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The culture of Octopus vulgaris is constrained by unsolved problems in paralarvae

rearing, mainly associated to the unknown nutritional requirements of this species in

early stages. In this article we studied the fatty acid profile (total, neutral, and polar lipid

fractions) in wild eggs and wild hatchlings, collected in Gran Canaria (SW) (Spain) with

artificial dens, in comparison to hatchlings obtained in captivity from broodstock fed on

trash fish species. Total lipids were 11.5–13.5% dw, with the polar fraction representing

a 70.6–75.5% of total lipid, with lower values in wild hatchling in comparison with captive

ones. Docosahexaenoic acid (DHA) was the main component in neutral and polar fatty

acid profile in all samples, underlying its importance in this species. Decreasing levels

of saturates and arachidonic acid (ARA) from wild eggs to hatchlings, mainly associated

to the polar fraction, suggest their use during embryonic development. In hatchlings,

increasing levels of oleic acid in the neutral fraction and eicosapentaenoic acid (EPA) in

the polar fraction, suggests their importance in hatchlings quality. Wild hatchlings showed

in the polar fraction higher oleic acid and ARA, and lower DHA/ARA and EPA/ARA ratios

in comparison with captive hatchlings, suggesting a difference in paralarvae nutritional

status. These results suggest the importance of n-3 highly unsaturated fatty acids (HUFA),

oleic acid, and ARA, presented in the adequate lipid fraction, in the diet of broodstock

and paralarvae of O. vulgaris.

Keywords: fatty acids, neutral and polar lipids, Octopus vulgaris, hatchlings, eggs, artificial dens, wild and captive

reared

INTRODUCTION

The common octopus Octopus vulgaris is a promising candidate to diversify marine farming for
its wide market demand and high growth rates (Vaz-Pires et al., 2004; García García and Cerezo
Valverde, 2006; Estefanell et al., 2012a). However, the low survival of the paralarvae after the
planktonic phase still constrains the industrial rearing of this species (Iglesias et al., 2007; Iglesias
and Fuentes, 2014). To date, best paralarvae growth and survival were obtained when crab zoeas
were added as a complement toArtemia (Villanueva, 1994, 1995; Iglesias et al., 2004; Carrasco et al.,
2006; Fuentes et al., 2011; Reis et al., 2015; Garrido et al., 2016a; Roo et al., 2017), which suggests that
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nutrition is the main factor affecting the biological performance
of early life stages in this species (Navarro et al., 2014). In order
to estimate its nutritional requirements, biochemical analysis of
wild hatchlings, wild paralarvae (6–8 days old), wild juveniles,
and potential natural preys have been performed. In general,
these wild individuals showed high phospholipids and high n-
3 HUFA (EPA, DHA) and n-6 HUFA (ARA) content (Navarro
and Villanueva, 2000, 2003; Estefanell et al., 2013; Garrido et al.,
2016b; Roo et al., 2017), abundance in certain amino acids
(lysine, leucine, arginine, glutamate, aspartate) (Villanueva et al.,
2004) and high levels in some microelements (copper, calcium,
strontium, sulfur) (Villanueva and Bustamante, 2006). However,
in comparison with these estimated nutritional requirements of
paralarvae, the enriched Artemia successfully used as live prey in
marine fish larval rearing, shows low polar lipid content and an
imbalance in the n-3 and n-6 HUFA fatty acid profile (Navarro
and Villanueva, 2000; Estefanell et al., 2013; Reis et al., 2015;
Garrido et al., 2016b; Roo et al., 2017). Even though Artemia
enrichment in DHA and polar lipids was attained using marine
lecitine (Guinot et al., 2013a), the rapid bioconversion of DHA
from the polar to the neutral fraction (Guinot et al., 2013b)
suggests the inadequacy of Artemia as live prey for O. vulgaris
paralarvae. These findings also underline the importance of
the fraction in which the fatty acids are supplied for the
successful rearing of this species. For instance, reared paralarvae
of O. vulgaris showed most n-6 and n-3 HUFA in the polar
fraction and most monoenes in the neutral fraction after 10–30
days of feeding (Navarro and Villanueva, 2003; Viciano et al.,
2011). However, no data is available regarding the fatty acid
profile of the neutral and polar lipid fractions in eggs and
hatchlings, which represents useful information to estimate the
nutritional requirements of early stages, contributing to the
improvement of enrichment protocols for Artemia and specific
compound microdiets.

