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Olfaction is a major sensory modality involved in real time perception of the chemical

composition of the external environment. Olfaction favors anticipation and rapid

adaptation of behavioral responses necessary for animal survival. Furthermore, recent

studies have demonstrated that there is a direct action of metabolic peptides on the

olfactory network. Orexigenic peptides such as ghrelin and orexin increase olfactory

sensitivity, which in turn, is decreased by anorexigenic hormones such as insulin and

leptin. In addition to peptides, nutrients can play a key role on neuronal activity. Very little

is known about nutrient sensing in olfactory areas. Nutrients, such as carbohydrates,

amino acids, and lipids, could play a key role in modulating olfactory sensitivity to adjust

feeding behavior according to metabolic need. Here we summarize recent findings on

nutrient-sensing neurons in olfactory areas and delineate the limits of our knowledge

on this topic. The present review opens new lines of investigations on the relationship

between olfaction and food intake, which could contribute to determining the etiology of

metabolic disorders.

Keywords: nutrient sensing, olfaction, piriform cortex, transporter, receptor, food intake, obesity, type 2 diabetes

THE OLFACTORY SYSTEM IS AN INTERFACE

According to its anatomical location, the olfactory system is well poised to be an interface, with
the ability to gather and process information simultaneously from the external and internal
environment.

Interaction with the External Environment
The traditional function of the olfactory system is to sense the external chemical world.
Odors are inhaled directly into the nose following an orthonasal pathway, or come from
the back part of the mouth following a retronasal pathway. Both pathways lead odors to
the posterior part of the nasal cavity. Odors bind to protein receptors located in the ciliary
membrane of olfactory sensory neurons (OSNs) within the olfactory epithelium (OE). Each
OSN expresses only one type of olfactory receptor (Malnic et al., 1999; Serizawa et al., 2003).
Odor/receptor association selectively activates OSNs in the OE. All OSNs expressing the same
odorant receptor project their axons to one or two olfactory bulb (OB) glomeruli where OSN
axons synapse with the dendrites of mitral cells (MCs); the second order olfactory neurons
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(Ressler et al., 1994; Vassar et al., 1994; Breer et al., 2006). The
electrical signal is then transmitted to neuronal networks in
the piriform cortex (PC). Olfaction thereby informs the central
nervous system in real time about the chemical composition
of the external environment prior to any visual or tactile
information. This event allows the animal to anticipate and
rapidly adapt its behavior when seeking food or when engaging
in social or sexual behavior.

Interaction with the Internal Environment
The hypothalamus is the main central actor in food intake
regulation. Internal signals carried by the blood inform various
central areas about the body’s fuel availability, which in turn
implement appropriate behavioral and metabolic responses to
physiological requirements. Orexigenic and anorexigenic signals,
respectively, stimulate or inhibit food intake by modulating
neuronal activity of hypothalamic nuclei. During fasting, the
hypothalamus induces food intake in response to nutrient
scarcity and high level of ghrelin released by the stomach.
Alternatively, the hypothalamus suppresses feeding behavior
when it detects insulin secretion from the pancreas, leptin
secretion from the adipose tissue, and nutrient abundance
(Blouet and Schwartz, 2010; Berthoud, 2011). Interestingly, the
olfactory system is also becoming widely considered as an
active sensor of internal signaling (hormones, micronutrients
availability). Olfactory structures like the OE, OB, and PC
(Palouzier-Paulignan et al., 2012) express high levels of various
hormone receptors (insulin, leptin, ghrelin, CCK) similar to that
of the hypothalamus (Figure 1). When targeting their receptors,
metabolic hormones modulate the electrical activity of olfactory
networks (Fadool et al., 2000, 2011; Apelbaum et al., 2005; Hardy
et al., 2005; Lacroix et al., 2008; Savigner et al., 2009; Kuczewski
et al., 2014). OB neurons respond not only to peptides, but
they also respond to glucose and express molecular hallmarks of
glucose sensing cells (Tucker et al., 2010, 2013; Aimé et al., 2014;
Al Koborssy et al., 2014; Kovach et al., 2016).

The metabolic sensing function of the OB is consistent with
its high density of capillary network (Chaigneau et al., 2007)
and its vascular properties. The blood brain barrier of the OB is
not as tight as it is in the cerebral cortex or other brain regions
(Ueno et al., 1991, 1996), indicating that blood-borne metabolic
signals can enter the OB more easily than other brain regions.
The permeable blood barrier facilitates transport of intravascular

Abbreviations: CoA, Acyl-coenzyme A; AA, Amino acid; AON, Anterior

olfactory nucleus; APC, Anterior piriform cortex; CD36, Cluster of Differentiation

36; DAG, Diacylglycerol; iEPL, Internal External plexiform layer; FA, Fatty

acid; FAT, Fatty acid translocase; FATP, Fatty acid transport proteins; GCN2,

General amino acid control non-derepressible 2; GE, Glucose-excited; GI,

Glucose-inhibited; GLUT, Glucose transporter; GPCR or GPR, G-protein-coupled

receptor; iEPL, Inner part of the external plexiform layer; IP3, Inositol 1,4,5-

trisphosphate; IR, Insulin receptor; KCC2, K+/Cl- co-transporter; mTORC1,

Mammalian target of rapamycin complex 1; MCs, Mitral cells; OB, Olfactory

bulb; OE, Olfactory epithelium; OSN, Olfactory sensory neuron; OT, Olfactory

tubercle; PIP2, Phosphatidylinositol 4,5-bisphosphate; PLC, Phospholipase C; PC,

Piriform cortex; PUFA, Polyunsaturated fatty acid; 7TM, Seven transmembrane

domains; SGLT, Sodium-dependent glucose transporter; SLC, Solute carrier;

TRPC, Transient receptor potential cation channel subfamily C; TRPM, Transient

receptor potential cation channel subfamily M.

macromolecules, including nutrients and peripheral hormones,
and their direct action on the OB. This enhanced permeability
allows adaptation of olfactory perception to the physiological
state: highly sensitive when the animal is fasted and needs to
find food, and slightly sensitive when the animal is satiated
(Aimé et al., 2007, 2012; Julliard et al., 2007; Prud’homme
et al., 2009; Tong et al., 2011). Based upon its sensitivity to
metabolic hormones and glucose availability, the olfactory system
is proposed to be a metabolic sensor.

