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We introduce a form of Self-Organized Criticality (SOC) inspired by the new generation

of evolutionary game theory, which ranges from physiology to sociology. The single

individuals are the nodes of a composite network, equivalent to two interacting

subnetworks, one leading to strategy choices made by the individuals under the influence

of the choices of their nearest neighbors and the other measuring the Prisoner’s Dilemma

Game payoffs of these choices. The interaction between the two networks is established

by making the imitation strength K increase or decrease according to whether the last

two payoffs increase or decrease upon increasing or decreasing K. Although each of

these imitation strengths is selected selfishly, and independently of the others as well,

the social system spontaneously evolves toward the state of cooperation. Criticality is

signaled by temporal complexity, namely the occurrence of non-Poisson renewal events,

the time intervals between two consecutive crucial events being given by an inverse

power law indexµ = 1.3 rather than by avalanches with an inverse power law distribution

as in the original form of SOC. This new phenomenon is herein labeled self-organized

temporal criticality (SOTC). We compare this bottom-up self-organization process to the

adoption of a global choice rule based on assigning to all the units the same value K,

with the time evolution of common K being determined by consciousness of the social

benefit, a top-down process implying the action of a leader. In this case self-organization

is impeded by large intensity fluctuations and the global social benefit turns out to be

much weaker. We conclude that the SOTCmodel fits the requests of a manifesto recently

proposed by a number of European social scientists.

Keywords: network dynamics, self-organized temporal criticality, evolutionary game theory, emergence of

cooperation, swarm intelligence

1. INTRODUCTION

One of the main goals of computational social models is to quantify the mechanisms generating
the emergence of collective behavior of social groups. A particularly useful modeling tool in this
regard has been evolutionary game theory. This tool was used to explain the emergence and
survival of cooperation in society, in contrast to the widely recognized selfish character of single
individuals. Axelrod and Hamilton (1981) have addressed the apparent contradiction and their
work has drawn the attention of an increasing number of researchers to the surprising condition
that altruismmay have originated much earlier than the dawn of human civilization. Altruismmay,
in fact, correspond to the birth of life itself, although the concepts of kinship and reciprocity, widely
adopted in game theory, seem to refer to complex social networks and not to individuals. In fact,
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Axelrod and Hamilton based their life evolution study on the use
of the Prisoner’s Dilemma game, with its crucial conflict between
the individual’s temptation to cheat and to act in the community’s
benefit, a model that seems to apply only to human society.

More recently, evolutionary game theory concepts, which
were apparently introduced to discuss the social effect of public
good, are used to gain insight into enzyme chemistry processes
(Archetti and and Scheuring, 2016). Another sociological
concept, currently adopted to illustrate the conflict between
the use of limited shared resources and individual self-interest
(Hauser et al., 2014), “the tragedy of the commons”, has been
used (Stewart and Plotkin, 2016) to discuss the evolution of
cooperation in ecological networks.

The argument of network reciprocity, in the form illustrated
by Nowak and May (1992), rests on the observation that in a
network of cooperators and defectors, the richer environment of
cooperators prevents the spreading of defectors. This argument
has been questioned by some, noting the social activities in which
the individuals are engaged, who are also involved in playing the
Prisoner’s Dilemma game. The additional social interaction of the
individuals within this social group was found to disrupt network
reciprocity (Vilone et al., 2012, 2014). However, when this
additional activity is based on individuals imitating the choices
made by their nearest neighbors, it may favor the survival of
cooperation (Mahmoodi and Grigolini, 2017). This survivability
is a consequence of the imitation strength being sufficiently
strong to generate criticality as in the Decision Making Model
(DMM) (West et al., 2014).

The criticality condition exploited by Mahmoodi and
Grigolini (2017) is obtained by tuning the imitation strength to
the theoretical value that in the limiting case of an infinitely
large network is expected to be determined by an Ising-like
prescription, since the DMM used is in the Ising universality
class (West et al., 2014). Criticality entails long-range correlation
among the members of the society, even those communicating
solely by means of nearest-neighbor interactions. Such criticality
has been interpreted as a form of global intelligence, identified
as swarm intelligence (Vanni et al., 2011), a phenomenon that
may be shared by microbial communities and mechanisms of
carcinogenesis (Rosenfeld, 2013), as well as, by neural systems
(Hesse and Gross, 2014). In the specific case of individuals
playing the Prisoner’s Dilemma game, the criticality-induced
swarm intelligence enables the members of society to become
aware of the benefits of network reciprocity, and thereby biases
their interactions to favor, rather than disrupt, this network
property (Mahmoodi and Grigolini, 2017).