In recent years, new data has been published on the ecology of
O. vulgaris paralarvae from the NW Atlantic cost of the Iberian
peninsula. For instance, decapod crab zoeas were identified as
main natural preys by molecular methods (Roura et al., 2012),
an oceanic life strategy far from the shelf in paralarvae was
observed (Roura et al., 2016) and a preference for spawning areas
with hard bottom substrate and moderate depth (<20 m) was
detected (Guerra et al., 2015). However, data regarding the initial
biochemical profile of wild paralarvae and eggs of O. vulgaris is
still scarce, which could provide useful information regarding the
nutritional requirement in early stages. In particular, one wild
egg mass was analyzed from the Mediterranean sea (Navarro
and Villanueva, 2003). To our knowledge, only the fatty acid
profile from total lipids were obtained in 10 wild paralarvae
of 6–8 days old in NW Spain (Garrido et al., 2016b) and in
two samples of wild hatchlings and egg masses at the Canary
Islands (Estefanell et al., 2013). Generally, the egg of marine
species contains all the nutrients that the larvae require during
the lecithotrophic phase, prior to exogenous feeding, and is
related to the broodstock diet (Mourente and Vazquez, 1996).
In O. vulgaris, an effect of the broodstock diet was observed on
the biochemical profile of gonads (ovary and testis) (Estefanell
et al., 2015), eggs and hatchlings (Quintana et al., 2015). Also,

in a recent rearing trial with paralarvae of O. vulgaris, stress and
nutritional condition biomarkers showed significant variability
associated to geographical origin, despite applying the same
feeding protocol and diet (Garrido et al., 2017). These authors
concluded that further research must be carried out in order to
understand the physiology of O. vulgaris associated to different
geographical origins. Indeed, differences in the fatty acid profile
were observed in the ovary of wild O. vulgaris collected from
the natural environment in distant areas (Rosa et al., 2004; Sieiro
et al., 2006; Lourenço et al., 2014; Estefanell et al., 2015), probably
related to differences in the natural diet (Hanlon and Messenger,
1996). For these reasons, samples of wild eggs and wild hatchlings
from different areas must be collected and analyzed in order
to obtain information on the nutritional requirements of this
species, and search for potential regional differences.

In this study we used indirect methods to obtain information
about the neutral and polar fatty acid nutritional requirements
in early stages in O. vulgaris. For this, we collected wild egg
masses in Gran Canaria (Canary Islands, Spain) from the natural
environment and obtained wild hatchlings at the lab. Also, we
obtained hatchlings from captive broodstock fed on trash fish
species commonly used during the grow out phase (Estefanell
et al., 2012b).

MATERIALS AND METHODS

Ethics in Animal Research
The protocols for handling and rearing of broodstock of
O. vulgaris, as well as the protocol for paralarvae euthanasia were
approved by the Committee of Ethics in Animal Welfare of the
University of Las Palmas de Gran Canaria in compliance with
Directive 2010/63/EU.

Wild Eggs and Hatchlings
To obtain wild eggs and wild hatchlings, artificial dens were
specifically designed to capture females caring eggs. For this, a
black “T” shaped PVC 160 mm diameter pipe, with two ends
closed with a PVC lid, was attached to a concrete base of 60 ×

40 × 15 cm, weighing ∼15 kg. Several dens were placed at 10–
20 m depth in rocky areas (with abundant crevices and holes)
in the SW coasts of Gran Canaria (Las Palmas, Canary Islands).
In November, several artificial dens were spotted with eggs. In
total, three artificial dens with the female and the egg mass were
carefully placed in a 250 L tank to be transported, by boat to the
nearest harbor and by car to the ULPGC aquaculture facilities. In
total, transport took∼1 h.

Upon arrival to the facility, each den with the female
and the eggs was placed individually in 500 L circular
tanks, using 5 µm filtered natural seawater (37 ppt) in
an open flow through system adjusted to a renovation of
50%/h. Natural photoperiod (November–December) were used
during embryonic development. Each tank was covered with a
shadowing net and the females were not fed during this period
(∼1month). Once the paralarvae started hatching the renovation
was reduced to 50 L/h, and the newly hatched paralarvae were
retained by a filter (net mesh of 375 µm) in a nearby 100 L
tank connected to the 500 L tank. Hatchlings were daily collected
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(8:00 a.m.). The water temperature was ranged 20–22◦C and the
oxygen levels were above the 90% saturation.

Captivity Hatchlings
Wild specimens of O. vulgaris were provided by professional
fishermen and transported to ULPGC aquaculture facilities
(Telde, Las Palmas, Canary Islands) in the conditions described
by Estefanell et al. (2012b). Subadults ofO. vulgaris, males:female
sex ratio 1:1 (N = 6, initial weight: 975 ± 128 g) were kept
under social conditions in 1.5 m3 rectangular tanks under natural
photoperiod (September–October), using 5 µm filtered natural
seawater (37 ppt) in an open flow through system adjusted to
a renovation of 100%/h. The tank was provided with 12 dens
(PVC tubes of 160 mm diameter and 50 cm length) and covered
with a shadowing net. During the rearing period the specimens
were fed ad libitum once a day (six times/week) with fresh bogue
Boops boops (Estefanell et al., 2012b). The males were removed
after 2 weeks. The remaining females naturally spawned after
∼2 months. Same methodology as described above was used to
collect hatchlings.