The present review provides an updated outlook of nutrient
sensing in olfactory structures.We argue that in addition to being
glucose-sensitive (Tucker et al., 2010, 2013; Aimé et al., 2014; Al
Koborssy et al., 2014; Kovach et al., 2016) olfactory structures are
sensors of amino acids (AAs) and potentially of fatty acid (FA)
content of the internal medium.

TRANSMEMBRANE PROTEIN FAMILIES
INVOLVED IN NUTRIENT SENSING

In contrast to unicellular organisms, most eukaryotic cells are
not directly exposed to changes in environmental nutrients.
Nevertheless, nutrient homeostasis is essential for all living
organisms to maintain constant fuel supply despite discontinuity
in food intake. Nutrient scarcity and abundance exert a strong
pressure on the selection of efficient mechanisms for nutrient
sensing in mammalian cells including central neurons. However,
the molecular nature of brain nutrient sensors has only recently
started to be deciphered. The present review focuses on sensors
that are present in olfactory areas. In particular, we present
two major sensing mechanisms that involve either the family
of solute carrier (SLC) transporters (called T in Figure 2) or
receptors having seven or two transmembrane domains (called
R in Figure 2).

In the first mechanism, the sensed molecule is transported
intracellularly. Numerous transmembrane protein transporters
belonging to the SLC superfamily have been associated with
nutrient sensing that control feeding, energy expenditure, and
counterregulation (Marty et al., 2007; Gonzalez et al., 2009;
Routh, 2010; Broer, 2014). The SLC superfamilymediates passage
of nutrients across the phospholipid bilayer via passive transport,
in which the nutrient moves down its concentration gradient, or
via active transport (or co-transport) that couples the movement
of the nutrient to that of another molecule or ion crossing the
membrane either in the same (symporter) or opposite direction
(antiporter or exchanger). As a result, the membrane potential
can be modulated directly when the sensed molecule is co-
transported with ions (electrogenic transport) or indirectly when
the sensed molecule activates an intracellular cascade which,
in turn, modulates ion channel permeability (non-electrogenic
transport).

In the second sensing mechanism, the sensed molecule binds
to its transmembrane receptor and activates an intracellular
cascade to depolarize the membrane through activation of
Na+ and/or Ca2+ inflow or inhibition of K+ conductance
(Lindemann, 2001; Chaudhari and Roper, 2010). In nutrient
sensing, the most important transmembrane receptors belong to
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FIGURE 1 | The olfactory system is a metabolic sensor like the hypothalamus. According to the nutritional status, a balance exists between peripheral signals

delivered by the stomach, intestine, liver, pancreas, and adipose tissue. During fasting, orexigenic signals (ghrelin, and nutrients scarcity) prevail. In contrast, during

satiation, anorexigenic signals (CCK, insulin, leptin and nutrients abundance) are predominant. These signaling molecules reach the central nervous system via the

blood flow, where they target the hypothalamus (Hypo) as well as a variety of olfactory structures: OE, olfactory epithelium; OB, olfactory bulb; AON, anterior olfactory

nucleus, OT, olfactory tubercle; PC: piriform cortex; CCK, cholecystokinin.

the seven transmembrane (7TM) G protein–coupled receptors
(GPCRs) family and are activated by glucose, AAs, or FAs.
These 7TM receptors are expressed in central nervous areas
involved in energy homeostasis regulation (Wellendorph et al.,
2010). The 7TM receptors exist across the phospholipid
bilayer as homodimers, heterodimers, or monomers. It is
noteworthy that a 2TM receptor called cluster of differentiation
36 (CD36), is often associated with FAs transporters in
the hypothalamus (Doege and Stahl, 2006; Magnan et al.,
2015).

GLUCOSE SENSING

Physiological Role of Glucose Supply to
the Brain
Glucose is the primary metabolic substrate for the brain
and a continuous supply of glucose is required for normal
neuronal function (Mergenthaler et al., 2013). The brain
accounts for 2% of the total body mass but requires 10 times
more energy in the resting state compared to other energy
consumption needs of the body (Mink et al., 1981; Molina
and DiMaio, 2012). Glucose metabolism provides the fuel for
physiological brain function through the generation of ATP
that serves for the basic maintenance of cellular processes such
as cytoskeletal dynamics, DNA repair, protein turnover, and
growth. More specifically, during neuronal activation, the brain
consumes a lot of energy in order to maintain the turnover

of glutamate through metabolic neuron-astrocyte interactions
(Magistretti and Allaman, 2015). Furthermore, 80% of total
energy consumption fuels the Na+/K+ ATPase pump but <10%
is used to recycle second messengers and neurotransmitters
(Laughlin, 2001).

Glucose supply is critical for physiology, therefore a tight
regulation between supply and demand is required. Several
brain areas, such as the hypothalamus, brainstem, amygdala,
septum, hippocampus, cortex, and OB contain glucose sensing
neurons (Anand et al., 1964; Oomura et al., 1969; Ritter et al.,
1981; Nakano et al., 1986; Shoji, 1992; Balfour et al., 2006;
Tucker et al., 2013). These specialized neurons respond to
local fluctuations in extracellular glucose levels, and modulate
their mean firing rate accordingly. Glucose sensing neurons
have been classified as “glucose-excited” (GE) or “glucose-
inhibited” (GI) depending on whether they increase or
decrease action potential frequency in response to extracellular
glucose variations (McCrimmon, 2008; Gonzalez et al., 2009).
GE and GI neurons integrate fluctuations in whole-body
metabolic signals related to feeding behavior (Routh et al.,
2007).

Several transporters, receptors, and ion channels are expressed
in glucose sensing neurons of olfactory structures. Our
laboratories and others have studied the role of the sodium-
dependent glucose transporters (SGLTs), glucose transporters
(GLUTs), potassium channels, and the insulin receptor (IR) in
sensing glucose.
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FIGURE 2 | Schematic model showing the transmembrane proteins involved in nutrient sensing. The main transporter (T) family involved in nutrient sensing is the

solute carrier (SLC) transporter family. It couples the movement of the nutrient (gray circle) to that of another molecule or ion crossing the membrane either in the same

(symporter) named T1 in the figure or opposite direction (antiporter or exchanger) named T2 in the model. Nutrient influx down SLC transporters is called electrogenic

when associated with a net inward of ion of Na+ of sufficient magnitude to cause direct membrane depolarization. Transport is non-electrogenic when it activates

intracellular cascades that in turn depolarizes the membrane for example via K+ conductance inhibition. The two receptor (R) families involved in nutrient sensing are:

the large receptor family of seven transmembrane domains (7TM) named R1 and R2 in the figure and the smaller family of two transmembrane domains (2TM) named

R3 in the schematic model. The main receptor family is composed of 7TM it could be observed as heterodimer, homodimer (R1) or monomer (R2). Nutrients binding

to their receptors activate an intracellular cascade which induces membrane depolarization by activating (blue arrow) a Na+ influx or by inhibiting (red line) K+

conductance or hyperpolarization by the reverse events. Metabotropic (via intracellular cascades) activation and inhibition of ion channels induced by nutrients are

represented by the blue and red dotted lines respectively.

