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Mitochondria are the key source of ATP that fuels cellular functions, and they are also

central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has

been implicated in a wide range of diseases, including neurodegenerative and cardiac

diseases, and various types of cancer. One of the key proteins that regulate mitochondrial

function is the voltage-dependent anion channel 1 (VDAC1), the most abundant protein

on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of

metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to

its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2

family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for

metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of

evidence have confirmed the involvement of VDAC1 in several diseases. Consequently,

modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate

pathophysiological conditions. Understanding the role of VDAC1 in health and disease

could lead to selective protection of cells in different tissues and diverse diseases. The

purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases

and as a potentially effective target for therapeutic management of various pathologies.

Keywords: mitochondria, cardiac ischemia/reperfusion, Alzheimer’s disease, neoplastic diseases, molecular

dynamics, voltage dependent anion channel, hexokinase, post-translational modification

INTRODUCTION

Mitochondria are vital for cellular metabolism, and are the primary source of ATP generated
via oxidative phosphorylation. In addition to their role as the cellular powerhouse, they are key
organelles that are intimately involved in a myriad of complex signaling cascades that regulate cell
survival and death. Consequently, mitochondrial dysfunction has been implicated in the etiology of
numerous human maladies, including cardiovascular, neurodegenerative, and neoplastic diseases
(Camara et al., 2010). Thus, alleviating or preventing mitochondrial dysfunction will contribute to
mitigating the severity or progression of the development of diseases.

The elaborate structure of amitochondrion is important for the normal and efficient functioning
of the organelle. Mitochondria have two membranes, an outer mitochondrial membrane (OMM)
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and an inner mitochondrial membrane (IMM), separated by the
inter-membrane space (IMS) (Figure 1). The electron transport
chain (ETC) complexes (complexes I-IV) are localized on
the IMM, while the OMM separates the mitochondrion from
the cytosolic environment. The main conduit through which
metabolites and nucleotides traverse the OMM is the voltage-
dependent anion channel (VDAC), also known as mitochondrial
porin (Mihara and Sato, 1985; Kleene et al., 1987). The VDAC
is activated during depolarizing potentials and remains in an
open state in the voltage range of approximately −40 to
+40 mV (Rostovtseva and Colombini, 1996, 1997; Hodge and
Colombini, 1997). In addition, as its name implies, it shows
both ion selectivity and voltage dependence. In the open (high
conductance) state, the channel is permeable to organic anions,
including respiratory substrates, ATP, ADP, Pi, and tometabolites
(Rostovtseva and Colombini, 1996; Hodge and Colombini, 1997).
In the closed (low-conductance) state, the channel transports
cations, e.g., K+, Na+ and Ca2+. Under physiological conditions,
VDAC function is modulated by tubulin, a key component
of the cytoskeleton (Rostovtseva et al., 2008), which would
limit mitochondrial metabolism and thereby alter the IMM
potential (19m) (Rostovtseva et al., 2008; Rostovtseva and
Bezrukov, 2012). VDAC function is also associated with NADH
oxidation and thus plays a role in cellular redox mechanisms
(Komarov et al., 2005). Furthermore, it also plays a key
role in mitochondrial-mediated apoptotic signaling due to its
ability to interact with members of the pro- and anti-apoptotic
family of proteins, including the Bcl-2 family of proteins and
cytosolic kinases (Figure 1), e.g., hexokinase (HK), involved in
intermediary metabolism (Doran and Halestrap, 2000; Shimizu
et al., 2001; Pastorino et al., 2002). Because of its involvement in
regulating mitochondrial function and in serving as a gatekeeper
for cell death and survival signaling pathways, VDAC can
potentially be an attractive and effective therapeutic target in the
management of various human diseases.

The main premise of this review is that alterations of VDAC
structure and function contribute to pathological states, either
directly or indirectly. It is evident that knowledge of the role
of VDAC in mitochondrial function in normal and pathological
conditions is crucial not only for our understanding of the
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basic cause of mitochondrial related diseases, but also for
developing therapeutic strategies for mitigating a given disease.
Here we present an overview of the physiological role of VDAC,
particularly voltage-dependent anion channel 1 (VDAC1), and
the impact of post-translational modification (PTM) triggered by
pathophysiological stresses in the progression of diseases. Specific
examples of VDAC1 role in neoplastic and neurodegenerative
diseases, and cardiac ischemia and reperfusion (IR) injury are
presented. In addition, the review will also summarize the
recently reported findings of VDAC structure and function
at the molecular level. Lastly, the review will also address
the controversial existence of VDAC in the plasma membrane
identified in some tissue types and its physiological implications.
A perspective of the roles of VDAC1 in health and disease and
the potential implications in therapy is also noted.

OVERVIEW OF VDACS

The VDACs are the most abundant protein in the OMM
with a molecular weight of approximately 32 kD. Under
normal physiological conditions, VDACs function in tandem
with the IMM adenine nucleotide translocase (ANT), via the
mitochondrial creatine kinase (mCK) in the IMS (Figure 1;
Schlattner et al., 2006; Guzun et al., 2012). The conformational
states of VDAC are voltage-dependent and exhibit different
selectivity and permeability for small ions, showing a preference
for anions in the open state and for cations in the closed state
(Hodge and Colombini, 1997). Therefore, they are considered the
principal sites for the exchange of metabolites and small solutes
between the IMS and the cytosol (Camara et al., 2010, 2011).
The efficient transfer of energy metabolites across mitochondria
depends on the interaction between VDAC, mCK, and ANT,
ANT/mCK/VDAC, which is fostered by physiological [Ca2+]
(Kottke et al., 1988; Saks et al., 2006).

Ca2+ released from the sarcoplasmic reticulum (SR) or
endoplasmic reticulum (ER) enters mitochondria via the VDAC,
which is in close proximity to the SR within the mitochondrial-
associated membrane (MAM) domain (Vance, 2014). This inter-
organelle communication (SR-mitochondria domain) through
MAM is able to coordinate cellular metabolism and preserve
OMM integrity (Vance, 2014; Gomez et al., 2016). It is proposed
that VDAC1 selectively transfers apoptotic Ca2+ signals from
SR to mitochondria (De Stefani et al., 2012). Along with other
mitochondrial proteins (ANT, PiC, and TSPO), VDACs were
thought to be a constituent of the mitochondrial permeability
transition pore (mPTP), a mega channel complex involved in
cell protection and cell death (Javadov et al., 2009a; Camara
et al., 2010, 2011). However, subsequent genetic studies showed
mPTP opening in the absence of these proteins, suggesting that
they are not an integral component of the mPTP structure,
but rather may play regulatory roles in the pore formation
(Kokoszka et al., 2004; Krauskopf et al., 2006; Baines et al.,
2007). Recent evidence points to the F0F1-ATP synthase as the
major constituent of the mPTP (Giorgio et al., 2013; Carraro
et al., 2014). Although the exact mechanisms of the ATP synthase
transformation into mPTP are still being actively investigated,
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FIGURE 1 | VDAC1 is expressed on the outer mitochondrial membrane (OMM). Together with ANT1 on the inner mitochondrial membrane (IMM) and mitochondrial

creatine kinase (mCK), the VDAC1-ANT1-mCK complex regulates the exchange of ATP and ADP between the mitochondria and cytosol. VDAC1 functions as a

receptor for anti- and pro-apoptotic proteins and, consequently, contributes to cell survival and cell death. *Bax/Bak binding to VDAC1 has not been definitively shown

as various studies report on conflicting results; on the other hand, Bax/Bak binding to VDAC2 has been supported by more consistent results. VDAC1 oligomerization

can result in increased permeability of the OMM; however, the mechanism that leads to apoptosis has not been clearly defined. Various types of post-translational

modificantions (PTMs) of VDAC1 have been reported, although their impact on channel function and subsequently on mitochondrial function is not well understood.