Paralarvae Euthanasia Protocol
Hatchlings were anesthetized by immersion in seawater with
a 1.0% ethanol (96%) for 5 min, prior to being sacrificed by
immersion on iced seawater. The same protocol was applied for
eggs.

Dry Weight Determinations
The hatching period lasted 2–3 weeks. For each female, dry
weight (dw) of hatchlings was determined four times during the
hatching period. For each time, 30 paralarvae were randomly
selected and separated in 3 pools of 10 paralarvae. After being
sacrificed, the hatchlings were rinsed with distilled water, prior
to being carefully placed on a crystal slide. The dry weight was
determined by drying them at 105◦C until constant weight.

Biochemical Samples
The following samples were taken: a sample of eggs (3 strings)
from each artificial den was taken upon arrival to the aquaculture
facility (“wild eggs,” N = 3, from different females), hatchlings
from the natural environment (“wild hatchlings,” N = 3,
hatched from eggs from the same females) and hatchlings
from broodstock fed on trash fish species under common
aquaculture conditions (“captive hatchlings,” N = 3, from
different females). For each female, ∼1,000 hatchlings were
sacrificed four times during the hatchling period, and mixed to
obtain an homogeneous pool sample (∼4 g wet weight). After
being sacrificed, the eggs and the hatchlings were rinsed with
distilled water to remove ethanol traces, dried on absorbent paper
and immediately frozen at−80◦C.

Biochemical Analysis
Proximate composition of eggs and hatchlings were analyzed
following standard procedures (AOAC, 1997). Moisture was
determined after drying the sample in an oven at 105◦C to
constant weight; ash by combustion in a muffle furnace at 600◦C
for 12 h; protein content (N × 6.25) was determined by Kjeldahl
method and crude lipid was extracted following the method

described by Folch et al. (1957). Neutral and polar fractions
of total lipids were separated by adsorption chromatography
on silica cartridges (Sep-pak; Waters S.A., Massachussets, USA)
using 30 mL chloroform and 20 mL chloroform/methanol (49: 1,
v/v) as solvent for neutral lipid, followed by a 30 mL methanol
wash to obtain the polar fractions according to Juaneda and
Rocquelin (1985). Fatty acids methyl esters from total, neutral,
and polar lipids were extracted by transmethylation as described
by Christie (1982) and separated by gas chromatography under
the conditions described by Izquierdo et al. (1992). All analyses
were conducted in triplicates.

Statistical Analysis
All data, presented as mean± standard deviation, were tested for
normality (Kolmogorov Smirnov) and homogeneity of variances
(Levene’s test). When necessary, an arcsin transformation of the
data was carried out, particularly when data was presented as
% (Fowler et al., 1998). The dry weight of wild and captive
hatchlings was compared using a Student “t” model. The
proximate composition, neutral, and polar lipid proportions, as
well as the % of fatty acid from total, neutral, and polar lipids of
wild eggs, wild hatchlings and captive hatchlings were submitted
to a one way ANOVA test. In addition, differences among groups
were determined with a Tukey post-hoc test. When normality or
homogeneity of variances was not achieved, non-parametric tests
were used (KruskalWallis, Games-Howell). In all thismanuscript
significant differences were considered when P < 0.05. For the
different analysis, the statistical computer package SPSS v15
(SPSS, Chicago, IL, USA) was used.

RESULTS

Proximate Composition and Fatty Acid
Profile from Total Lipids
A lower lipid content (% dw) and a higher ash content (%) were
observed in eggs (wild) in comparison with hatchlings (P < 0.05)
(Table 1). Similar lipid and protein content was observed in wild
and captive hatchlings, while ash content was higher in wild than
in captive hatchlings (P < 0.05) (Table 1).

Regarding the fatty acids from total lipids, a decrease
in saturates (tetradecanoic acid, 14:0; palmitic acid, 16:0)
and n-6 (ARA, 20:4n-6), and an increase in monoenes
(oleic acid, 18:1n-9) and n-3 HUFA (ETE, 20:3n3; EPA, 20:5n-3)
were observed in hatchlings regardless of origin, in comparison
with eggs (wild) (P < 0.05) (Table 1). Also, a higher ARA
and lower DHA content were observed in wild hatchlings in
comparison with those obtained from captive broodstock fed on
trash fish species (P < 0.05) (Table 1).