Sensing Role of Glucose in Olfactory
Structures: Molecular Hallmarks
Glucose Transporters Expressed in Olfactory

Structures

Electrogenic solute carrier transporter (SGLT1)
The family of sodium-dependent glucose transporters (SGLTs),
also named SLC5, belongs to the SLC super family and uses a Na+

gradient to transport glucose against its concentration gradient
into the cell. To date, six SGLTs isoforms have been identified
(Wright and Turk, 2004). SGLT1 can modify its conformation to
first release the two Na+ ions intracellularly while transporting
glucose against its concentration gradient albeit in a symport
orientation (Figure 3).

In the brain, SGLT1 has been found mainly in the
hypothalamus, hippocampus, amygdala and OB (Kang et al.,
2004; Yu et al., 2010; Aimé et al., 2014; Al Koborssy et al.,
2014). In the OB, we found strong staining of SGLT1 in the
inner part of the external plexiform layer (iEPL), in some mitral
cells (MCs) and in some glomeruli (Al Koborssy et al., 2014).
The iEPL is the site of reciprocal dendro-dendritic synapses
between the secondary dendrites of MCs and the dendritic
spines of inhibitory granule cells; this inhibitory interaction
modulates odor information including olfactory discrimination
(Yokoi et al., 1995; Lledo et al., 2005; Abraham et al., 2010). The
availability of inhibitory control over MCs combined with the
presence of rapidly activating SGLTs in the iEPL could explain

the inhibitory response to glucose observed in the GI class ofMCs
(Tucker et al., 2013).

Non-electrogenic solute carrier transporter (GLUT4)
The Na+-independent GLUTs family (gene family slc2a)
transports glucose across biological membranes. GLUTs
comprise 14 family members and exhibit diverse substrate and
tissue specificity resulting in distinct functional characteristics.
GLUT1 exists as two isoforms in the brain and is exclusively
expressed in endothelial cells and astrocytes. GLUT3 is localized
to the neuropil and is largely absent from neuronal cell bodies
(McCall et al., 1994; Gerhart et al., 1995) while GLUT4 exhibits
a somato-dendritic labeling. The more discrete presence of
GLUT4 compared with other GLUTs suggests that GLUT4
may be involved in highly specialized activities in the central
nervous system. GLUT4 is consistently colocalized with IR
and glucose transport through GLUT4 is the rate-limiting step
in insulin-stimulated glucose uptake in the brain including
olfactory areas (Alquier et al., 2006). Interestingly, 75% of GE
neurons in the central nervous system coexpress GLUT4 and the
IR mRNA (Kang et al., 2004).

The olfactory system has been found to express GLUT1 in
the OE (Nunez-Parra et al., 2011), whereas GLUT1, GLUT3,
and GLUT4 have been reported in the central olfactory areas
(Brant et al., 1993; Leloup et al., 1996; El Messari et al., 1998,
2002; Vannucci et al., 1998; Dobrogowska and Vorbrodt, 1999;
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FIGURE 3 | Schematic model showing glucose sensing signaling pathways that might modulate neuronal activity of central olfactory areas. Two types of glucose

transporters and their associated downstream cellular processes are observed in central olfactory areas. SGLT1, located in the OB, is electrogenic and combines

glucose (Gluc: blue triangle) translocation with an influx of Na+. GLUT4, located mainly in the OB and PC, is non-electrogenic and is associated with the insulin

pathway. Indeed, insulin (Ins, red triangle) binding to its receptor (IR: insulin receptor) depolarizes MCs through Kv1.3 channel closure and induces GLUT4

translocation to the membrane. Glucose intake increases as well as the mitochondrial production of ATP and the cytosolic protein kinase A (PKA). Activation: blue

arrow, inhibition: red line. Direct and indirect action of one molecule: full and dotted line respectively.

Choeiri et al., 2002; Al Koborssy et al., 2014). GLUT4 and IR are
found to be localized in the main central olfactory areas such
as the OB, PC, anterior olfactory nucleus (AON), and olfactory
tubercle (OT) (Unger et al., 1989; Marks et al., 1990; El Messari
et al., 1998; Schulingkamp et al., 2000; Alquier et al., 2006; Aimé
et al., 2012, 2014). In a previous study, we have shown that
GLUT4 is co-localized with IR in MCs and glomeruli of the OB.
Interestingly, subcellular localization of GLUT4 is modulated by
the feeding state. During the postprandial period when glucose
levels in the blood are high, GLUT4 is found on the plasma
membrane of dendritic processes. Following a fast however, it
becomes internalized into the cytoplasm (Al Koborssy et al.,
2014).

The dynamic expression of GLUT4 within MCs can be
regulated by two complementary mechanisms (Figure 3). First,
we observed that the feeding state-dependent modulation of
GLUT4 subcellular localization in the OB correlates with the
feeding state-dependent fluctuations of insulin levels in the OB as
insulin was 2 fold higher in fed rats compared to fasted rats (Aimé
et al., 2012).We infer that insulin levels increase in the OB during
satiety to stimulate translocation of GLUT4 storage vesicles
to the plasma membrane thereby increasing glucose uptake.
Second, subcellular expression of GLUT4 can be regulated by
the voltage-dependent potassium channel, Kv1.3 (Xu et al., 2004;
Kovach et al., 2016). Blocking Kv1.3 conductance by applying
a specific inhibitor (margatoxin) to cultured adipocytes or by
co-transfecting GLUT4 and a non-conducting pore form of the
channel in human embryonic kidney cells, increases plasma
membrane expression of GLUT4 (Xu et al., 2004; Kovach et al.,

2016). Gene-targeted deletion of Kv1.3 channel renders glucose-
sensitive MCs non-responsive to glucose modulation in terms
of action potential firing frequency (Tucker et al., 2013). Kv1.3
was further hypothesized to act as an insulin receptor substrate
in MCs whereby IR activation phosphorylates the channel and
suppresses its peak current (Fadool et al., 2000). It results that
insulin-dependent or -independent blockade of Kv1.3 increases
glucose translocation to the membrane.