a very recent work shows that the catalytic site of the F0F1-
ATP synthase β subunit constitutes the Ca2+ trigger site that in
turn induces a conformational change and transition of the ATP
synthase to a channel (Giorgio et al., 2017). Opening of the mPTP
is an IMM event, as it occurs in mitoplasts, i.e., mitochondria
stripped of the OMM (Sileikyte et al., 2011). However, VDACs
participate in OMM permeabilization that is independent of the
mPTP (Doran and Halestrap, 2000) and, as such, they are key
in determining the functional integrity of mitochondria and cell
fate, i.e., survival or death. VDACs are also considered to play
crucial roles in (1) the release of reactive oxygen species (ROS),
(2) providing an anchoring site for HK binding, (3) apoptosis-
mediated release of cytochrome c, and (4) the interaction with the
Bcl-2 family of proteins (Shimizu et al., 2000b, 2001; Tsujimoto
and Shimizu, 2000; Azoulay-Zohar et al., 2004). For example,
blocking VDAC with Konig’s polyanion or VDAC antibodies
inhibited superoxide-induced release of cytochrome c from
mitochondria (Madesh and Hajnoczky, 2001). However, VDAC
closure can also lead to diminished exchange, and eventual
buildup of metabolites resulting in swelling and rupture of the
OMM (Vander Heiden et al., 2000). Under conditions of lethal
oxidative stress, VDACs can contribute to the pro-apoptotic
mitochondrial permeabilization of the OMM either via homo-
oligomerization resulting in dimers and/or trimers of VDAC
(Yang et al., 2012) or hetero-oligomerization with pro-apoptotic
cytosolic proteins (Shimizu et al., 2001). Since VDACs constitute
a multiple genetic family with multiple variants, it is reasonable
to propose that different functions may be relegated to distinct
isoforms. Below we provide additional information on the mPTP
and the other means by which mitochondria permeability of the
OMM is altered independent of the mPTP.

VDAC Isoforms
To date, three isoforms of the mammalian VDAC have been
identified: VDAC1, 2, and 3, of which VDAC1 is the most
abundantly expressed. In mammals, three isoforms of VDAC
are encoded by three different genes that share some conserved
structure (Sampson et al., 1997; Young et al., 2007). The
pore-forming voltage-dependent characteristics of VDAC1 and
VDAC2 have been amply demonstrated, but that of VDAC3
has only been recently examined in detailed biophysical and
electrophysiological studies (Checchetto et al., 2014; Okazaki
et al., 2015). VDAC1 and VDAC2 are thought to be co-localized
within the same restricted area in the OMM, while VDAC 3
is broadly distributed on the OMM (Neumann et al., 2010;
Okazaki et al., 2015). Both VDAC1 and VDAC2 display similar
ion selectivity and the unique characteristic voltage-dependence.
That is, channel conductance is greatest at membrane voltages
near 0mV, within a range of −40 to +40mV. At these voltages,
VDAC1 and VDAC2 function predominantly as anion channels,
while at voltages outside of this range they function as cation
channels, permeable to ions, such as Ca2+. In contrast, a recent
study by Okazaki et al. showed that channel gating of VDAC3 did
not exhibit the typical voltage gating (Okazaki et al., 2015), and
Checchetto et al. (2014) also showed that the electrophysiological
properties of recombinant human VDAC3 are different from
VDAC1 and VDAC2.

The specific functions of the VDAC isoforms have not been
fully defined. They are believed to be involved in the coupling
of cellular energy demand to mitochondrial ATP production
insofar as they are the main conduit for transport of metabolites
across the OMM (Anflous et al., 2001; Anflous-Pharayra et al.,
2011). The different isoforms also have relegated functions. Gene
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knock out (KO) of VDAC isoforms in mice has shed some

light on their respective physiological relevance. It has been

suggested that VDAC3 might be evolutionarily distinct, and
thus might have other functions different from VDAC1 and
VDAC2 (Sampson et al., 1996). VDAC3, whose primary role
has been in sperm motility, has been less protective against
deleterious ROS when compared to VDAC1 and VDAC2 (De
Pinto et al., 2010a). While VDAC1 and VDAC3 KO are viable,
VDAC2 gene deletion is embryonically lethal (Baines et al.,
2007). Furthermore, this impact of VDAC2 KO on embryonic
lethality could not be compensated by overexpression of VDAC1
and VDAC3. In addition, whether VDAC2 could compensate
for the deletion of VDAC1 and/or VDAC3 is challenging to
ascertain due to the lethality of removal of the Vdac2 gene
(Cheng et al., 2003). Consequently, in the absence of VDAC2,
the pro-apoptotic protein Bak is unrestricted in its ability to
instigate cell demise, potentially leading to early embryonic
death (Cheng et al., 2003; Bernardi et al., 2015). Thus, VDAC2
is considered vital for cell survival. Indeed, it has also been
postulated to be cytoprotective by sequestering Bak (Cheng
et al., 2003), which if translocated to the OMM, may induce
permeabilization.

However, recent observations (discussed later) show that
VDAC1 also interacts with Bak in mediating cell death.
VDAC1 is thought to control the metabolic crosstalk between
mitochondria and the cytosol, by regulating the influx and
efflux of metabolites, cations and nucleotides across the OMM
for efficient bioenergetics. Consistent with this notion, it
has been reported that human VDAC1 deficiency showed
compromised pyruvate oxidation and ATP production (Huizing
et al., 1996). Later on, Anflous et al. (2001) and Anflous-
Pharayra et al. (2011) reported that VDAC1 deficiency caused
multiple defects in the ETC complexes in both oxidative
and glycolytic striated muscle biopsies. Structural aberration
of mitochondria was also observed. With impaired oxidative
phosphorylation and reduced ATP levels, the cells cannot
maintain structural and functional integrity. This includes
loss of ion homeostasis resulting in irreparable cell injury
and concomitantly cell death, primarily through necrosis. In
contrast, VDAC3 null showed limited impairment in muscle
metabolism.

A key factor in mitochondrial bioenergetics regulation is the
association of mCK with VDAC1 (Schlattner et al., 2006; Guzun
et al., 2012; Lemeshko, 2016), which allows for the efficient
exchange of ADP and ATP between the matrix and the cytosol
that ultimately regulates mitochondrial respiration (Figure 1). It
is not known whether similar association exists between VDAC2
and mCK. However, VDAC1 and VDAC2 deficient mouse
embryonic stem cells, but not VDAC3 deficient cells, displayed
reduced cytochrome c oxidase (complex IV) activity (Wu et al.,
1999) which portends diminished ADP/ATP shuttle across the
OMM. The preponderance of the evidence reported to date
indicates that the in vivo roles of these isoforms of VDAC may
fulfill different functions; but identifying their specific physiology
is encumbered by limitations in the current approach of assessing
their different roles.

VDAC Structure
Recent studies reported on a high-resolution crystal structure of
VDAC1 (Figure 2; Bayrhuber et al., 2008; Hiller et al., 2008; Ujwal
et al., 2008). The conventional notion of the channel/protein
is a β-barrel trans-membrane pore (hydrophilic) with 19-
stranded β-sheets. The N-terminal segment consists of an α-
helix oriented toward the interior wall of the pore (Bayrhuber
et al., 2008; Erbse et al., 2008), and is thought to act as the
voltage sensor that leads to changes in conductance and ion
selectivity (Blachly-Dyson et al., 1990; Thomas et al., 1993).
However, the underlying mechanism is not well understood.
The N-terminal of VDAC1 is crucial for channel gating and
its ablation leads to loss of voltage gating (Koppel et al., 1998;
Abu-Hamad et al., 2009). The mechanisms for the open-close
transition of the channel by translocation of the N-terminal
region are still not clear. It has been postulated that the N-
terminal gates VDAC1 by moving in and out of the pore (Geula
et al., 2012). However, electrophysiological and structural studies
and molecular dynamics simulations implicate the N-terminus
with less mobility that serves as a stabilizing factor in a non-rigid
pore (Bayrhuber et al., 2008; Hiller et al., 2008; Schneider et al.,
2010; Zachariae et al., 2012). Removal of the N-terminus resulted
in a partial collapse of the pore resulting in an elliptically-shaped
conduction pathway (Zachariae et al., 2012). In this scenario, the
N-terminus stabilizes VDAC1 in the open conformation, while
a closed conformation is associated with partially collapsed wall
of the pore, resulting in decreased conductance and a change
in selectivity from anions to cations. The N-terminal is also
thought to be important for the regulation of metabolite fluxes
through the channel; it mediates protein-protein interactions
and the oligomerization of VDAC1 with pro- or anti-apoptotic
proteins, HK and Bcl2 (Figure 1), respectively. This suggests
external orientation of the N-terminal in the pore (Shoshan-
Barmatz et al., 2014). TheN-terminal is also thought to be capable
of partially narrowing the pore, and consequently is a crucial
component of the channel’s gating mechanism.