Neutral and Polar Lipid Proportion from
Total Lipids and Fatty Acid Profile from
Each Fraction
In general, a higher polar lipid proportion was observed in
comparison with the neutral fraction regardless of sample (P <

0.05). In particular, the neutral and polar fraction represented
a 25.6 ± 0.5 and a 74.4 ± 0.5% in eggs (wild), a 29.4 ± 1.6
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TABLE 1 | Dry weight of hatchlings (mg), proximate composition (lipids, proteins,

moisture, ash) (%), and main fatty acids profile (% of total fatty acids) from total

lipids in wild eggs (N = 3), wild hatchlings (N = 3), and hatchlings obtained in the

lab from captive broodstock fed on trash fish species (N = 3).

Eggs (wild) Hatchlings

(wild)

Hatchlings

(captivity)

Dry weight (mg) – 0.20 ± 0.02 0.22 ± 0.01

Lipids (%dw) 11.5 ± 0.8a 13.3 ± 0.2b 13.5 ± 0.5b

Proteins (%dw) 72.7 ± 3.2 71.6 ± 2.3 72.0 ± 4.2

Moisture (%) 70.4 ± 2.8a 85.4 ± 0.2b 86.3 ± 5.2b

Ash (%) 1.6 ± 0.1c 1.3 ± 0.1b 1.0 ± 0.1a

14:0 (%) 2.8 ± 0.7b 1.1 ± 0.0a 0.9 ± 0.1a

16:0 (%) 21.6 ± 0.2b 17.0 ± 0.1a 17.3 ± 1.3a

16:1n-7 (%) 0.6 ± 0.1c 0.3 ± 0.0b 0.2 ± 0.0a

18:0 (%) 3.8 ± 0.4 4.3 ± 0.1 3.8 ± 0.1

18:1n-9 (%) 5.8 ± 0.2a 9.5 ± 0.1b 10.4 ± 0.3c

18:1n-7 (%) 3.6 ± 0.4b 2.6 ± 0.0a 2.4 ± 0.3a

18:1n-5 (%) 1.9 ± 0.1c 1.5 ± 0.1b 0.7 ± 0.1a

18:2n-6 (%) 0.2 ± 0.1b 0.1 ± 0.0a 0.1 ± 0.0a

20:1n-9 (%) 3.6 ± 0.4 3.7 ± 0.1 3.7 ± 0.1

20:1n-7 (%) 0.3 ± 0.1a 0.6 ± 0.0b 0.5 ± 0.0b

20:2n-6 (%) 1.3 ± 1.1 0.8 ± 0.0 0.9 ± 0.2

20:4n-6 (%) 13.0 ± 1.2c 8.5 ± 0.3b 4.5 ± 0.5a

20:3n-3 (%) 0.1 ± 0.0a 2.0 ± 0.1b 2.1 ± 0.1b

20:4n-3 (%) 0.1 ± 0.0a 0.7 ± 0.2b 0.5 ± 0.1b

20:5n-3 (%) 9.6 ± 0.8a 14.0 ± 0.5b 15.6 ± 0.4c

22:1n-9 (%) 0.2 ± 0.0a 0.6 ± 0.0b 0.5 ± 0.0b

22:4n-6 (%) 1.4 ± 0.2b 1.1 ± 0.1b 0.3 ± 0.0a

22:5n-6 (%) 1.3 ± 0.2b 1.1 ± 0.1b 0.6 ± 0.1a

22:5n-3 (%) 1.5 ± 0.3b 2.2 ± 0.1c 1.0 ± 0.0a

22:6n-3 (%) 24.7 ± 1.0a 25.0 ± 0.1a 31.9 ± 1.4b

∑
Saturates (%) 28.7 ± 0.8b 22.8 ± 0.2a 22.2 ± 1.5a

∑
Monoenes (%) 16.4 ± 0.8a 19.3 ± 0.2b 18.6 ± 0.2b

∑
n-3 (%) 36.6 ± 1.3a 44.4 ± 0.9b 51.5 ± 1.6c

∑
n-6 (%) 17.3 ± 1.9c 11.5 ± 0.4b 6.4 ± 0.4a

∑
n-9 (%) 6.4 ± 0.1a 11.5 ± 0.1b 11.9 ± 0.2c

∑
n-3 HUFA (%) 36.1 ± 1.4a 43.8 ± 0.8b 51.1 ± 1.6c

DHA/EPA 2.6 ± 0.2c 1.8 ± 0.1a 2.1 ± 0.1b

DHA/ARA 1.9 ± 0.2a 3.0 ± 0.1b 7.1 ± 0.3c

EPA/ARA 0.8 ± 0.1a 1.6 ± 0.1b 3.4 ± 0.1c

All variables are shown asmean± SD. No significant difference were found in dry weight in

hatchlings regardless of origin (P < 0.05). Different superscript letter within a row denotes

significant difference among samples (P < 0.05). The
∑

included all detected fatty acids.