While GLUT4 is highly expressed in MCs, and these neurons
are clearly able to sense changes in glucose concentration either
experimentally or evoked by nutritional state in vivo, the steps
linking glucose entry to the change in firing pattern of MCs
are yet unknown. We speculate that glucose sensing of MCs
might use similar molecular means as reported for glucose
sensing of the hypothalamus (Ashford et al., 1990; Spanswick
et al., 1997; Ashcroft and Gribble, 1999; Song et al., 2001). In
addition to KATP, other transporters like the Na+/K+ ATPase
pump (Oomura, 1983; Silver and Erecinska, 1998), and the cystic
fibrosis transmembrane conductance regulator chloride channel
(Hwang and Sheppard, 1999; Song et al., 2001) could elicit
either depolarization or hyperpolarization of a neuron during
extracellular glucose fluctuation.

Further studies are required to elucidate (i) if glucose
transport across MCs recruits an electrogenic symport of
Na+, (ii) if the metabolic product of glucose (ATP) acts on
downstream ion channels similar to mechanisms observed in the
hypothalamus or (iii) if byproducts of glucose metabolism could
phosphorylate Kv1.3 through ATP, cAMP, or PKA (Lewis and
Cahalan, 1995; Dalle et al., 2013).
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Metabolic Dysfunction and Glucose
Sensors in Olfactory Areas
A variety of functions have been suggested for central
glucose sensing neurons. Glucose sensing neurons are involved
(i) in maintaining local energy requirements for synaptic
transmission and (ii) in regulating whole body energy and
glucose homeostasis. Glucose not only serves as a metabolic
substrate but also alters neuronal activity linked to metabolism.
Therefore, it’s suggested that correct functioning of glucose
sensing neurons would be essential to prevent metabolic
disorders such as obesity and Type 2 diabetes mellitus but also
stroke and other neurodegenerative disorders where neuronal
energy supply is disrupted (Routh et al., 2007).

Central olfactory areas such as the OB and PC, have an
expensive energy budget in terms of glucose metabolism, which
is high during odor stimulation and increases further during
coding and processing of olfactory information (Nawroth et al.,
2007; Gire et al., 2013; Litaudon et al., 2017). Given that,
we previously established a link between feeding states and
olfactory performance, and adding the dynamic changes in
GLUT4 expression, insulin levels, and the numerous metabolic
hormones present in the OB, we suggest that glucose sensing
neurons are keys regulators of metabolic-dependent olfactory
behavior.

In rodents, the concentration, expression, and activity of
several molecules involved in glucose-sensing in olfactory areas
are not only modified with feeding behavior but they are
also altered by metabolic pathologies and their subsequent
nutritional imbalance. In the OB, insulin concentration and
GLUT4 expression are feeding-dependent but SGLT1 and IR
expression are not (Aimé et al., 2012; Al Koborssy et al., 2014).
In commonly used rodent models of obesity and type 2 diabetes,
insulin concentration is elevated and SGLT1 is upregulated in
the OB. Moreover, IR expression is down regulated but GLUT4
remained affected in both the OB and PC (Livingston et al., 1993;
Vannucci et al., 1998; Aimé et al., 2014). Rodent models of obesity
further display increased olfactory sensitivity and discrimination
(Aimé et al., 2014; Chelminski et al., 2017).

We propose that dysregulation of glucose sensing markers
could induce an increase in olfactory sensitivity which could lead
to hyperphagia and metabolic disorders. These results suggest
that dysfunctional glucose sensing neurons in the OB could alter
olfactory pathways crucial to the regulation of food intake.

AMINO ACID SENSING

Physiological Role of Amino Acid Supply to
the Brain
Amino acids (AAs) play a key physiological role as building
blocks of proteins. Proteins not only play a structural role in the
organism but they are involved in various metabolic processes,
including enzymatic reactions. Among the 20 AAs that serve for
protein synthesis, 10 are referred to as the essential AAs because
they are acquired only from the diet and cannot be stored in
the body. AA supply requires numerous membrane transporters
and receptors that are tissue specific. Each carrier recognizes

several AAs having structural similarities. In this manner, one
AA is transported inside cells through multiple carriers with
overlapping specificities (Taylor, 2014).

AAs are key regulators of metabolism (Wu, 2009).
Homeostatic regulation of AA level is necessary to adapt AA
concentration (essential and non-essential AAs) to physiological
body requirements. In order to maintain an adequate AA
supply, the hypothalamus senses AA notably through leucine
detection that signals AA abundance and directly regulates
food intake. Leucine intake activates the mammalian target of
rapamycin complex 1 (mTORC1) and inhibits AMP-activated
protein kinase (AMPK) in order to regulate protein translation
and to reduce food intake (Cota et al., 2006; Ropelle et al.,
2008). Indeed, central injection of leucine in the ventromedial
hypothalamic nucleus has an anorectic effect through activation
of a hypothalamic-brainstem circuit (Cota et al., 2006; Blouet
et al., 2009; Haissaguerre et al., 2014). The nature of ingested
AAs is also a very important parameter. Animals reject diet
imbalanced in essential AAs, and forage for food with adequate
AA content (Morrison et al., 2012; Anthony and Gietzen, 2013).

In the brain, AAs sensing could also implicate membrane
receptors of GPCR family including the taste heterodimer
receptor family (T1R1/T1R3) (Hoon et al., 1999; Li et al., 2002;
Nelson et al., 2002) and CasR receptors (Conigrave et al., 2002).

The olfactory system plays a major role in AA sensing.
The most studied mechanism uses SLC transporters but some
receptors might also be implicated.

Sensing Role of Amino Acids in Olfactory
Structures: Molecular Hallmarks
Amino Acid Transporters Expressed in Olfactory

Structures
This chapter will focus attention on selected transporters that are
known to be involved in metabolic regulation and are expressed
in olfactory areas: the electrogenic transporters encoded by
the slc6a15, slc38a2, and slc1a5 genes and the non-electrogenic
transporters encoded by slc7a5 (Figure 4A).

Electrogenic solute carrier transporters (SLC6A15, SLC38A2,

SLC1A5)
At least three electrogenic AA transporters are observed in
olfactory areas (Figure 4A). They displace AAs together with
Na+ and induce a subsequent depolarization.

