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Experiments in rodents have elucidated some of the molecular mechanisms underlying

repetitive transcranial magnetic stimulation (rTMS). These studies may be useful in a

translational perspective so that future TMS studies in rodents can closely match human

TMS protocols designed for therapeutic purposes. In the present work we will review the

effects of rTMS on glutamate neurotransmission which in turn induce persistent changes

in synaptic activity. In particular, we will focus on the role of NMDA and non-NMDA

transmission and on the permissive role of BDNF-TrKB interaction in the rTMS induced

after-effects.
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Experiments in rodents are indeed valuable in providing information about the molecular
mechanisms of action of repetitive transcranial magnetic stimulation (rTMS). From the hitherto
published work on TMS/rTMS in rodents of almost two decades, it is possible to formulate a
working hypothesis on the mechanism of action of rTMS so that future TMS studies in rodents
can closely match human TMS protocols. The effects of rTMS in rodents are greatly dependent
on: (1) the frequency and field intensity of the stimulation; (2) the acute and chronic mode of
treatment; (3) the total number of pulses; (4) the shape and dimension of coils; and (5) the state,
either anesthetized or awake, of the animals. Experimental evidences in rodents indicate that
rTMS produces complex neurobiochemical effects such as induction of immediate early genes,
changes in modulation of neurotransmitters release, effects on glutamate AMPA receptor/NMDA
receptor expression (influencing calcium ion dynamics), action on neuroendocrine systems,
neuroprotective effects by reducing oxidative stress and inflammation, and a powerful activation
of neurotrophic factors (Cirillo et al., 2017). These molecular effects may modify the intrinsic and
extrinsic electrophysiological properties of neurons and reprogram the expression of excitatory
and inhibitory neurotransmitters and their cognate receptors, which lead to long-lasting synaptic
plasticity-related changes like Long-term potentiation (LTP) and depression (LTD) phenomena
(Chervyakov et al., 2015; Cirillo et al., 2017).

Having said that rTMS provides sustained effects, how does rTMS induce long lasting changes
in cortical excitability? An important upstream regulator of synaptic plasticity is the BDNF-TrkB
system. Indeed, we showed that 5-day rTMS enhances BDNF binding affinity for TrkB, BDNF-
TrkB signaling, and NMDA receptor–TrkB interaction in rat prefrontal cortex (Wang et al., 2011).
Interestingly, the same rTMS protocol increases BDNF binding affinity for TrkB and enhances
BDNF–TrkB signaling in the peripheral lymphocytes of both rats and humans (Wang et al., 2011).
These results suggest that the long lasting excitatory effects of rTMS are, at least in part, mediated
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by glutamatergic NMDA interaction. Indeed, the role of NMDA
transmission has been confirmed by several human TMS studies
exploring the after effects of anti-glutamatergic drugs on cortical
excitability and cortical plasticity (Schwenkreis et al., 2005;
Wankerl et al., 2010). However, it is well known that TMS of the
motor system produces high frequency repetitive discharge in the
corticospinal cells with a frequency of about 700Hz (Di Lazzaro
et al., 1998). Therefore, it is unlikely that TMS may directly
interact with NMDA receptors since they may work as a low-pass
filter for high frequencies, due to their slow depolarizing currents
(Di Lazzaro et al., 1998). Based on these considerations, it is then
plausible that at least single pulse TMSmay preferentially activate
AMPA receptors that open quickly and briefly. This effect of TMS
on AMPA receptors has been confirmed by the results of single
pulse TMS studies with ketamine in humans (Di Lazzaro et al.,
2003). Ketamine, an NMDA antagonist, blocks NMDA receptor
activity and enhances non-NMDA transmission through an
increased release of endogenous glutamate. Indeed, motor
evoked responses were greatly enhanced by ketamine, suggesting
that the excitatory effects of single pulse TMS are mediated by
short-lasting effects on AMPA transmission (Di Lazzaro et al.,
2003). High frequency rTMS-induced expression of the GLUR1
subunit of the AMPA receptors has been demonstrated in rats
(Gersner et al., 2011). An important paradox is therefore to
reconcile the preferential effect of TMS on AMPA receptors with
the long-term excitatory effects that should be mediated by the
activity of NMDA receptors. When membrane potential is at
rest, NMDA receptors are blocked byMg++ ions. Once sufficient
numbers of AMPA receptors are activated, the membrane is
depolarized from resting to active potential, the magnesium
blockade is relieved, and the NMDA receptors are opened
(Fleming and England, 2010). Therefore, it is possible that when
TMS is applied in a repetitive fashion AMPA receptors are
recruited in a sufficient number to trigger NMDA transmission.
The opening of NMDA receptors increases calcium influx and
activates several calcium-sensitive signaling pathways (including
phosphorylation of existing AMPA receptors and synthesizing
new AMPA receptors) that produce long-term changes in both

the presynaptic and postsynaptic neurons that ultimately leads
to increased synaptic strength (Malenka and Bear, 2004). Long-
term potentiation phenomena are empowered, at least in part,
by retrograde signals that further release glutamate and BDNF.
Therefore, we postulate that the TMSmodulation of BDNF-TrkB
pathway could play a permissive role in determining the NMDA
dependent after-effects on synaptic plasticity (Wang et al., 2011).
This complicate molecular machinery may explain the slow
building up of rTMS-induced after-effects (usually 5–10min) in
humans (Quartarone et al., 2006; Ziemann et al., 2008).

Despite the role of post-synaptic NMDA transmission on the
long lasting effects of rTMS seems very clear, on the other hand
there are evidences suggesting the involvement of presynaptic
glutamatergic mechanisms (Banerjee et al., 2017). Indeed, it
has been demonstrated in an in vitro model that rTMS may
increase the steady state current in the presynaptic compartment
independently from NMDA postsynaptic transmission. In this
way, it is likely that longer duration rTMS protocol may
enhance these presynaptic steady state currents thus prolonging
the TMS induced after-effects (Banerjee et al., 2017). An
important consideration, which might be useful for future
clinical application, is whether rTMS targets late LTP and
promotes structural plasticity. In a recent paper in mouse
entorhino-hippocampal slice cultures, it has been demonstrated
that high-frequency (10 Hz) induces a long-lasting increase
in glutamatergic synaptic strength that is accompanied by
structural remodeling of dendritic spines (Vlachos et al., 2012).
This possibility opens a new scenario on the therapeutic
effects of rTMS even if need to be better addressed in future
studies.
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