It is worth noting that the high resolution 3-dimensional
crystal structure is not without some controversy (Colombini,
2009). The reported structure does not accommodate some
of the structural constraints predicted from biochemical and
biophysical studies. From those studies, a VDAC structure with
13, rather than 19, β-strands and a single α-helix was envisioned.
The argument against the 19 β-strand model was based largely
on the validity of the use of refolded proteins in the structural
studies that utilized NMR and X-ray diffraction techniques.
On the other hand, the case against the 13 β-strand + 1 α-
helix hybrid model was an energetically unstable model. It
should also be noted that a large body of the biochemical and
biophysical studies were conducted using reconstituted VDAC
in planar lipid bilayers. Consequently, experimental constraints
exist on both sides of the argument, and future studies will
be needed to provide a more definitive structure of VDAC
in a “native” environment. Nevertheless, novel insights into
VDAC structure and function relationships (Figure 2) have
been provided by Molecular Dynamic (MD) simulations as
discussed below.
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FIGURE 2 | Structure of human VDAC1 in membrane. (A) Sideview and (B) cytoplasmic topview of the beta-barrel, with basic residues in blue sticks, acidic E73 in

red sticks, and ATP in spheres. (C) Significant ATP-interacting residues along permeation pathway (data adopted from Choudhary et al., 2014). (D) Currently

confirmed phosphorylation sites in human VDAC1 (data adopted from Martel et al., 2014), positions of phospho-serines and phospho-threonine highlighted in red

spheres. C-terminal part of the beta-barrel is omitted in (C,D) for clarity.

Binding of Pro- and Anti-Apoptotic
Proteins
As a major gateway in and out of mitochondria, VDAC
mediates an intimate dichotomy between metabolism and cell
death (Maldonado et al., 2010; Camara et al., 2011; Maldonado
and Lemasters, 2012). The delicate balance in the interactions
between pro- (e.g., Bcl family of proteins) and anti-apoptotic
[e.g., hexokinases (HK), I and II] proteins with VDAC (Figure 1)
is central in this dichotomy. These interactions alternatively
promote or prevent cell injury by apoptosis/necrosis (Shimizu
et al., 2001; Leanza et al., 2014). For example, VDAC1 can
act as a receptor on the cytosolic side for HK to bind and,
this way, has easy access to mitochondrial ATP for its catalytic
activity (Schlattner et al., 2006). HK catalyzes the conversion
of glucose to substrates critical for oxidative phosphorylation
(Arora and Pedersen, 1988). Of the two HK isoforms, HK II is
over-expressed in many types of cancer cells, and its interaction
with VDAC1 contributes to their unrestricted growth (discussed

below). VDAC1 also interacts with several members of the
Bcl-2 family of proteins that are key regulators of apoptosis.
Although the precise mechanisms by which the Bcl-2 family
of proteins regulate apoptosis is not well established, VDAC1
has been shown to be a target for both the anti-apoptotic (Bcl2
and Bcl-xL) and pro-apoptotic (Bax, Bak, and Bim) proteins
(Shimizu et al., 2000c, 2001; Vander Heiden et al., 2001; Pastorino
et al., 2002; Arbel et al., 2012; Huang et al., 2013; Liu et al.,
2015). Interaction of the pro-apoptotic Bcl-2 members with
VDAC1 is thought to lead to OMMpermeabilization that is likely
associated with the release of cytochrome c from the IMS. On the
other hand, interaction with the anti-apoptotic proteins inhibits
VDAC1 oligomerization to prevent OMM permeabilization and
cell damage. The aforementioned discussions strongly support
the role of VDAC in maintaining normal mitochondria function.
The interaction of VDAC with other cytosolic proteins, i.e.,
pro- or anti-apoptotic, for cell survival or death provides a
potential therapeutic target to mitigate cell injury, as in IR injury
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and neurodegenerative diseases, or instigate cell death, as in
neoplastic diseases (discussed below).

VDAC and Mitochondrial Membrane
Permeabilization
The role of VDAC in mitochondrial membrane permeabilization
has been mired in controversy, particularly with the report
that VDAC isoforms are dispensable for opening of the mPTP.
Previous electrophysiological and biochemical studies have
provided evidence of a molecular model of mPTP that consisted
of VDAC on the OMM, ANT on the IMM, and cyclophilin
D in the matrix (Szabo and Zoratti, 1993; Szabo et al., 1993;
Crompton et al., 1998; Zheng et al., 2004). However, other
studies have contradicted those findings, with reports that closed
conformation of VDAC increases Ca2+ permeability, and thus
should accelerate opening of mPTP (Tan and Colombini, 2007;
Tikunov et al., 2010). A more compelling study that questions
VDAC as a component of mPTP came from genetic studies,
where knockout of all three VDAC isoforms did not abolish
opening of mPTP, though cells became more susceptible to death
stimuli (Baines et al., 2007). Yet, results from genetic studies
are not necessarily definitive. Knockdown, or for that matter
overexpression, of proteins can be associated with physiological
adaptations. In the case of VDAC knockdown, it is conceivable
that alternative pathways allow for the exchange of metabolites
across the OMM, indicative of the ability of mitochondria to
compensate for the loss of VDAC. Recent reports continue to
provide evidence of the involvement of VDAC1 in contributing
to mPTP opening. For example, overexpression of microRNA-7,
a small non-coding RNA, was reported to prevent opening of
mPTP by downregulating VDAC1 (Chaudhuri et al., 2016). In
an investigation of the role of mitochondrial fission factor in
cardiac microvascular IR injury, preventing the oligomerization
of VDAC1 and detachment of HKII resulted in the inhibition of
mPTP opening (Zhou et al., 2017). In addition to VDAC, ANT
and the phosphate carrier (PiC) have been proposed to be part of
mPTP (De Macedo et al., 1993; Brustovetsky and Klingenberg,
1996; Bauer et al., 1999; Haworth and Hunter, 2000; Leung
et al., 2008; Varanyuwatana and Halestrap, 2012), but studies
utilizing genetic knockdown of the PiC or ANT do not support
those observations (Kokoszka et al., 2004; Gutierrez-Aguilar
et al., 2014). In fact, the molecular identity of mPTP remains
unresolved, although multiple lines of evidence support the role
of cyclophilin D as a key regulator of the pore (Javadov and
Kuznetsov, 2013). A more recent molecular candidate include
the transformation of the F0F1-ATPase to mPTP (Bernardi et al.,
2015). Based on these confounding results, it is conceivable that
mPTP may be comprised of multiple molecular entities (Bonora
et al., 2013; Giorgio et al., 2013; Alavian et al., 2014; Carraro
et al., 2014).

The complexity (or uncertainty) of the role of VDAC1 in
contributing to mPTP opening is likely due to strong evidence
that it is involved in the permeabilization of the OMM, termed
mitochondrial outer membrane permeabilization (MOMP). As
mentioned above, some studies have demonstrated that Bax
binds to VDAC1; this association apparently results in the

formation of a channel complex with sufficient pore size capable
of releasing cytochrome c from the IMS to the cytosol and
trigger caspase 9 initiated apoptosis (Shimizu et al., 2000a).
However, the interaction of VDAC1 with Bax is not without
controversy, as this association has been disputed from planar
lipid bilayer electrophysiological studies (Rostovtseva et al.,
2004). Discrepant results can, in part, be due to experimental
conditions. Recently, VDAC1-Bax interactions was observed in
cultured neurons that were dependent on the detergent used
in the preparation for immunoprecipitation (Huckabee and
Jekabsons, 2011). Specifically, the use of digitonin, but not
CHAPS, preserved the VDAC1-Bax association. Additionally,
VDAC1 can also trigger MOMP in the absence of Bax via
oligomerization (Huang et al., 2015).