The manifesto of computational social science (Conte et al.,
2012) relies on the assumption that criticality is a consequence
of self-organization, and thereby implies that social criticality is
a form of self-organized criticality (SOC). A word of caution
is appropriate here, now that the term SOC has been used. A
25-year review of the concepts and controversies surrounding
SOC (Watkins et al., 2016), emphasize that SOC occurs in open,
extended, dissipative dynamical systems that automatically go
to the critical state. This is distinct from a continuous phase
transition where at a critical point correlations become long-
range and are characterized by an inverse power-law (IPL)

probability density function (PDF). In order to arrive at the
critical point an external control parameter, such as temperature,
must be fine-tuned to its critical value. We refer to that control
parameter with the symbol K. On the other hand, SOC occurs
universally where any fine-tuning is accomplished by means of
its internal dynamics (Bak and Chen, 1989). This independence
from an external tuning is the defining property of a SOC
phenomenon.

The emergence of SOC is usually signaled by the births of
anomalous avalanches, see Zapperi et al. (1995); Martinello et al.
(2017) for more recent work. In the present paper we illustrate
a form of SOC based on the spontaneous search for the critical
value of the parameter K, which is selected by the network
through a bottom up process, that is, through the dynamic
behavior of the individuals and is not externally imposed. The
main signature of self-organized criticality of this paper is the
time interval between two crucial events, with a non-exponential
waiting time probability distribution density (PDF), a property
referred to as temporal complexity in earlier work (Turalska et
al., 2011). We therefore refer to the form of SOC developed in this
paper as self-organized temporal criticality (SOTC). The crucial
events are defined by comparing the variable K(t) to its time
average K and are identified with the variable ζ (t) = K(t) − K
changing sign.

The only earlier form of SOC known to us yielding temporal
complexity is Lipiello et al. (2005), showing that SOC of Bak and
Chen (1989) has no temporal complexity, insofar as the time
duration to reach equilibrium in that case is described by an
exponential waiting time PDF.We do not rule out the emergence
of the traditional SOC avalanches, but we leave it as subject for
future research work.

We emphasize that the form of SOTC is realized in full
accordance with the spirit of the Axelrod and Hamilton (1981)
theoretical perspective. In fact the payoff of the choices made
by the individuals of the composite network is established using
the Prisoner’s Dilemma game, without neglecting the incentive
to defection. The choice of the strategy to adopt is determined
by the individual’s imitation of the choices made by their nearest
neighbors. The single units only decide to increase or decrease
their tendency to imitate these choices according to whether
on the basis of the last two payoffs this imitation increased or
decreased the benefit to them as an individual. This indirect and
apparently blind strategy choice does not disrupt the beneficial
effects of network reciprocity (Nowak and May, 1992), but it
is a way of efficiently establishing the reciprocity condition
hypothesized by Axelrod and Hamilton (1981).

Returning to the SOTC issue, we stress that the imitation
strength K is not a conventional fine tuned control parameter,
that is artificially fixed to make the network achieve criticality.
The parameterK is freely selected by the dynamics of the network
itself.

The numerical calculations presented herein show that
increasing the dependence of the individuals on the strategic
choices of their neighbors has the effect of increasing their payoff.
Imitation of the choices of their neighbors is a form of social
interaction that is made at the level of the individuals and is
not forced upon them in a top-down process. There exists a
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parameter, call it χ , which determines the rate of change of K,
as a function of the last two payoffs. However, no recourse is
made to the fine tuning of this parameter, insofar as changing
χ has only the effect of influencing the time scale of the process
of transition to altruism. This is, as we show, a bottom-up
process that generates self-organization, and along with self-
organization generates swarm intelligence, with the ultimate
effect of increasing the wealth of society, thereby affording
strong support to the increasing conviction that real social
improvements do not require the action of benevolent dictators
(Helbing and Pournaras, 2015; Helbing, 2017).

