRP channels have been found to be involved
in a number of pain modalities, including inflammatory pain,
neuropathic pain, visceral pain, and pain associated to certain
pathological conditions, including cancer or migraine (Mickle
et al., 2016).

The involvement of TRPV1 in inflammatory pain is the most
prominent among the TRP channels. TRPV1 antagonists have
been shown to be efficient attenuating thermal hyperalgesia
induced under inflammatory conditions and increasing the
noxious heat threshold (Tekus et al., 2010) and similar results
have been obtained in TRPV1 lacking mice models (Davis
et al., 2000). Further evidence supporting the role of TRPV1 in
inflammatory pain comes from studies reporting that TRPV1
is essential for the analgesia induced by electroacupuncture in
a mouse model of inflammatory pain (Liao et al., 2017). In
addition to TRPV1, TRPA1 has been presented as a candidate
to mediate inflammatory mechanical hyperalgesia as well as cold
hyperalgesia under inflammatory conditions (Eid et al., 2008;
Da Costa et al., 2010). Furthermore, TRPA1 has been reported
to modulate inflammation and pruritogen responses in allergic
contact dermatitis. TRPA1 is involved in skin edema, leukocyte
infiltration and antihistamine-resistant scratching inmice treated
with oxazolone (Liu et al., 2013).

Neuropathic pain occurs as a result of nerve injury. The
role of TRPV1 has been demonstrated in neuropathic pain
associated to diabetes or the administration of chemotherapeutics
(Bourinet et al., 2014). A more recent study has revealed a
high coexpression between TRPV1 and different sensitizing
agents, such as PKCε, during the development of neuropathic
pain (Malek et al., 2015) and blockade of this mechanism
by quercetin has been found to attenuate paclitaxel-induced
neuropathic pain (Gao et al., 2016). TRPA1 has also been
proposed to mediate mechanical hyperalgesia and allodynia
during neuropathic pain in diabetic patients or derived from
the administration of chemotherapeutics, probably mediated
by the synthesis of reactive oxygen and nitrogen species
(Kim and Hwang, 2013; Huang et al., 2017), which are
well-known TRPA1 activators (Trevisan et al., 2016). TRPA1
and TRPV1 have also been involved in the development of
migraine, which can be activated by a number of TRPA1
agonists (Benemei et al., 2014) and might be attenuated by
repeated desensitizing administration of capsaicin to the nasal
mucosa (Fusco et al., 2003). Furthermore, ethanol, a well-known

trigger of migraine, has been reported to induce TRPV1
activation (Nicoletti et al., 2008). Activation of TRP channels,
such as TRPV1 and TRPA1, has been reported to induce
the trigeminal calcitonin gene-related peptide pathway, which
mediate neurogenic inflammation, thus leading to the migraine
attacks (Benemei et al., 2013).

Visceral pain occurs in internal organs and its transduction
involves different TRP family members, including TRPV1,
TRPA1, and TRPM8. Silencing the expression of TRPV1 by
RNAi has been reported to attenuate visceral pain in vivo
(Christoph et al., 2006). Consistent with this, a more recent
study has revealed that decreased expression of miR-199 in
irritable bowel syndrome, which results in enhanced expression
of TRPV1, leads to increased visceral hypersensitivity (Zhou
et al., 2016). On the other hand, the luminal gasotransmitter
hydrogen disulphide has been reported to induce colonic pain
and hyperalgesia via activation of Cav3.2 and TRPA1 channels
(Tsubota-Matsunami et al., 2012). Furthermore, the TRPA1
agonist ASP7663 has been reported to prevent constipation
(a gastrointestinal motility disorder) when administered orally,
and induce analgesic abdominal effects when it is intravenously
administered (Kojima et al., 2014). Finally, TRPM8 has
been found to play a relevant role in overactive bladder
and painful bladder syndrome and it has been reported
that administration of the TRPM8 channel blocker AMTB
is able attenuate this syndrome in rats (Lashinger et al.,
2008).

Chronic pain is also a multidimensional complication of
cancer or its treatment. The role of TRPV1 in bone cancer
pain has been widely investigated. TRPV1 has been found
to be associated to bone cancer pain, as demonstrated by
pharmacological inactivation of TRPV1 as well as disruption
of the TRPV1 gene (Ghilardi et al., 2005). Furthermore, the
TRPV1 antagonist SB366791 has been reported to potentiate the
analgesic effect of intraperitoneal administration of morphine
in a mouse model of bone cancer pain. The expression of
TRPV1, as well as the TRPV1-dependent currents, have been
found to be enhanced upon the development of bone cancer
in DRG neurons. In these cells, capsaicin-mediated currents
were potentiated by administration of lysophosphatidic acid
through a mechanism dependent on PKCε but independent on
PKA and the small GTPase Rho (Pan et al., 2010). Two more
recent studes have revealed that the up-regulated expression and
function of TRPV1 in bone cancer painmight be attributed to the
the presence of tumor tissue-derived endogenous formaldehyde,
which enhances TRPV1 expression via mitogen-activated protein
kinase and PI3K, but independently on PKC (Han et al., 2012), as
well as the regulatory effects of insulin-like growth factor-1 (Li
et al., 2014). Finally, JAK/PI3K-dependent TRPV1 up-regulation
has been reported to be involved in peripheral sensitization
and bone cancer-induced pain evoked by interleukin-6 (Fang
et al., 2015). TRPV1 and TRPA1 have also been found to
be involved in neuropathic pain due to the administration
of chemotherapeutics, including oxaliplatin (Park et al., 2015),
5-fluorouracil (Yamaguchi et al., 2016), or docetaxel (Huang
et al., 2017).
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Currently, there is a body of studies and clinical trials
identifying new antagonists of the nociceptive TRPs and
characterizing their effects in the in situ attenuation of pain
transduction at the nociceptors.
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