Selected FA represented 95–98% of total FA.

and a 70.6 ± 1.6% in hatchlings (wild), and a 24.8 ± 2.5 and a
75.2± 2.5% in hatchlings (captivity), respectively (Tables 2, 3). A
higher neutral lipid proportion and a lower polar lipid proportion
were observed in wild hatchlings in comparison with hatchlings
obtained from captive broodstock (P < 0.05) (Tables 2, 3).

Regarding the fatty acids from the neutral fraction, the
highest monoenes and n-9 were observed in wild hatchlings in
comparison with the other samples (P < 0.05) (Table 2). In
contrast, 20:1n-9 (Eicosenoic acid) and 20:1n-7 (Paullinic acid)
showed higher values in eggs in comparison with hatchlings (P <

TABLE 2 | Neutral lipids from total lipids (%) and main fatty acids in the neutral

fraction in wild eggs (N = 3), wild hatchlings (N = 3), and hatchlings obtained in

the lab from captive broodstock fed on trash fish species (N = 3).

Eggs (wild) Hatchlings

(wild)

Hatchlings

(captivity)

Neutral Lipids/

Total lipids (%)

25.6 ± 0.5ab 29.4 ± 1.6b 24.8 ± 2.5a

14:0 (%) 5.5 ± 1.3b 2.0 ± 0.4a 2.1 ± 0.7a

16:0 (%) 16.7 ± 1.0 17.3 ± 1.8 15.3 ± 2.1

16:1n-7 (%) 0.9 ± 0.2 0.8 ± 0.3 0.9 ± 0.2

18:0 (%) 4.1 ± 0.3a 7.9 ± 0.9b 8.8 ± 0.2b

18:1n-9 (%) 9.4 ± 0.8a 20.7 ± 2.5b 16.8 ± 0.4b

18:1n-7 (%) 2.5 ± 0.3b 2.1 ± 0.2b 1.2 ± 0.0a

18:1n-5 (%) 0.5 ± 0.0 1.4 ± 1.2 0.2 ± 0.0

18:2n-6 (%) 0.8 ± 0.1b 0.1 ± 0.1a 0.2 ± 0.3ab

20:1n-9 (%) 7.2 ± 0.5b 2.5 ± 0.6a 3.1 ± 0.4a

20:1n-7 (%) 1.5 ± 0.1b 0.4 ± 0.0a 0.4 ± 0.0a

20:2n-6 (%) 0.9 ± 0.1 0.4 ± 0.5 1.4 ± 0.4

20:4n-6 (%) 7.9 ± 1.0b 4.4 ± 1.1a 4.1 ± 0.1a

20: 3n-3 (%) 0.6 ± 0.1a 2.0 ± 0.8b 1.4 ± 0.3b

20:4n-3 (%) 0.2 ± 0.0a 0.3 ± 0.2a 4.0 ± 0.8b

20:5n-3 (%) 8.7 ± 0.5 8.5 ± 0.9 7.2 ± 1.3

22:1n-9 (%) 1.0 ± 0.1 1.0 ± 0.7 1.5 ± 0.4

22:4n-6 (%) 0.8 ± 0.8 1.1 ± 0.7 0.4 ± 0.2

22:5n-6 (%) 1.1 ± 0.3b 0.9 ± 0.6b 0.1 ± 0.2a

22:5n-3 (%) 2.2 ± 0.5b 1.5 ± 0.8ab 0.6 ± 0.2a

22:6n-3 (%) 21.6 ± 2.5b 16.9 ± 2.3a 21.7 ± 1.4ab

∑
Saturates (%) 27.4 ± 2.2 28.7 ± 1.4 27.3 ± 2.1

∑
Monoenes (%) 24.9 ± 2.1a 30.6 ± 1.7b 25.8 ± 0.9a

∑
n-3 (%) 34.1 ± 2.8ab 30.6 ± 2.8a 36.5 ± 1.7b

∑
n-6 (%) 11.8 ± 1.8b 7.7 ± 0.2a 7.2 ± 0.9a

∑
n-9 (%) 12.3 ± 0.9a 22.9 ± 2.4c 18.8 ± 0.6b

∑
n-3 HUFA (%) 33.4 ± 2.9ab 29.1 ± 2.3a 35.1 ± 1.2b

DHA/EPA 2.5 ± 0.2ab 2.0 ± 0.5a 3.1 ± 0.6b

DHA/ARA 2.8 ± 0.5a 4.0 ± 1.2ab 5.3 ± 0.3b

EPA/ARA 1.1 ± 0.2a 2.0 ± 0.3b 1.8 ± 0.3b

All variables are shown as mean ± SD. Different superscript letter within a row denotes

significant difference among samples (P < 0.05). The
∑

included all detected fatty acids.