2. THE PRISONER’S DILEMMA GAME

This Section is devoted to illustrating the criteria adopted in the
subnetwork of logical choices to evaluate the payoff associated to
the cooperation or the defection choice. This is done using the
Prisonner’s Dilemma game. This game was originally introduced
as a metaphor for the problems affecting the emergence of
cooperation (Axelrod and Hamilton, 1981). Two players interact
and receive a payoff from their interaction adopting either the
defection or the cooperation strategy. If both players select
the cooperation strategies, each of them gets the payoff R and
their society receives the payoff 2R. The player choosing the
defection strategy receives the payoff T. The temptation to cheat
is established by setting the condition

T > R. (1)

However, this larger payoff is assigned to the defector only if the
other player selects cooperation. The player selecting cooperation
receives the payoff S, which is smaller than R. If the other player
also selects defection, the payoff for both players is P, which is
smaller than R. The game is based on the crucial inequalities

T > R > P > S. (2)

It is evident that for a player, let us call her #1, the choice of
defection condition is always the most convenient, regardless of
the choicemade by the other player, let us call her #2. In fact, if the
player #2 selects cooperation, player #1 receives R, but the better
payoff T if she selects defection. If player #2 selects defection,
player #1 receives the payoff S if she selects cooperation and the
larger payoff P if she selects defection. However, the whole society
receives the largest payoff, 2R, if both players select cooperation,
a smaller payoff, T + S, if one selects defection and the other
cooperation, and the smallest payoff, 2P, if both players select
defection.

Axelrod and Hamilton (1981) noted that if the Prisoner’s
Dilemma game is played only once no strategy can defeat the
strategy of pure defection. If the game is played more than
once, reciprocity may make the choice of cooperation become
the winning strategy. Nowak and May (1992) substantiated this
concept with their model of network reciprocity. The players
are the nodes of a regular two-dimensional lattice and each
players can interact with her nearest neighbors. The players
are initially randomly assigned either the cooperation or the

defection strategy. After each play, before the next play, they are
left free to update their strategy selecting the strategy of their
most successful nearest neighbor. Since the environment of the
cooperators, as above noted, is wealthier than the environment of
defector, it is possible that the most successful nearest neighbor is
a cooperator, rather than a defector. This is a rational form of
imitation that may lead to the survival of cooperators. In this
paper we use only the Prisoner’s Dilemma game to evaluate the
payoff and we realize the network reciprocity with the interaction
between the two subnetworks that will be described in Section 4.

3. DECISION MAKING MODEL

In this Section we illustrate the dynamics of the subnetwork
where decisions are made by the individuals under the influence
of their nearest neighbors. These dynamics are realized by using
the Decision Making Model (DMM) (West et al., 2014). In
the earlier work (Mahmoodi and Grigolini, 2017), this model
was denoted as Local Conformism Model (LCM), to emphasize
that according to the work of Vilone (Vilone et al., 2012,
2014) social influence may disrupt the benefits of the Nowak
and May network reciprocity (Nowak and May, 1992), if the
social influence does not establish a correlation between the
dynamics of different individuals. As we shall see in Section 4,
the interaction between the DMM subnetwork and the Prisoner’s
dilemma subnetwork generates criticality. The individuals of the
composite networks in this and in the following sections of
this paper are the nodes of a regular two dimensional network,
denoted by the symbol r equivalent to the double index (i, j).

Here we describe the DMM behavior in the absence of this
interaction. The transition rate from cooperation to defection,

g
(r)
CD, is given by

g
(r)
CD = g0exp

[

−K

(

J
(r)
C − J

(r)
D

J

)]

(3)

and the transition rate from defection to cooperation, gDC, is
given by

g
(r)
DC = g0exp

[

K

(

J
(r)
C − J

(r)
D

J

)]

. (4)

The meaning of this prescription is as follows. The parameter
1/g0 defines the time scale of interest and we set g0 = 0.01
throughout this paper. Time is discrete, starting from 1 and the
distance between two consecutive time events is 1t, which is
also selected to be 1. We consider M = N × N individuals
of a regular two-dimensional network with periodic boundary
condition. Each individual has J neighbors (four in the case of the

regular two-dimensional lattice used herein). J
(r)
C neighbors are in

the cooperation state and J
(r)
D of them are in the defection state. If

the individual r is in the cooperation state C, and the majority
of its neighbors are in the same state, then the transition rate
becomes smaller and the individual sojourns in the cooperation
state for a longer time. If the majority of its neighbors are in the
defection stateD, then the individual r sojourns in the cooperator
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state for a shorter time. An analogous prescription is used if the
individual r is in the defection state.