Two of them, SLC6A15 and SLC38A2 transport small neutral
AAs like leucine, isoleucine, and valine together with Na+ in
a 1:1 stoichiometry (Yao et al., 2000; Mackenzie and Erickson,
2004; Broer et al., 2006; Hagglund et al., 2013). SLC6A15
is present in the OB, AON, and endopiriform and piriform
cortices (Inoue et al., 1996; Masson et al., 1996; Drgonova
et al., 2013; Hagglund et al., 2013; Allen Institute for Brain
Science, 2015). SLC38A2 mRNA is three times higher in the
OB than other brain areas like the hippocampus, hypothalamus,
cortex, or PC (Sundberg et al., 2008; Allen Institute for Brain
Science, 2015). SLC38A2 is associated with the general amino
acid control non-derepressible 2 (GCN2) pathway (Blais et al.,
2003; Palii et al., 2006; Gietzen and Aja, 2012; Taylor, 2014).
This pathway is activated when essential AAs are deficient
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FIGURE 4 | Schematic model showing AA sensing signaling pathways that might modulate neuronal activity of central olfactory areas. (A) Three electrogenic

transporters (SLC6A15, SLC38A2, and SLC1A5) and one non-electrogenic antiporter SLC7A5/SLC3A2 are observed in the OB and the PC. AAs fluxes depend on

physiological needs, on the importance of transported AAs (essential or non-essential), and on the cellular gradient of AAs. When leucine (Leu) and glutamine (Gln) are

highly available, they are co-transported with sodium inside the cell through SLC6A15, SLC38A2 or SLC1A5. Intracellular Gln is in turn co-exchanged with Leu via the

bidirectional antiporter SLC7A5/SLC3A2. The anterior PC (APC) detects essential AA deficiency that increases uncharged tRNA and activates the general amino acid

control non-derepressible 2 (GCN2) pathway. The concomitant down regulation of GABAA receptor and KCC2 transporter disinhibits the APC that send messages to

nutritional brain areas in order to stop eating the imbalanced diet. Signaling proteins of the mammalian target of rapamycin complex1 (mTORC1) and AMP-activated

protein kinase (AMPK) pathways are also present in olfactory areas, which suggests that these structures could also be implicated in detecting AA abundancy or

scarcity and indirectly modulating food intake. (B) Two AA receptors are described: T1R1/T1R3, and CasR receptors. Both are G-protein-coupled receptors and AA

binding activates heterotrimeric GTP-binding proteins composed of α-gustducin (Gα) and Gβγ subunits (brown and pink arrows). Gαpromotes phosphatidylinositol

phosphate 2 (PIP2) activation of phospholipase C (PLC), leading to the production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (D). IP3 opens ion channels

on the endoplasmic reticulum, releasing Ca2+ into the cytosol of cells. Depending on the specific ion channels present on the membrane, a cell could be depolarized

after melastatin-related transient receptor potential (TRPM5) channel opening or could be hyperpolarized after Na+ channel closure (red line) or Ca2+-dependent-K+

channel opening (blue arrow). AAs: hexagons; activation: blue arrow, inhibition: red line. Direct and indirect action of one molecule: full and dotted line respectively.
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FIGURE 5 | Schematic model showing FA sensing signaling pathways that might modulate neuronal activity of central olfactory areas. The transporter SLC27 induces

influx of FAs, and acyl-CoA synthetase (ACS) to esterify FAs to fatty acyl-CoAs (FA-CoAs). Following mitochondrial β oxidation of FA-CoAs, production of ATP induces

depolarization by acting on a wide variety of ATP dependent ion channels. FAs Receptors: Activation of CD36 by FA binding (light green arrows) causes

phosphorylation of protein tyrosine kinases, leading to generation of inositol 1,4,5-trisphosphate (IP3) that induces Ca2+ release from the endoplasmic reticulum.

[Ca2+]I increase depolarizes the membrane via TRPM5 channel. FAs receptors 7TM GPR40 receptor signaling (dark green arrows) acts through heterotrimeric

G-proteins and produces IP3 and diacylglycerol (DAG). Phospholipase C (PLC) and DAG activate transient receptor potential cation channel subfamily C (TRPC).

causing accumulation of uncharged tRNA (Zhang et al., 2002;
Maurin et al., 2005; Gietzen and Aja, 2012). One or two hours
after AA reduction, SLC38A2 synthesis is upregulated in order
to increase AA uptake (Blais et al., 2003; Palii et al., 2006;
Gietzen and Aja, 2012; Taylor, 2014). Deficiency in essential
AAs affects the PC where it causes downregulation of GABAA

receptors and the K+/Cl− co-transporter (KCC2), also known as
SLC12A5 (Sharp et al., 2013). KCC2 is localized in GABAergic
neurons in the OB and PC (Wang et al., 2005; Sharp et al.,
2013).The PC is thus identified as the central structure that
detects imbalanced diet lacking essential AAs. PC activation
interrupts protein synthesis in 20 min and stops food intake in
animals to promote foraging for a more appropriate diet (Leung
et al., 1968; Koehnle et al., 2003; Gietzen and Aja, 2012; Morrison
et al., 2012).

The third transporter, SLC1A5, is an antiport that exchanges
one Na+ and glutamine against neutral AAs in a 1:1
stoichiometry (Kanai and Hediger, 2004; Nicklin et al., 2009;
Pochini et al., 2014). SLC1A5 has long been considered
an electroneutral transporter (Utsunomiya-Tate et al., 1996)
but recently Scalise and collaborators suggested that more
than one Na+ might be transported (Scalise et al., 2014).
A wide distribution of the slc1a5 is shown in MCs and
the glomerular layer of the OB, and in the PC (Allen
Institute for Brain Science, 2015). Glutamine and leucine intake
through SLC1A5, together with SLC7A5/SLC3A2 (described
in the next section), are proposed to be upstream steps

of mTORC1 activation (Nicklin et al., 2009). The presence
of these transporters in olfactory structures together with
molecules involved in the mTORC1 pathway, such as raptor
(Bar-Peled and Sabatini, 2014; Haissaguerre et al., 2014)
makes it compelling to look for looking for AAs sensing
through activation of the mTORC1 pathway in the olfactory
system.