Selected FA represented 92–95% of total FA.

0.05). A decrease in ARAwas observed in hatchlings regardless of
origin, while EPA showed similar levels in the different samples
in the neutral fraction (P < 0.05) (Table 2).

Regarding the fatty acids from the polar fraction, the lowest
levels of saturates (particularly 18:0, estearic acid) and the highest
levels of monoenes and n-9 (mainly associated to oleic acid)
were observed in wild hatchlings in comparison with the other
samples (P < 0.05) (Table 3). A reduction in ARA was observed
from wild eggs to wild hatchlings, with hatchling obtained
from captive broodstock showing the lowest levels (P < 0.05)
(Table 3). Increments in EPA, DHA/ARA, and EPA/ARA ratios
were observed from wild eggs to wild hatchlings, with hatchling
obtained from captive broodstock showing the highest levels (P<

0.05) (Table 3). Higher levels of n-3 HUFA (associated to 20:3n3,
ETE and EPA) were detected in hatchlings, regardless of origin, in
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TABLE 3 | Polar lipids from total lipids (%) and main fatty acids in the polar

fraction in wild eggs (N = 3), wild hatchlings (N = 3), and hatchlings obtained in

the lab from captive broodstock fed on trash fish species (N = 3).

Eggs (wild) Hatchlings

(wild)

Hatchlings

(captivity)

Polar Lipids/

Total lipids (%)

74.4 ± 0.5ab 70.6 ± 1.6b 75.2 ± 2.5a

14:0 (%) 2.8 ± 0.9b 1.1 ± 0.1a 0.9 ± 0.0a

16:0 (%) 25.2 ± 1.5b 18.1 ± 1.0a 20.2 ± 0.3a

16:1 n-7 (%) 0.6 ± 0.1b 0.1 ± 0.0a 0.1 ± 0.1a

18:0 (%) 6.6 ± 0.4b 4.1 ± 0.4a 11.5 ± 0.2c

18:1n-9 (%) 3.5 ± 0.6a 9.7 ± 0.6b 2.6 ± 0.0a

18:1n-7 (%) 1.8 ± 0.1b 2.5 ± 0.2c 0.8 ± 0.0a

18:1n-5 (%) 0.4 ± 0.0b 1.4 ± 0.0c 0.3 ± 0.0a

18:2n-6 (%) 0.2 ± 0.0a 0.6 ± 0.0b 0.6 ± 0.0b

20:1n-9 (%) 3.0 ± 0.3a 3.4 ± 0.2ab 3.8 ± 0.2b

20:1n-7 (%) 0.2 ± 0.1a 0.6 ± 0.0b 0.6 ± 0.1b

20:2n-6 (%) 0.7 ± 0.3 0.7 ± 0.1 0.9 ± 0.1

20:4n-6 (%) 13.3 ± 1.0c 7.7 ± 0.5b 4.5 ± 0.2a

20: 3n-3 (%) 0.1 ± 0.0a 1.8 ± 0.2b 2.1 ± 0.1b

20:4n-3 (%) 0.3 ± 0.4 0.2 ± 0.1 0.2 ± 0.0

20:5n-3 (%) 9.3 ± 0.8a 12.5 ± 1.3b 15.7 ± 1.0c

22:1n-9 (%) 0.3 ± 0.1a 0.5 ± 0.0b 0.6 ± 0.1b

22:4n-6 (%) 0.5 ± 0.6 1.4 ± 0.4 0.1 ± 0.2

22:5n-6 (%) 1.2 ± 0.2ab 1.6 ± 0.6b 0.6 ± 0.1a

22:5n-3 (%) 1.2 ± 0.2a 3.0 ± 0.8b 1.0 ± 0.1a

22:6n-3 (%) 22.2 ± 1.2a 26.3 ± 2.4ab 27.9 ± 1.7b

∑
Saturates (%) 35.0 ± 2.2b 23.6 ± 1.5a 32.9 ± 0.0b

∑
Monoenes (%) 10.3 ± 0.8a 18.4 ± 1.0b 9.0 ± 0.5a

∑
n-3 (%) 33.6 ± 1.8a 44.1 ± 2.2b 47.2 ± 0.3b

∑
n-6 (%) 16.3 ± 1.4c 12.3 ± 0.4b 6.9 ± 0.2a

∑
n-9 (%) 4.0 ± 0.5a 10.9 ± 0.7b 3.9 ± 0.2a

∑
n-3 HUFA (%) 33.2 ± 1.8a 43.8 ± 2.2b 46.9 ± 0.4b

DHA/EPA 2.4 ± 0.2 2.1 ± 0.4 1.8 ± 0.2

DHA/ARA 1.7 ± 0.2a 3.4 ± 0.5b 6.2 ± 0.7c

EPA/ARA 0.7 ± 0.1a 1.6 ± 0.1b 3.5 ± 0.0c

All variables are shown as mean ± SD. Different superscript letter within a row denotes

significant difference among samples (P < 0.05). The
∑

included all detected fatty acids.