Voltage-dependent anion channel 1 (VDAC1) homo-
oligomerization or hetero-oligomerization could result in a
”large” pore that allows the release of cytochrome c into the
cytosol, although the structural details of increased pore size due
to oligomerization is not known. Functionally, oligomerization
of VDAC1 can lead to OMM permeabilization. Although
oligomerization-induced “open channel conformation” is
thought to contribute to apoptosis via OMM permeabilization,
there is debate as to whether the closed channel conformation
also results in apoptosis. The closed, or low conductance, state
of VDAC1 has higher selectivity for cations over anions. Thus,
greater influx of Ca2+ ions into mitochondria is predicted in the
closed conformation (Tan and Colombini, 2007). The resultant
mitochondrial Ca2+ overload would lead to accumulation
of mitochondrial superoxide anions, and ultimately facilitate
Ca2+-induced opening of mPTP (Tikunov et al., 2010). That the
closed VDAC channel leads to opening of the mPTP may appear
to contradict the notion of an increased pore size due to VDAC1
oligomerization that lead to cytochrome c release (Zalk et al.,
2005). There is currently no consensus on the role of either the
closed state or oligomerized state of VDAC1 in the induction of
apoptosis. Both states could lead to apoptosis depending on the
triggering stressor.

ROLE OF VDAC IN NEOPLASTIC
DISEASES

Cancer cells exhibit a profound change in energy metabolism
and ROS production in mitochondria (Cheng et al., 2016; Panieri
and Santoro, 2016). Mitochondrial involvement in the etiology
of neoplastic diseases has been suggested for some time, since
the renowned Nobel prize-winning German physician and
scientist, Otto Heinrich Warburg, hypothesized the importance
of the organelle in tumorigenesis (Warburg, 1956; Koppenol
et al., 2011). Indeed, in recent years, alterations of mitochondrial
functions have been implicated as key features in cancer
cells and other pathologies, including neurodegenerative
diseases, such as Parkinson’s and Alzheimer’s disease
(Wallace, 2012). However, in contrast to neurodegenerative
diseases or cardiac diseases, impaired mitochondrial
function in tumor cells tends to be the cornerstone for cell
survival.
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Metabolic dysregulation in cancer has long been regarded
as a product of tumorigenesis to support tumor growth and
survival. Cancer cells can survive because they are typically
characterized by high rates of glycolysis despite an oxygenated
cellular environment. This shift to aerobic glycolysis by cancer
cells, the “Warburg effect”, is not only a consequence of
malignant transformation but is regarded as a crucial hallmark
of cancer (Maldonado and Lemasters, 2012; Kruspig et al., 2014).
It is postulated that the “Warburg effect” is caused by the closure
of VDAC resulting in reduced conductance, which leads to global
restriction of the OMM permeability linked to aerobic glycolysis
(Lemeshko, 2014a,b).

Although aerobic glycolysis is an inefficient mechanism for
ATP production, alterations in glucose metabolism enhance
cancer cells’ resistance to apoptosis. A pivotal player in the
switch from oxidative phosphorylation to aerobic glycolysis may
be HKII binding to VDAC for cancer cell survival (Azoulay-
Zohar et al., 2004; Shoshan-Barmatz et al., 2009). In fact,
the involvement of VDAC1 in cancer metabolism, through its
association with HK, has been documented (Shoshan-Barmatz
et al., 2009; Leanza et al., 2014). In many types of cancer cells,
cytosolic HK-I and HK-II levels are elevated with increased
translocation to the OMM. Since HK binds to VDAC1, it
has direct access to mitochondrial ATP for phosphorylation of
glucose to glucose-6-phosphate (G-6-P), a rate-controlling step
in glycolysis. The coupling between VDAC1 and elevated levels
of HK leads to a high glycolytic rate resulting in enhanced
generation of lactate, a key component in promoting cell growth
and protecting against mitochondria-mediated cell death in
cancer cells (Abu-Hamad et al., 2008; Maldonado and Lemasters,
2012; Shoshan-Barmatz et al., 2014).

In cancer cells, the level of free tubulin increases to regulate
VDAC conductance during the metabolic transformation, with
impact on bioenergetics. The 19m, and concomitantly VDAC
conductance increases or decreases in tumor cells depending
on the amount of free tubulin (Maldonado et al., 2010, 2013;
Maldonado and Lemasters, 2014). In addition, tubulin binding
to VDAC is dependent on the state of VDAC phosphorylation
and regulates OMM permeability to respiratory substrates
(Maldonado et al., 2010). Loss of 19m and reduced VDAC
phosphorylation have been associated with high fat mediated
hepatic steatosis. This may represent a hallmark for chronic lipid
exposure during liver steatosis (Martel et al., 2013) with potential
implications for liver cancer (Ohata et al., 2003).

In addition to the aforementioned functional consequences,
VDAC1-HK interaction has also been shown to prevent
apoptosis. Studies have shown that HK bound to VDAC
prevents mitochondria-mediated apoptosis triggered by Bax or
Bak (Majewski et al., 2004). Furthermore, it was reported that
undocking of HK from mitochondria leads to cytochrome c
release. This suggests that HK, when bound to VDAC, blocks
the interaction of VDAC with the pro-apoptotic members of the
Bcl-2 family of proteins. Mitochondria-bound HK is also found
to attenuate ROS induced apoptosis by reducing mitochondrial
ROS generation (Da-Silva et al., 2004). Insofar as VDACs
are involved in mitochondria ROS production, HK bound
to VDACs would promote protection against oxidative stress

by minimizing permeabilization of the OMM and subsequent
release of cytochrome c, an important antioxidant (Mathupala
et al., 2006). Consequently, in tumor cells with elevated levels of
HK bound to VDAC1, apoptosis is suppressed and proliferation
is facilitated. Thus, the disruption of the HK-VDAC1 interaction
should facilitate cell death. Single mutations or N-terminus
truncation of VDAC that are essential for HK binding have been
shown to abrogate HK-induced protection against apoptosis and
even potentiate caspase-2-induced mitochondrial damage (Zaid
et al., 2005; Abu-Hamad et al., 2008, 2009). The importance of the
HK-VDAC1 interaction in cell survival and protection against
apoptosis is well documented, and provides an attractive target
for cancer therapy and the development of anti-cancer drugs
(Galluzzi et al., 2008; Shoshan-Barmatz andGolan, 2012; Krasnov
et al., 2013).

Interestingly, silencing VDAC1 expression has been shown
to induce inhibition of tumor growth (Arif et al., 2014).
Furthermore, preventing Bak sequestration by VDAC2 or
inducing Bak activation by dissociation from VDAC2 is
considered a plausible approach to trigger apoptosis in tumor
cells (Cheng et al., 2003; Lazarou et al., 2010). The pro-
apoptotic protein Bcl-Xs-mediated disruption of the VDAC2-
Bak association has been reported to be an effective strategy
to induce apoptosis in melanoma cells (Cheng et al., 2003;
Lazarou et al., 2010; Plötz et al., 2012). It has also been
reported that VDAC3 is the most important among the three
VDAC isoforms to sustain 19m in cancer cells, because the
high levels of free tubulin inhibit VDAC1 and VDAC2, but
not VDAC3 (Maldonado et al., 2013). A shift in this dynamic
relationship between the VDACs and tubulin in regulating 19m

has implications for the Warburg effect and subsequently, cancer
growth and proliferation (Maldonado et al., 2013; Maldonado
and Lemasters, 2014).