Non-electrogenic solute carrier transporter

(SCL7A5/SLC3A2)
SLC7A5 is associated covalently with the glycoprotein
SLC3A2. Both SLC7A5 and SLC3A2 are expressed in the
OB, hippocampus, and hypothalamus (Kageyama et al., 2000;
Allen Institute for Brain Science, 2015). SLC7A5/SLC3A2
is an AA exchanger that combines efflux of glutamine
to influx of large neutral AAs like leucine with a 1:1
stoichiometry. Intracellular AA availability limits its transport
rate given the low affinity of the intracellular domain of
the transporter compared with its extracellular domain
(Meier et al., 2002; Verrey, 2003). The net transport of AAs
through SLC7A5/SLC3A2 is linked with electrogenic AA
transporters like SLC1A5 that provides intracellular AAs for
SLC7A5/SLC3A2 functioning. As a consequence, a reduced
influx of glutamine through electrogenic transporters could
limit leucine influx through SLC7A5 and consequently block the
mTORC1 pathway (Verrey, 2003; Nicklin et al., 2009; Taylor,
2014).
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Amino Acid Receptors Expressed in
Olfactory Structures
Taste Receptor Family (T1R1/T1R3) Expressed in

Olfactory Structures
Taste buds of the tongue express the heterodimer receptor
(T1R1/T1R3) belonging to a GPCR family that detects essential
AAs (Hoon et al., 1999; Li et al., 2002; Nelson et al., 2002).
Tas1r1 and Tas1r3 genes encoding for this receptor, and their
associated G-proteins are found in a variety of central areas
including the OB, hypothalamus and hippocampus, (Ren et al.,
2009; Allen Institute for Brain Science, 2015; Voigt et al., 2015).
Most members of the IP3 transduction pathway triggered by
T1R1/T1R3 activation in the taste buds and the cation channel
TRPM5 (Chaudhari et al., 2009; Chaudhari and Roper, 2010) are
present in the OE, OB, and PC (Ross et al., 1989; Lin et al., 2007;
Rolen et al., 2014; Allen Institute for Brain Science, 2015; Pyrski
et al., 2017). In the future, studying the role played by T1R1/T1R3
in olfactory areas will be interesting in the context of AAs sensing
(Figure 4B).

Calcium Receptor Family (CasR) Expressed in

Olfactory Structures
The localization and function of CasR in olfactory structures is
species variant. In the OE of fish, CasR has the capacity to detect
environmental Ca2+ and nutrients (Loretz, 2008). In rats, CasR
transcript is expressed in the OB, AON and PC (Rogers et al.,
1997; Ferry et al., 2000; Yano et al., 2004; Mudo et al., 2009). CasR
is a multimodal receptor and it has been proposed to contribute
to Ca2+ homeostasis and AA transport in neurons (Conigrave
et al., 2002). When extracellular Ca2+ concentration reaches a
threshold, CasR cooperatively binds to Ca2+ and to aromatic,
aliphatic, or polar AAs (Conigrave et al., 2002; Conigrave and
Hampson, 2006). Various intracellular pathways, including the
downstream IP3 pathway, are activated to release internally
stored Ca2+ (Hofer, 2005; Zhang et al., 2015). Excitability is
reduced by opening Ca2+-dependent potassium channels and
closing sodium channels (Han et al., 2015; Jones and Smith,
2016). The presence of CasR in olfactory structures together with
components of IP3 pathway are good cues to investigate in the
future if this transport allows olfactory structures to sense AAs.

Metabolic Dysfunction and Amino Acid
Sensors in Olfactory Areas
Taken together, the fact that olfactory areas express transporters,
receptors and intracellular molecules implicated in the regulation
of AA content, strongly suggests that the OB and PC could play
an important role in AAs sensing.

When it comes to AA sensing via transporter activation, two
mechanisms coexist: one involves the mTORC1/AMPK pathway
that detects AA availability and the second one involves GCN2
that specifically alerts when one or more essential AAs are
insufficiently ingested. The hypothalamus is proposed to be the
center for mTORC1/AMPK signaling (Cota et al., 2006; Ropelle
et al., 2008; Hagglund et al., 2013) while the anterior part of
PC (APC) utilizes GCN2. Leung’s and Gietzen’s teams have
collected convergent data showing that the APC is a sensor of

AAs imbalanced diet. Briefly, deficiency in one essential AA
induces rapid rejection of the imbalanced diet (Leung et al.,
1968; Koehnle et al., 2003; Gietzen and Aja, 2012; Morrison
et al., 2012). This aversion disappears after APC lesion (Leung
and Rogers, 1971) and persists after hypothalamus or OB injury
(Leung and Rogers, 1970; Leung et al., 1972), which identifies
the APC as the sensor of an AA imbalanced diet. Moreover,
local injection of the deficient AA in the APC reduces food
aversion by maintaining consumption of the imbalanced diet
(Beverly et al., 1990; Russell et al., 2003). Accumulation of
uncharged tRNA caused by AAs deficiency activates the GCN2
pathway (Hao et al., 2005; Rudell et al., 2011) and disinhibits
the APC mainly through downregulation of GABAA receptor
and KCC2, also known as SLC12A5 transporter (Sharp et al.,
2013). KCC2 is localized in GABAergic neurons in the OB
and PC (Wang et al., 2005; Sharp et al., 2013). Glutamatergic
pyramidal neurons in the APC would then send messages to
feeding circuits, including the hypothalamus, in order to stop
food intake (Gietzen and Magrum, 2001). Noteworthy is that
mTORC1 is not involved here because behavioral rejection of the
improper diet remains in the presence of rapamycin (Hao et al.,
2010) (Figure 4A).

The role played by the APC in sensing AA deficiency is
thus clear. However, sensing AA abundance via other olfactory
structures has not been explored yet. It would be interesting to
explore the possible implication of OB and/or PC in detecting
AA abundancy and scarcity through mTORC1/AMPK pathways
and through AA receptor activation.

Another sensor of AAs, Tas1R1, seems to be dependent on
the feeding state when expressed in the hypothalamus. Tas1r1
levels increase following a 24-h food deprivation (Ren et al.,
2009). Tas1r1 is highly expressed in the hypothalamus of obese
and hyperglycemic ob/ob mice. The similarities between the
nutrient sensing properties of the hypothalamus and that of
the OB (Figure 1) prompt further investigation of the role of
T1R1 or the gene it encodes Tas1r1, in sensing AAs in olfactory
structures.