Selected FA represented 92–98% of total FA.

comparison with wild eggs (P < 0.05) (Table 3). Wild hatchlings
showed higher levels of monoenes (series 18:1n) in comparison
with hatchlings from captive broostock (P < 0.05) (Table 3).

DISCUSSION

In this study, O. vulgaris hatchlings showed lower dry weights
in comparison to data from different regions (0.30–0.48 mg dw;
Navarro and Villanueva, 2000; Carrasco et al., 2006; Seixas et al.,
2010; Fuentes et al., 2011; Domingues et al., 2013; Iglesias et al.,
2014), but similar to previous studies in the Canary Islands (0.17–
0.25 mg dw; Reis et al., 2015; Garrido et al., 2017; Roo et al.,
2017). This could be related to the higher seawater temperature
in Canarian latitudes. Indeed, the incubating temperature is
inversely related to hatching size in O. vulgaris (Repolho et al.,

2014) and in other cephalopod species (Sepia officinalis, Loligo
opalescens, Loligo vulgaris) (Bouchaud, 1991; Villanueva, 2000;
Domingues et al., 2002; Vidal et al., 2002).

Lipid content observed in hatchlings (13.3–13.5% dw) was
similar to previous data (Navarro and Villanueva, 2000; Seixas
et al., 2010; Iglesias et al., 2014; Roo et al., 2017) and higher than
those reported in juveniles and adults of O. vulgaris (Navarro
and Villanueva, 2003; García García and Cerezo Valverde, 2006;
Estefanell et al., 2012b), underlying the importance of the lipid
fraction in early stages. This is probably associated to the higher
relative size of the digestive gland and especially the nervous
and the visual system in hatchlings in comparison with adults.
Indeed, lipids in cephalopods are abundant in the digestive gland
(García Garrido et al., 2010; Lourenço et al., 2014; Estefanell et al.,
2015) and are probably main components of the nervous and
visual system, as in several marine fish larvae (Navarro et al.,
1995; Benítez-Santana et al., 2007). Regarding the ash content,
higher levels were detected in wild eggs and wild hatchlings
in comparison with those obtained from captive broodstock,
which may have important physiological implications (Davis
and Gatlin, 1996). Minerals have several essential functions in
cephalopods, such as regulation of acid-base equilibrium and as
component of hormones, enzymes and structural proteins, and
are affected by fasting conditions (Villanueva and Bustamante,
2006). The analysis of mineral content in wild and reared
paralarvaemay provide useful information to improve paralarvae
survival.

In this study, the proportion of the polar lipid fraction (70–
75%) was slightly higher than in previous reports in hatchlings
(60–65%) (Navarro and Villanueva, 2000; Quintana et al., 2015;
Reis et al., 2015), underlying the importance of the polar
fraction in early stages in O. vulgaris (Navarro et al., 2014). The
importance of the dietary polar lipid fraction has been shown in
subadults of this species by its very high digestibility regardless
of total dietary lipid content, while the digestibility of the neutral
fraction was generally low and inversely related with total dietary
lipids (Morillo Velarde et al., 2015). Whether the paralarvae
show this selective lipid digestion is unknown. However, low
lipid content in crab zoeas (5–10%dw) with high relative levels
of phospholipids (Andrés et al., 2010) were suggested to be
responsible for the positive effect of these live prey on paralarvae
rearing (Iglesias et al., 2014; Reis et al., 2015). Also, the addition
of crab zoeas in low quantities to an Artemia diet induced a
better histological nutritional status of the digestive gland in
comparison with paralarvae fed on single Artemia (Roo et al.,
2017). In contrast, enriched Artemia is abundant in lipids (18–
28%dw) (Viciano et al., 2011; Iglesias et al., 2014; Roo et al.,
2017) and shows a rapid turnover of polar to neutral lipid
fraction (Guinot et al., 2013b), inducing negative effects on
growth and survival on paralarvae rearing when supplied as a
single live prey (Reis et al., 2015; Roo et al., 2017). For these
reasons, the supply of the lipids and fatty acids in the adequate
fraction appears to be essential for paralarvae rearing success in
O. vulgaris.