In marked contrast to the therapeutic strategy of targeting
mitochondria in neurodegenerative and ischemic heart diseases
(discussed later), which is prevention of cell death, the main goal
of targeting the mitochondria in neoplastic disease, specifically
VDAC1, is to kill malignant cells by inducing apoptosis.
Pharmacological disruption of the HK-VDAC1 association has
been shown to decrease cancer cell survival and facilitate cell
death (Simamura et al., 2008; Shoshan-Barmatz and Golan, 2012;
Wenner, 2012; Krasnov et al., 2013). For example, clotrimazole,
an azole derivative, has potential anti-cancer effects. Clotrimazole
has been shown to disrupt HK-VDAC1 association, and recently
was reported to inhibit human breast cancer cell proliferation,
viability and glycolysis by altering the rates of glucose uptake,
mitochondrial activity and ATP generation (Furtado et al., 2012).
Another potential anti-cancer drug, 3-bromopyruvic acid (3-BP),
is an alkylating agent that is effective in inhibiting glycolysis
in aggressive liver tumor cells by disrupting the HK-VDAC
interaction (Gong et al., 2014), and inhibiting proliferation in
a human breast cancer MCF-7 cell line by down-regulation
of Bcl-2 (Liu et al., 2009; Kwiatkowska et al., 2016). In an
animal model, 3-BP eradicated advanced stage, positron emission
tomography (PET) positive hepatocellular carcinomas without
apparent harm to the animals (Ko et al., 2004). Recently 3-BP has
also been shown to be an activator of oxidative stress by depleting
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antioxidants and inactivating antioxidant enzymes (Kwiatkowska
et al., 2016). Another promising cancer fighting agent, jasmonate,
derived from a plant stress hormone, has also been shown to act
directly on mitochondria of cancer cells by detaching HK from
the OMM and inducing cell death via mPTP opening (Rotem
et al., 2005).

Other potential cancer-fighting agents also appear to target
VDAC1 directly to alter its channel’s gating properties. One
such group of drugs is the avicins, a family of triterpenoid
saponins. Studies have reported on the ability of avicins to
reduce VDAC1 channel conductance with a subsequent decrease
in cell energy metabolism and triggering of the apoptotic
pathway by permeabilization of the OMM (Haridas et al., 2007).
Another potential candidate for cancer therapy is oblimersen,
an 18-mer phosphorothioate anti-sense oligonucleotide (also
known as G3139) (Lai et al., 2006). Oblimersen targets VDAC
and results in a significant reduction in channel conductance
and decrease in metabolic fluxes across the OMM. This
perturbation in the OMM is thought to induce the formation of
a protein-conductive pathway that increase permeabilization of
mitochondrial membranes and allow the release of cytochrome c
to initiate the intrinsic apoptotic process. In fact, a reduction in
VDAC channel activity or increased membrane permeabilization
by a chemotherapeutic agent that is currently in widespread
clinical use, cisplatin (cis-diamminedichloroplatinum II), is
available for the treatment of head and neck cancer and other
types of malignant cancer (Yang et al., 2006). This study
demonstrated VDAC1 as effector of mitochondrial membrane
permeabilization via activation of Bax. In a recent review,
Shoshan-Barmatz et al. (2014) highlighted therapeutic strategies
involving the use of siRNA to impair energy and metabolic
homeostasis leading to the arrest of cancer cell growth and
proliferation, as well as the use of VDAC1-based peptides that
interact with anti-apoptotic proteins to induce apoptosis. Thus,
efficient exploration of targeted drugs and genetic approaches
that act on mitochondrial VDAC1 to antagonize tumor growth
and proliferation is a promising strategy to treat cancer.

ROLE OF VDAC IN NEURODEGENERATIVE
DISEASES

Mitochondrial dysfunction also plays a key role in
neurodegenerative diseases. As an excitable tissue, the central
nervous system is particularly sensitive to oxidative stress.
Numerous neurological diseases, for example Parkinson’s
disease, multiple sclerosis, Huntington’s disease, and Alzheimer’s
disease (AD) involve mitochondrial dysfunction. (For an
extensive review, see Camara et al., 2010). In this section, we
will focus on AD as an example where the role of mitochondrial
VDAC1 has been implicated in the etiology and progression of
the disease (Manczak and Reddy, 2012).

AD is a destructive neurodegenerative disease and the most
common form of dementia (Selkoe, 2001). It is characterized by
accumulation of amyloid plaques in brain tissue and progressive
neuroanatomical and cognitive impairment with advanced age.
Although the underlying mechanism of the disease is not

well understood, oxidative stress and mitochondrial dysfunction
have been implicated in the development and progression of
AD. One of the major pathological hallmarks of the disease
is the accumulation of amyloid beta (Aβ) in the extracellular
space. However, studies have reported on the accumulation of
Aβ in subcellular organelles, including mitochondria (Hansson
Petersen et al., 2008). Evidence shows that Aβ is taken up
into mitochondria via the outer membrane transport protein,
translocase of the outer membrane (TOM), and accumulate in
the IMM and cristae, likely via translocase of the innermembrane
(TIM), where they could interfere with electron transfer and
increase ROS production (Hansson Petersen et al., 2008; Pinho
et al., 2014).

Recent evidence has shown direct interaction of Aβ with
VDAC1 (Manczak and Reddy, 2012; Smilansky et al., 2015).
This interaction occurs for both the putative plasma membrane
(discussed below) VDAC1 and mitochondrial VDAC1. It is
worth noting that Aβ interaction with plasma membrane
VDAC facilitates penetration of Aβ into the cell (Thinnes,
2015a,b). At the mitochondrial level, Aβ interaction with VDAC1
results in the detachment of the anti-apoptotic protein, HK,
an increase in channel conductance likely by inducing VDAC1
oligomerization, and cytochrome c release (Reddy, 2013a,b).
Incidentally, increased mitochondrial VDAC1 expressions levels
have been shown to correlate with the progression of AD, and
reduced VDAC1 expression, such as that observed in VDAC1+/−

mice protected against AD-related toxicities (Manczak and
Reddy, 2013; Manczak et al., 2013). The increased VDAC1
expression in AD is accompanied by decreased ATPase (complex
V) activity (Manczak and Reddy, 2013; Manczak et al., 2013).
In the VDAC1+/− mice, it is reported that ROS production and
lipid peroxidation levels are reduced, while cytochrome oxidase
(complex IV) activity and ATP levels are elevated, indicative of
enhanced mitochondrial function (Manczak et al., 2013).

Interestingly, studies have also shown that the interaction
of VDAC1 with Aβ can lead to channel closure. In particular,
VDAC1 is found to interact with phosphorylated tau, another
key component in AD pathogenesis, and together with Aβ,
lead to channel block (Manczak and Reddy, 2012). This
combination between tau and Aβ leads to derangements in
metabolite fluxes across the OMM that results in defective
oxidative phosphorylation. Whether Aβ enhances or diminishes
VDAC1 conductance appears to be time-dependent: incubation
with Aβ leads to greater conductance while a direct effect
appears to block the channel pore. This effect on channel
function adds to the complexity and difficulty in delineating
the molecular mechanisms underlying AD. Nevertheless, these
studies highlight the role of VDAC1 dysfunction in the etiology
of AD. Down-regulation of VDAC1 and/or preventing its
interaction with Aβ and phosphorylated tau could potentially
preserve mitochondrial function, slow the progression of
AD, and ultimately improve cognitive function in patients
(Cuadrado-Tejedor et al., 2011; Manczak and Reddy, 2012).