FATTY ACID SENSING

Physiological Role of Fatty Acid Supply to
the Brain
The brain is roughly 50% fatty acids (FAs) by weight making
it the organ with the second highest lipid content after that of
adipose tissue (Watkins et al., 2001). Cerebral lipids are uptaken
from the blood or synthesized locally (Rapoport et al., 2001;
Smith andNagura, 2001). Indeed, brain neurons express enzymes
for both intracellular metabolism and de novo synthesis of FAs
(Le Foll et al., 2009). In the human brain, the main source of
polyunsaturated fatty acids (PUFAs) such as docosahexaenoic
acid, eicosapentaenoic acid, and arachidonic acid, is dietary.
Even though free FAs are not the primary metabolic fuel
for neurons, they are key components of membranes and
intracellular signaling pathways. PUFAs are of great importance
in neurobiology because they are essential for neurogenesis,
memory, learning, and play a key role in modulating ion
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channels and neurotransmitter receptors. In fact, an adequate
lipid environment is vital for the normal functioning of neuronal
membrane proteins such as ion channels, enzymes, ion pumps,
and receptors. Long-term nutritional PUFA deficiency impairs
brain functioning (Khan and He, 2017). FA sensing in neurons
was first reported by Oomura et al. (1975). Since then, a growing
body of evidence has established the importance of brain FA
sensing in the regulation of food intake (Loftus et al., 2000;
Lam et al., 2005; Levin et al., 2011). Specific areas of the central
nervous system including the hypothalamus, brainstem, and
hippocampus (Gao and Lane, 2003; Lam et al., 2005; Picard
et al., 2014) have been shown to use FAs as cellular messengers
to inform “FA-sensitive neurons” about the energy status of
the body (Migrenne et al., 2011). Similar to glucose sensing
and AAs sensing described previously, lipid sensing is involved
in the control of feeding behavior (Obici and Rossetti, 2003;
Cruciani-Guglielmacci et al., 2004). Hypothalamic lipid sensing
mechanisms are disrupted during conditions of prolonged
fasting (Yue and Lam, 2012). The molecular mechanisms
involved in FA sensing by the brain are still a matter of
debate.

The FA transporter proteins (FATP also called SLC27),
is a protein family of six isoforms. SLC27A4 (FATP4) is
the major FATP expressed in the brain (Fitscher et al.,
1998). In hypothalamic neurons, FAs are transported inside

cells through FATPs. FAs are then oxidized to generate ATP
that can modulate the activity of a wide variety of ATP-
dependent ion channels including K+ channels, and the Na+-
K+ ATPase pump. The resulting change in neuronal firing
rate suggests that FAs metabolism play a role in the regulation
of energy balance (Migrenne et al., 2011; Picard et al.,
2014).

In the brain, membrane receptors mediating FAs sensing
consist of two GPCRs (GPR40 and GPR120) and CD36,
often associated to fatty acid translocase (FAT) to make
a translocator/receptor complex FAT/CD36. CD36 has been
reported to be involved in FA sensing in taste buds (Fukuwatari
et al., 1997; Laugerette et al., 2005) and in hypothalamic
neurons (Le Foll et al., 2009). Hypothalamic CD36 expression
induced by fasting or following high-fat diet, could modulate
lipid signaling in the brain and participate in the regulation
of energy homeostasis (Moulle et al., 2012, 2014). All together,
these findings strongly suggest that lipid sensing by CD36
is responsible for basic physiological functions in relation to
behavior and energy balance (Martin et al., 2011). In the
hypothalamus, it has been postulated that binding of FAs
to CD36 alters neuronal activity in a manner analogous to
that utilized for fat perception by taste receptor cells (Le
Foll et al., 2009). This causes phosphorylation of protein
tyrosine kinases, leading to generation of IP3, recruitment

TABLE 1 | Overview of nutrient sensing molecular cues and their corresponding nutrients, present in olfactory structures.

Nutrient Nutrient sensing cues Olfactory areas References

Glucose GLUT3 OE, OB Vannucci et al., 1998; Nunez-Parra et al., 2011

GLUT4/IR OB, AON, PC, OT Leloup et al., 1996; El Messari et al., 1998, 2002; Vannucci et al., 1998; Choeiri et al., 2002; Aimé

et al., 2014; Al Koborssy et al., 2014; Kovach et al., 2016

SGLT1 OB Aimé et al., 2014; Al Koborssy et al., 2014

Kv1.3 OB Tucker et al., 2010, 2013; Kovach et al., 2016

mTORC1 OB, PC Allen Institute for Brain Science, 2015

Amino acid SLC7A5/SLC3A2 OB Kageyama et al., 2000; Allen Institute for Brain Science, 2015

SLC1A5 OB Allen Institute for Brain Science, 2015

SLC6A5 OB, AON, PC Inoue et al., 1996; Masson et al., 1996; Drgonova et al., 2013; Hagglund et al., 2013

SLC38A2 OB, PC Sundberg et al., 2008; Allen Institute for Brain Science, 2015

KCC2 PC Wang et al., 2005; Sharp et al., 2013

GCN2 PC Maurin et al., 2005; Anthony and Gietzen, 2013

mTORC1 OB, PC Allen Institute for Brain Science, 2015

T1R1 OB Allen Institute for Brain Science, 2015; Voigt et al., 2015

T1R3 OB Allen Institute for Brain Science, 2015; Voigt et al., 2015

TRPM5 OE, OB, PC Lin et al., 2007; Rolen et al., 2014; Allen Institute for Brain Science, 2015; Pyrski et al., 2017

GPCRs type CasR OE Loretz, 2008

OB, AON, PC Rogers et al., 1997; Ferry et al., 2000; Yano et al., 2004; Mudo et al., 2009

Fatty acid SLC27A1, SLC27A4 OB, AON, PC Allen Institute for Brain Science, 2015

mTORC1 OB, PC Allen Institute for Brain Science, 2015

GPR40 (FFA1) OB Nakamoto et al., 2012; Khan and He, 2017

CD36 OE, OB Benton et al., 2007; Lee et al., 2015; Oberland et al., 2015

TRPC OB Otsuka et al., 1998; Philipp et al., 1998; Dong et al., 2012

TRPM5 OE, OB, PC Lin et al., 2007; Rolen et al., 2014; Allen Institute for Brain Science, 2015; Pyrski et al., 2017
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of Ca2+ from the endoplasmic reticulum, followed by influx
of calcium via opening of store-operated calcium channels,
membrane depolarization via TRPM5 channel activation,
and ultimately neurotransmitter release (El Yassimi et al.,
2008).