In general, all samples in this study showed high levels of
palmitic acid, estearic acid, oleic acid, ARA, EPA, and DHA,
in agreement with previous findings (Navarro and Villanueva,
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2000, 2003; Quintana et al., 2015; Reis et al., 2015; Roo et al.,
2017). The essentiality of ARA, EPA, and DHA in O. vulgaris
has been suggested by the very low activity of their biosynthesis
pathways from n-3 to n-6 substrates (Monroig et al., 2013; Reis
et al., 2014). In this study, deviations in the fatty acid profile
from total lipids between eggs and hatchlings suggests the use
of saturates and ARA during embryonic development, whereas
other monoenes and n-3 HUFA are retained or show increasing
values in hatchlings. Similar findings were observed in eggs and
hatchlings of O. vulgaris (Navarro and Villanueva, 2000, 2003).
The increase in n-3 HUFA (ETE and EPA) in the polar fraction
from wild eggs to wild hatchlings suggest their importance as
phospholipids components in paralarvae. The decrease observed
in monoenes of the 20:1n series, ARA and DHA in the neutral
fraction from wild eggs to wild hatchlings suggest their use as
energy substrates during embryonic development. In contrast,
increasing values of oleic acid in wild hatchlings, both in the
polar and neutral fraction, suggests its importance as energy
substrate during the transition from endogenous to exogenous
feeding and also as component of phospholipids in paralarvae
tissues. Also, the decrease in ARA in the polar fraction in
hatchlings is probably associated to a change in phospholipid
class, as observed from eggs to hatchlings of O. vulgaris fed on
different diets (Quintana et al., 2015). In our study, hatchlings
obtained from captive broodstock showed a significantly different
proportion of polar and neutral lipids and deviations in the fatty
acid profile in comparison with wild ones, probably related to
the broodstock diet (Quintana et al., 2015). The bogue Boops
boops used as food shows high DHA and linoleic acid and
low ARA content (Estefanell et al., 2012b), mainly provided
as triglycerides (neutral lipids) (Cerezo Valverde et al., 2012).
In captive hatchlings, the neutral fraction fatty acid profile
was relatively similar to wild hatchlings. In contrast, important
deviations were observed in the polar fraction, with captive
hatchlings showing increasing levels of EPA and the lowest
levels of monoenes (18:1n series) and ARA in comparison with
wild ones. These variations probably affected the fatty acid
profile of the phospholipid classes in hatchlings obtained from
captive broodstock (Bell et al., 1995), with potential negative
effects on the paralarvae nutritional status. Indeed, different
fresh broodstock diets induced differences in spawn quality,
related to a change in the fatty acid and the phospholipid
class profile in hatchlings (Quintana et al., 2015). In a previous
study, important deviations were also observed in the fatty acid
profile in gonads (ovary and testis) between wild and reared
O. vulgaris, especially in the EPA/ARA ratios from total lipids,
associated to dietary input (Estefanell et al., 2015). Indeed,
difference in the natural diet is probably responsible for the
different relation observed in this study among DHA, EPA,
and ARA in wild eggs in comparison to previous reports
(Navarro and Villanueva, 2003; Estefanell et al., 2013), since
cephalopods normally feed on the most readily available prey
(Hanlon and Messenger, 1996). Seasonal changes in natural
preys and specific oceanographic conditions may explain the
important effect of the geographical region on paralarvae

rearing success, recently noted in O. vulgaris (Garrido et al.,
2017).

In the present study, different ratios among ARA, EPA, and
DHA in total and polar lipids were observed between wild
and captive hatchlings, with several well-known physiological
implications in marine species. DHA is especially important in
the neural tissue, retina, and the optic nerve which develop
during early larval stages in marine fish (Benítez-Santana et al.,
2007). In marine fish, ARA and EPA compete with each other for
the enzymes that regulate the synthesis of eicosanoids, hormone-
like compounds involved in blood clotting, immune and
inflammatory response, renal and neural function, cardiovascular
tone and reproduction (Tocher, 2003). Also, the deficiency or
imbalance of DHA, EPA, and ARA in broodstock diets reported
negative effects on reproduction in several marine fish species,
affecting egg and sperm quality, and decreasing fecundity, and
reducing egg vitality, hatching rate and larval survival (Izquierdo
et al., 2001; Furuita et al., 2003; Mazorra et al., 2003; Fernández-
Palacios et al., 2011).

In conclusion, our results underline the importance of the
polar lipid fraction in paralarvae lipid profile, in particular oleic
acid, ARA, EPA, and DHA. The highest oleic acid content in
wild paralarvae in neutral lipids also suggest the importance of
this fatty acid as energy reserve, probably related to a better
nutritional status in comparison with hatchlings obtained from
captive broodstock. The authors would like to emphasize that the
analysis of fatty acid from neutral and polar lipids provides useful
information to elucidate the nutritional requirements of this
species. More researchmust be carried out in order to understand
the physiological mechanisms involved in paralarvae quality and
feeding during early stages in O. vulgaris.
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