In addition to its interaction with Aβ and phosphorylated tau,
VDAC1 is also found to undergo post-translational modification
(PTM) because of oxidative stress, another key pathogenic factor
in the development of AD. In a study identifying nitrated proteins
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in AD patients using proteomics approach, a significant increase
in protein nitration of VDAC1 was detected in hippocampal
samples (Sultana et al., 2006). Nitration, triggered by increased
levels of the potent reactive nitrogen species (RNS) peroxynitrite
(ONOO−), a product of the reaction between nitric oxide
(NO•) and superoxide anion (O·−

2 ), can irreversibly damage
proteins, and lead to altered functional characteristics of the
affected proteins. Nitration of VDAC1 could result in modified
channel function that ultimately impairs cognitive function.
Deleterious consequences of nitration-induced changes in VDAC
conductance have been reported in cardiac mitochondria (Yang
et al., 2012) (see section “Role of VDAC in Cardiac Injury”
below). Recent studies reported on other types of PTMs of
VDAC1 in AD. For example, VDAC1 was reported to be
significantly carbonylated by acrolein in AD patients (Mello et al.,
2007). Acrolein, the most reactive of the unsaturated aldehydes,
is formed through Fe-catalyzed oxidation of arachidonic and
docosahexaenoic acids, and is known to increase protein
carbonylation (Esterbauer et al., 1991; Uchida et al., 1998). In
proteomics studies, acrolein was reported to be significantly
elevated in the brain of AD patients (Lovell et al., 2001).
Hence, oxidative damage in the AD brain, including nitration
and carbonylation of VDAC1, likely impairs channel function
and contributes to the pathogenesis and progression of AD,
with concomitant cognitive impairment. This notion is further
espoused by the observations that VDAC1 deficient transgenic
mice exhibit deficits in long-term potentiation and learning
behavior (Weeber et al., 2002).

Like PTMs of VDAC1, significant S-nitrosylation of VDAC2
has also been identified in distinct regions of the brain from
AD patients. NO• triggered S-nitrosylation of VDAC2 could
potentially alter protein function and lead to dysregulation
of Ca2+ dynamics in mitochondria (Zahid et al., 2014).
Although the functional impact of S-nitrosylation of VDAC2
has not been established, its impact on VDAC1 has been
reported. Exogenous NO• was shown to display a biphasic
effect on VDAC1 isolated from cardiac mitochondria, i.e.,
decreasing channel conductance at lower concentrations while
increasing conductance at high concentrations (Cheng et al.,
2011). Other modifications of VDAC may contribute to the
development and progression of AD. It has been reported
(Fernandez-Echevarria et al., 2014) that Aβ exposure enhanced
the dephosphorylation of VDAC1 that correlated with cell death,
which was reversed in the presence of tyrosine phosphatase
inhibitors.

These results demonstrate that Aβ is also involved in
alterations of the phosphorylation state of VDAC in neurons
of AD. Recent studies also revealed that glycogen synthase-3β
(GSK-3β) is elevated in AD-affected tissues, and is critically
involved in dissociating VDAC1 from HK. This would disrupt
glucose metabolism, promote mitochondrial dysfunction and
activate apoptotic cell death (Smilansky et al., 2015).

AD is postulated to be more prevalent in elderly females than
theirmale counterparts, and this sexual dimorphism is attributed,
in part, to the declining levels of estrogen and the role of estrogen
receptors (Lan et al., 2015). It is also suggested that VDAC-
estrogen receptor interaction may be important for maintaining

channel inactivation and contributing to neuronal preservation
against Aβ injury (Lan et al., 2015). Thus, modulation of
the channel via its interaction with estrogen receptors may
contribute to the development and progression of AD pathology.
Consequently, it is worth noting that unraveling the underlying
mechanisms of the targeted PTM of VDAC or its interaction
with other proteins could be a harbinger for potential novel
approaches to assuage or prevent the onset or progression of AD,
especially if the mitochondrial markers/targets for the disease can
be identified.

ROLE OF VDAC IN CARDIAC INJURY

Ischemic heart disease (IHD) has become the leading cause of
death worldwide. In IHD, stoppage of flow through the coronary
vessels causes irreversible cell death. As the “powerhouse”
of the cell and with their large number in cardiomyocytes,
mitochondria play critical roles in cell dysfunction during cardiac
ischemia and reperfusion (IR) injury. During the ischemic
insult, mitochondria are the main source of ROS generation
in cardiomyocytes and as such have become prominent
in pharmacological intervention or genetic manipulations
in mitigating cell damage and death. Thus, mitochondrial
abnormality has been recognized as a hallmark of cardiovascular
diseases, including IHD (Camara et al., 2010, 2011). To date,
many of the studies have pointed to damages of mitochondrial
proteins as main contributing factors in mitochondria-mediated
cell demise. Some of the major contributing factors in cellular
damage during cardiac IR injury are damages to the ETC
complexes (Aldakkak et al., 2008a; Chen et al., 2010; Gadicherla
et al., 2012; Xu et al., 2014; Yang et al., 2014), and the
inability of mitochondria to maintain normal resting 19m,
which leads to impaired oxidative phosphorylation needed to
generate ATP for cellular function. Ischemia leads to diminished
ATP content/production, resulting in energy stress and in a
vicious cycle that leads to excess ROS production and further
oxidative stress. In this case, lack of ATP leads to further
mitochondrial functional derangement, loss of cellular cationic
homeostasis and subsequent cell death by necrosis. As a matter
of fact, during IR, mitochondrial derangement could lead to
membrane permeabilization, i.e., mPTP opening or VDAC-
mediated OMM permeabilization, which leads to the release
of cytochrome c and other apoptotic factors that contribute
to apoptosis.

The magnitude of myocardial injury and potential for reduced
tissue infarction following IR is related to the duration of
ischemia and successful reperfusion (Riess et al., 2004). A
prolonged cardiac ischemia and subsequent reperfusion inflicts

significant damage to mitochondria that results in cellular

energy deprivation and irreversible cardiac injury. We have

observed (Camara and Stowe, unpublished) that as ischemia time

increases in the ex vivo perfused heart, ROS production increased

proportionally, when measured continuously with a fiber optic
probe placed against the left ventricular free wall (Stowe et al.,
2006; Camara et al., 2007; Aldakkak et al., 2011). After 50 min
or more of ischemia, ROS generation, paradoxically, declined,
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which may be attributed to the loss of viable mitochondria; this
could lead to irreversible cardiomyocyte damage. Indeed, studies
show that it is the ischemic time rather than reperfusion that
determines the magnitude of cytochrome c release during cardiac
IR (Lesnefsky et al., 2004). Loss of cytochrome c as noted above,
diminishes the scavenging capacity of mitochondria (Camara
et al., 2010) and this, in a positive feedback manner, leads to
more ROS production and further damage to mitochondria.
The activities of the ETC complexes are also impacted by the
length of ischemia, with complex I activity decreasing within the
first 10–20 min of ischemia (Rouslin and Ranganathan, 1983).
We reported that targeting the ETC (complex I), which is the
primary source of ROS production during cardiac IR, attenuates
mitochondrial ROS production and preserve cardiac function
(Aldakkak et al., 2008a). Furthermore, a recent study showed
that the modulation of complex I activity by S-nitrosation is
cardioprotective against IR injury (Chouchani et al., 2013). Other
events that occur during IR include oxidation of mitochondrial
redox state (oxidized NADH/FAD), increased mitochondrial
free Ca2+, decreased mitochondrial membrane potential (19m)
and increased cytochrome c release, which cumulatively lead to
reduction in ATP production (Aldakkak et al., 2011). Hence,
targeting ROS and mitochondrial Ca2+ using mitochondria-
targeted ROS scavengers, modulators of the ETC (Aldakkak
et al., 2008a; Yang et al., 2014), or mitochondrial specific
inhibitors of Na+/H+ exchangers or Na+/Ca2+ exchangers
have all been reported to reverse mitochondrial damage
and protect the heart (An et al., 2006; Aldakkak et al.,
2008b).

Although the precise role of VDAC in cardiac IR injury
has not been delineated, several lines of evidence show that
it plays a pivotal role in IR injury and cardioprotection.
Modulation of VDAC by cytosolic proteins has been shown
to either induce cell death or prevent it during IR injury. As
noted above, HK interaction with VDAC confers protection
for tumor cells against apoptosis. Similar strategies have been
postulated for several cardioprotective strategies, for example,
in ischemic preconditioning (IPC) and post-conditioning (POC)
(Camara et al., 2011). In these strategies, increased association
between HK and mitochondrial VDAC has been shown to
reduce cell death in cardiomyocytes. HK has a hydrophobic
N-terminal sequence that is essential for its docking with
mitochondrial VDAC (Azoulay-Zohar et al., 2004). This docking
promotes VDAC closed state and reduces permeability to
ATP/ADP transfer across the OMM. Under de-energized state,
it has been reported that reduced transport of ATP/ADP
across the OMM by inhibiting VDAC opening significantly
attenuates myocardial IR injury (Steenbergen et al., 2009).
ROS emission and infarct size after reperfusion parallel the
degree of HK dissociation from mitochondria (Pasdois et al.,
2013). Cancer cells with increased HK-VDAC association are
thought to be less susceptible to IR damage compared to normal
cells.