In this review, only FA transporters (FATP/SLC27) and the FA
receptors GPR40 andCD36will be detailed. Intracellular proteins
including long-chain fatty acyl-coenzyme A (CoA) synthetases
and FA oxidative proteins are largely involved in neuronal FA
sensing but are beyond the scope of this review (Picard et al.,
2014).

Sensing Role of Fatty Acids in Olfactory
Structures: Molecular Hallmarks
Fatty Acid Solute Carrier Transporters Expressed in

Olfactory Structures (SLC27)
According to the Allen Mouse Brain Atlas, SLC27A1 and
SLC27A4 are expressed in the OB, AON, and PC. In the OB,
SLC27A4 is mainly expressed in MCs (Allen Institute for Brain
Science, 2015). While no previous study has investigated lipid
sensing in central olfactory structures, manymolecular cues seem
to suggest that free FAs could be used as a messenger in these
olfactory areas neurons to inform about the energy status of the
whole body (Figure 5).

Fatty Acid Receptors Expressed in Olfactory

Structures
GPR40 (but not GPR120) is highly expressed in the OB
(Nakamoto et al., 2012; Khan and He, 2017). Like all GPCRs,
GPR40 is coupled to an intracellular heterotrimeric G protein
(Gα) that activates the phospholipase C (PLC) located on the
plasma membrane. PLC hydrolyzes phosphatidylinositol 4,5-
bisphosphate (PIP2) into 2 s messengers: IP3 and diacyglycerol
(DAG) (Figure 5). The generation of PLC facilitates transport
of PKC from the cytosol to the plasma membrane. PLC, PKC,
and DAG were described as activators of the TRP subfamily C
(Khan and He, 2017). In the OB, MCs and external tufted cells
extensively express TRPC3, C4, and C5 whereas neurons of the
granule cell layer express TRPC1 and C4 only (Otsuka et al.,
1998; Philipp et al., 1998; Dong et al., 2012). Studyingmodulation
in MCs firing in response to fluctuations in extracellular FA
concentration would be interesting in the context food intake
and/or food choice.

In addition to GPRs, CD36 is a well described receptor for
FAs. In the peripheral olfactory system, CD36 has been identified
in insect and rodent OSNs (Benton et al., 2007; Lee et al.,
2015). In recent studies, CD36 has been localized in the cilia,
dendrites, and soma of a subset of OSNs in young rodents (Lee
et al., 2015; Oberland et al., 2015). The CD36-positive OSNs
respond in an age-dependent manner to oleic acid, a major
milk component. This suggests that CD36 is involved in FA
detection by the peripheral olfactory system during the suckling
period (Oberland et al., 2015). CD36 was also found in central
olfactory areas such as the glomerular layer of the OB (Oberland
et al., 2015), PC and nucleus of the lateral olfactory tract (Glezer
et al., 2009). The role of CD36 in these central olfactory areas
has been raised whereby similar to taste buds, CD36 would

sense FAs. TRPM5 channel is present in the OE, OB, and PC
(Lin et al., 2007; Rolen et al., 2014; Allen Institute for Brain
Science, 2015; Pyrski et al., 2017) and can serve as a downstream
member of FA sensing where it is activated by an increase
in Ca2+; the latter resulting from FA intake. CD36 activation
would be investigated in the context of FAs sensing of olfactory
areas.

Metabolic Dysfunction and Lipid Sensors
in Olfactory Areas
In contrast to glucose and AAs sensing, only one study
has explored the neuron lipid sensing in peripheral olfactory
structures (Oberland et al., 2015). The fact that CD36, GPR40 and
molecules involved in their intracellular pathways, are expressed
in neurons of olfactory structures raises the question of their
role(s) in lipid olfactory perception, central FA sensing, and
regulation of energy balance. Indeed, lipid sensing is described
as an important contributor to the regulation of energy balance
(Magnan et al., 2015). In circumvallate taste buds, a decrease
in CD36 expression induced by high-fat diet causes obesity
and reduced sensitivity to fat taste, which in turn increased
the intake of fatty foods as a compensatory response (Zhang
et al., 2011). In the same way, reduction in hypothalamic
CD36 expression induced redistribution of fat from visceral to
subcutaneous deposits and markedly impaired insulin sensitivity
(Le Foll et al., 2009, 2013, 2015). Growing evidence shows that
dysregulation of brain FA sensing may contribute to energy
imbalance and development of obesity, associated with type 2
diabetes or not (Yue and Lam, 2012; Picard et al., 2014). It
will be interesting in future studies to investigate if olfactory
dysfunction caused by altered energy balance (Thiebaud et al.,
2014) could be linked to a change in expression of GPR40 and/or
CD36.

CONCLUSION

In order to regulate nutrient homeostasis, the body initiates
multiple and redundant mechanisms in response to modulation
in internal nutrient levels. In addition to the hypothalamic
regulatory center, olfactory structures are proposed to detect
both odors and nutrients. In this manner, the olfactory
system contributes, through foraging and food, selection in
maintaining metabolic homeostasis. In particular, mounting
evidence indicates that the OB and the PC are involved in food
intake, via regulation of choice of food with the appropriate
nutrient content. This review presents a new approach to the
problem of energy balance by suggesting that the nature of
ingested nutrients could act on subpopulations of nutrient
sensing neurons discreetly located in key brain areas including
olfactory areas. In spite of numerous arguments described in
this review (see Table 1), our understanding of the mechanisms
implicated in nutrient sensing in olfactory areas is far from
complete. The links between hormones involved in food
intake regulation and that of nutrient sensing have to be
deciphered. In the hypothalamus the mTORC1 is known to be
a key component of the intracellular path integrating all these
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internal signals (i.e., nutrients and hormones) (Wullschleger
et al., 2006; Wiczer and Thomas, 2010; Haissaguerre et al.,
2014). We suggest that nutrient sensing in olfactory areas,
could involve mTORC1 signaling. However, GCN2, and not
mTORC1, is necessary for the detection of AA imbalance
in the PC (Hao et al., 2010). The role of mTORC1 in
detecting over consumption of nutrients in the PC, is a
separate question to investigate. In addition to these and
other unanswered questions, we still lack an integrative view
of the presumably coordinated role played by olfactory areas
and the hypothalamus regarding their metabolic homeostasis.
Deciphering these aspects might offer new solutions inmitigating
metabolic dysfunctions such as obesity and/or diabetes and
provide new approaches to investigate physiological functions
such as memory, and sleep that exhibit reciprocal relationships
with homeostasis regulation and olfactory function (Barnes and
Wilson, 2014).
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