Studies in cardiac mitochondria demonstrated an interaction
of PKC-ε, which translocates to mitochondria, with VDAC1 in
IPC and POC cardioprotection (Baines et al., 2003; Korzick
et al., 2007). IPC and POC strategies also protected the

heart against IR injury in a hypertensive animal model; the
cardioprotection was correlated with increased association of
phospho-PKC-ε with VDAC (although the isoform was not
specified). Alternatively, HK detachment from VDAC by pro-
apoptotic proteins (Bak and Bax) or by GSK-3β during IR
has been linked to OMM permeabilization and cell death
(Majewski et al., 2004; Chiara et al., 2008). In the heart, GSK-
3β has several important roles. GSK-3β phosphorylates VDAC,
which is modulated by Akt (protein kinase B). Decreased
phosphorylation of VDAC, which is induced by inhibition
of GSK-3β, can reduce ATP entry into mitochondria (Das
et al., 2008). Thus, permeabilization of OMM by GSK-3β is
suppressed by activation of Akt, which phosphorylates GSK-
3β at Ser9, resulting in dislodging of the protein from its
binding site and mitigating cell damage (Majewski et al., 2004).
Other studies have shown phospho-serine-GSK-3β-mediated
cytoprotection is achieved by increased threshold for mPTP
opening, possibly through phosphorylation of VDAC (Pastorino
et al., 2005; Nishihara et al., 2007). Additional evidence
shows that Akt also is cytoprotective by phosphorylating HK
and concomitantly enhancing its binding to mitochondria
(Miyamoto et al., 2008; Roberts et al., 2013), which prevents
GSK-3β binding to VDAC (Das et al., 2008; Martel et al.,
2014).

The close proximity of VDAC1 and SR Ca2+ handling
proteins [e.g., inositol 1,4,5-triphosphate receptors (IP3R)] in
the MAM domain provide direct Ca2+ signal from SR to
mitochondria (Patergnani et al., 2011). This link has been shown
to be significant during IR when there is increased translocation
of GSK-3β at the MAM domain (Gomez et al., 2016). It
may increase Ca2+ leak from SR and contribute to increase
mitochondrial Ca2+ overload viamodifiedVDAC. A recent study
showed that pharmacological and siRNA inhibition of GSK-3β
at reoxygenation after hypoxia reduced Ca2+ leak from SR in
cardiomyocytes, limited both cytosolic and mitochondrial Ca2+

overload and reduced cell death (Gomez et al., 2016). It is worth
noting that the pro-apoptotic Bcl-2 family of proteins is also
localized in the MAM region where they influence mitochondrial
permeability and mitochondrial functional integrity, presumably
via VDAC, during Ca2+ overload or oxidative stress (Giorgi et al.,
2015). HK-VDAC association is known to prevent apoptosis
by interfering with Bax binding to mitochondria and impeding
VDAC1 oligomerization (Keinan et al., 2010; Shoshan-Barmatz
et al., 2010) (see below for more details).

Recent studies have examined how excess ROS and RNS
exert their deleterious effects via PTMs of key mitochondrial
proteins, resulting in mitochondrial dysfunction. Several studies
have reported on the involvement of PTMs of VDAC in IR
injury and in cardioprotection. Foremost in these novel findings
is that PTM of VDAC by NO• and ONOO− may be important
in regulating the function of the channel, thereby preserving
mitochondrial function and cell survival, or contributing to
mitochondrial dysfunction and cell death. Nitration of amino
acid residues in the ETC complexes and other proteins (e.g.,
VDAC, ANT) likely leads to altered protein function (Zhang
et al., 2010; Yang et al., 2012). We reported that NO• caused
a concentration-dependent biphasic inhibition of the cardiac
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VDAC incorporated in a planer lipid bilayer (Cheng et al.,
2011). The implications of these findings is that PTM of
VDAC by NO• and other N2 containing molecules may be
important in regulating the function of the channel and thereby
mitochondrial function and cell fate. As mentioned above, we
reported for the first time that nitration of VDAC contributes to
the pathology associated with cardiac IR injury (Yang et al., 2012).
VDAC nitration of specific tyrosine residues was associated
with increased O·−

2 and ONOO− production, which significantly
compromised cardiac function on reperfusion. Treatment with
resveratrol, a scavenger of ROS and RNS, or NG-nitro-L-arginine
methyl ester (L-NAME), a NOS inhibitor, reduced ex vivo VDAC
nitration, reduced O·−

2 and ONOO− generation, and improved
cardiac function on reperfusion. In the same study, we also
reported that VDACnitration resulted in VDAColigomerization,
which could have contributed to the uncharacteristically large
conductance of the channel when incorporated into lipid
bilayers.

Phosphorylation of VDAC is an important PTM with strong
implications for beneficial or injurious effect during IR. Whether
phosphorylation or dephosphorylation of VDAC is beneficial
to cardiac function during IR has not been resolved. For
example, the cardioprotective effects of PD169316, an inhibitor
of the p38 mitogen-activated protein kinase, resulted in a
significant reduction in ischemia-induced phosphorylation of
VDAC1, specifically a reduction in tyrosine phosphorylation
(Schwertz et al., 2007). The functional consequence of tyrosine
phosphorylation of VDAC1 was not established in that study.
Nevertheless, the study demonstrated that reduced tyrosine
phosphorylation of VDAC1 may underlie a mechanism of
cardioprotection. For instance, inhibition of GSK-3β was
reported to reduce IR injury; this involved a reduction in
phosphorylation of VDAC, specifically VDAC2 (Das et al.,
2008). Endostatin-induced apoptosis in endothelial cells were
found to involve the phosphorylation of VDAC1 (Yuan et al.,
2008). On the other hand, phosphorylation of VDAC has also
been implicated as a cardioprotective mechanism. A significant
increase in O-linked β-N-acetylglucosamine (O-GlcNAc) levels
has been reported in IPC, and the pharmacological augmentation
of O-GlcNAc has resulted in a significant decrease in infarct
size following ischemia (Jones et al., 2008). O-GlcNAc induced
modification of VDAC, analogous to protein phosphorylation,
was detected in that study, suggestive of a cardioprotective
PTM. In endothelin-1 induced cardiac hypertrophy, VDAC
phosphorylation was reduced, an effect that was mimicked by a
GSK-3β inhibitor. The reduced phosphorylation was associated
with mitochondrial membrane depolarization (Javadov et al.,
2009b).

Identifying PTMs of VDAC and establishing the resultant
functional changes should help define its potential pathogenic
role in disease states and to provide information on how and
where to target therapies to mitigate cell death. In this scenario,
targeted protein modifications may be a unique therapeutic
approach for the rescue of mitochondrial proteins and for
protection against cardiac oxidative (O·−

2 ) and/or nitrosative
(NO•/ONOO−) damage due to I/R injury.

STRUCTURAL IMPACT OF SITE-SPECIFIC
PTM AND FUNCTIONAL CONSEQUENCE
OF VDAC1

It was less than a decade ago when the 3-dimensional structure
of the VDAC1 isoform was determined (Bayrhuber et al.,
2008; Hiller et al., 2008; Ujwal et al., 2008; Figure 2A). The
availability of the VDAC1 structure allows for investigation
of the intricate molecular details of the protein’s structure-
function relationship, most importantly the structural basis for
conductance, ion selectivity and gating of this ion channel. The
channel’s permeability to small molecules, ions and nucleotides
has been investigated in several studies employing molecular
dynamics (MD) or Brownian dynamics (BD) simulation (for a
comprehensive review, see Noskov et al., 2016).

The conductance and ion selectivity captured by the
simulations are in general consistent with experimentally
measured values. Based on these calculations, an open (high-
conductance) state can be assigned to the conformations
captured in NMR spectroscopy and crystal structures. The
closure of the pore (mechanism of gating), however, has not been
structurally well characterized. A mutagenesis study with MD
simulations suggested that the pore closure might be a result of
geometrical distortion of the barrel, i.e., the pore is elliptically
“squeezed” under gating conditions (Zachariae et al., 2012).

In terms of substrate selectivity, it has been predicted that
a specific ATP binding site might exist within the VDAC
pore (Figure 2B) due to a largely reduced in-pore diffusion
constant calculated for this substrate compared to its bulk
value (Rostovtseva and Bezrukov, 1998). Free energy analysis
employing non-equilibrium MD trajectories of ATP passage
across the channel pore has identified significant contributions
from the N-terminal helical region to this phenomenon (Noskov
et al., 2013). This is further confirmed by the discovery of
an ATP-bound crystal structure of murine VDAC1, which
demonstrates direct engagement of the phosphate moieties of
ATP in salt-bridges with the N-terminal region (Choudhary
et al., 2014; Figure 2C). Utilizing hundreds of short equilibrium
MD simulations, nucleotide permeation pathways have been
reconstructed in a Markov state model (Choudhary et al., 2014).
Notably the highest ranked pathway identified in this study
is similar to that identified in a separate study using MD
simulations on a much smaller scale (Krammer et al., 2015).

Since the interior of VDAC1 is highly polar with multiple
salt bridges involved in the barrel structure and lining the
substrate permeation pathway, perturbation to the electrostatic
charge distributions within the channel is expected to largely
alter its electrophysiological properties, and thus the channel’s
conductance. A study with MD and BD simulations on several
VDAC1 mutants whose charged residues were modified showed
that mutations in the interior of the pore do affect ion selectivity,
whereas mutations on the rim of the barrel have little effect
(Krammer et al., 2013). Furthermore, lowering pH has been
demonstrated to promote voltage-induced closure (Teijido et al.,
2014). However, due to the intrinsically asymmetric distribution
of charged residues, whether the pH change is originated from
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the cytosol or the IMS will result in different open probabilities
and averaged conductance (Teijido et al., 2014). Many PTMs
to VDAC, particularly phosphorylation, introduce additional
negative charges to the barrel and change the charge distribution
inside the pore (Figure 2D). While many of these PTMs have
profound physiological effects (Martel et al., 2014), whether a
specific PTM changes the conductance, selectivity or voltage
dependence, or even the interaction of the protein with other
regulatory mechanisms would require further studies at the
molecular level.

Intriguingly, in the VDAC structures (Figure 2), a charged
residue Glu73 is located at the mid-point of the barrel with its
side chain facing away from the pore and toward the lipids in
the center of the membrane. Neutralizing this residue in MD
simulations greatly reduced the structural fluctuations (Villinger
et al., 2010), which is further evidenced by the highly ordered
E73V mutant structure recently resolved with NMR (Jaremko
et al., 2016). It is known that Glu73 forms a Ca2+ binding
site (Israelson et al., 2007), while HK-I binding of VDAC1 is
abolished by E73Q mutation (Zaid et al., 2005). How these
interactions and effects at a location right in the middle of a lipid
bilayer can be of high impact to the fate of the cell may become a
hot topic of research.

DOES VDAC EXIST IN THE PLASMA
MEMBRANE?

The response to this question seems to depend largely on the
tissue type. Unlike the OMM VDAC, there is currently no
consensus that VDACs are universally present in the sarcolemma
of eukaryotic cells. The notion of VDAC in plasma membrane
was first reported in 1989, after the revelation by Thinnes lab
that porin exists in human B-lymphocyte plasma membrane
(Kayser et al., 1989; Thinnes et al., 1989). This observation
was subsequently supported by other studies from other cell
types, including post-synaptic membrane fractions from the
brain and in caveolae of neurons (Moon et al., 1999). In
subsequent studies, an array of approaches was used to ascertain
the purity of the protein in the plasma membrane of these cells
(Schindler et al., 2006). However, other studies have disputed
the existence of VDAC in the plasma membrane and have
discounted previous findings as artifacts or contaminations
(Yu et al., 1995). In that study, the authors suggested that
extra-mitochondrial localization of VDAC were likely due to
unspecific immunoreactions and redistribution in subcellular
compartments during procedures involving the use of detergent.
It is worth noting that there is no evidence to date that
unambiguously demonstrate the presence of the protein in
cardiomyocyte plasma membrane. Nonetheless, in those cells
where the channel has been identified in the plasma membrane,
some functional roles have been suggested (De Pinto et al.,
2010b). As alluded above (Role of VDAC in Neurodegenerative
Disease), plasma membrane VDAC has also been implicated
in the transport of Aβ into the cell (Thinnes, 2015b). The
study showed that silencing VDAC1 expression by siRNA
prevented Aβ entry into the cytosol and prevented cytotoxicity.

In other cells, for example, in fibroblasts and epithelial cells,
plasma membrane VDAC1 may have physiological relevance in
regulating extracellular ATP release. It has been reported (Okada
et al., 2004) that plasma membrane VDAC1 independently
regulated ATP release and ATP-mediated cell volume responses
to hypertonicity. Others have suggested that plasma membrane
VDAC1 can function as a redox enzyme reductase, a function
not clearly attributed to VDAC1 in mitochondria (Baker et al.,
2004). This role of VDAC is postulated to be involved in the
maintenance of cellular redox homeostasis. Since this study was
conducted in Namalwa cells, special human lymphoma cell lines,
the extrapolation of the observations to other cells may be
limited. Lastly, in normal neuronal cells, it has been reported
that plasma membrane VDAC plays a role in the early stages
of neuronal apoptosis, because anti-VDAC antibodies block the
apoptotic process (Elinder et al., 2005), and in the development
of osteoclasts (bone resorption cells) during bone remodeling
(Kotake et al., 2013).

The existence of plasma membrane VDAC and its
physiological significance is not as well delineated as its
mitochondrial counterpart. Furthermore, in those cells where
VDAC has been identified in the plasma membrane, how
or whether it has a functional crosstalk with mitochondrial
VDAC under normal and pathological conditions (e.g.,
oxidative/nitrosative stress, mitochondrial Ca2+ overload)
remains to be explored. The fact that possible artifacts from
mitochondrial membrane during plasma membrane VDAC
isolation procedures could occur, a thoughtful consideration on
a bona fide plasma membrane VDAC requires further scrutiny.

PERSPECTIVE

After decades of intense investigation, VDAC has evolved from
a mere porin to a channel at the crossroad between metabolism,
cell survival pathways and cell death. VDAC is now recognized
not just as a conduit for the transport of metabolites/ions
and regulator of metabolic and energetic function, it is also
a convergence point for a variety of survival and cell death
signaling pathways. In this review, we examined the role of
VDACs, particularly VDAC1 in mitochondria, in the physiology
and pathophysiology of neoplastic and neurodegenerative
diseases and cardiac IR injury. This review is narrow in its focus,
but this is not reflective of the extent the subject is covered in the
literature. There remains a lot of grounds to cover and uncover
on the physiological role of VDAC in mitochondrial function
and dysfunction. Clearly, VDAC is critical in the docking of both
cytosolic and mitochondrial proteins, and its physiological and
pathophysiological roles are mediated in part by various PTMs.
A better appreciation of these PTMs on protein structure and
function and the impact this has on the transformation from
a pore to a receptor for other proteins, or from a mediator
of cytoprotection to a mediator of cell death, is important
for unraveling the implications of the protein as a potential
therapeutic target. In this context, VDAC can be recognized as
a gatekeeper for normal mitochondrial function and a crucial
factor in both cytoprotection, as in cancer cells, and a mediator
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of mitochondria-induced apoptosis, as in IR injury and AD. As
such, VDAC is a highly enigmatic protein whose dysfunction can
contribute to the pathogenesis of multitude of diseases.
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