To denote the effect of imitation we assign to the units
selecting the cooperation state the value ξr = 1 and to the units
in the defection state the value ξr = −1. To establish whether
cooperation or defection is selected by the social system we use
the mean field x(t) defined by

x(t) = 1

M

M
∑

r

ξr . (5)

For K < KC the mean field vanishes, but at criticality, when
K = KC, the social system can select either the cooperation or the
defection branch yielding for K ≫ KC either the value x = 1 or
x = −1. The critical value of the control parameter K is KC = 1
in the all-to-all coupling case and KC = 1.5 (M = 100) in the case
of a regular two-dimensional lattice (Mahmoodi and Grigolini,
2017).

4. SELF-ORGANIZATION

The earlier work (Mahmoodi and Grigolini, 2017) was based on
the assumption that the players are the nodes of a regular two-
dimensional network. The players adopt for most of their time
the blind imitation of LCM and for a small portion of their time
the rational imitation of Nowak and May. Quite surprisingly
the exceedingly large use of the blind imitation, rather than
disrupting the benefits of network reciprocity, has the effect of
forcing the system to select the cooperation branch, leading to
the extinction of defectors. This is an interesting effect that is
due however to the fine tuning of LCM imitation strength to the
critical value generating criticality.

The main purpose of the present paper is to overcome this
limitation with a natural SOC process. This significant step
ahead is realized without using the Nowak and May network
reciprocity. The earlier work (Mahmoodi and Grigolini, 2017)
was based on the single units adopting of the Nowak and May
network reciprocity for a limited amount of their time and on
the criticality-induced swarm intelligence making the network
realize the benefits of Nowak and May network reciprocity.
Herein the swarm intelligence condition emerges from self
organization, which makes it possible for the collective mind to
realize that the choice of cooperation makes society wealthier.

We adopt the choice of parameters made by Gintis (2014) and
set R = 1, P = 0, T − R = 0.5 and S = 0. We evaluate the
social benefit for the single individual and for the community as
a whole as follows. We define first the payoff Pr of the single unit
r. Each unit gets a total payoff from the play with its four nearest
neighbors. Namely we have to consider four pairs of players. If
both players of a pair are cooperators the contribution to the
payoff of the unit r is Br = 2. If one of the two playing units
is a cooperator and the other is a defector, the contribution to the
payoff of the unit r is Br = T. If both players are defectors the
contribution to the payoff of the unit r is Br = 0. The payoff Pr
of the unit r is the sum over the four Br . The mean benefit for the

units of this society is

5 = 1

M

M
∑

r

Pr . (6)

Self-induced criticality is realized in two distinct ways: individual
and global:

4.1. Individual
It is important to notice that Kr , the value of imitation strength
adopted by the generic unit r to pay attention to the choices
made by its four nearest neighbors about selecting either the
cooperation or the defection strategy, is not necessarily adopted
by its four nearest neighbors. In other words, the imitation
strength Kr(t) is unidirectional and it goes from r to all its nearest
neighbors. The imitation strength Kr(t) changes from individual
to individual, as well as in time, and it is consequently very
different from the control parameterK of the conventional DMM
phase transition processes, whereK has a single value throughout
the whole network.

Each member is assigned a vanishing initial imitation
strength, corresponding to a total independence of the choices
made by its nearest neighbors. At each time step the units play
the game and they independently change their imitation strength
doing the implicit assumption that the increase (decrease) of
their individual payoff in the last two trades makes convenient
for them to increase (decrease) the imitation strength. More
precisely, they adopt the following rule. As stated earlier, time is
discrete and the interval between two consecutive time events is
1t = 1. The imitation strength of the unit (i, j) changes in time
according the individual choice rule:

Kr(t) = Kr(t −1t)+ χ
(

Pr(t −1t)− Pr(t − 21t)
)

(

Pr(t −1t)+ Pr(t − 21t)
) , (7)

where the parameter χ determines the intensity of the interest of
the units for their payoff. Pr(t) is the payoff of the unit r at time
t. The intensity of the imitation strength increases or decreases
according to whether in the two last trades the individual payoff
increases or decreases. If the payoff does not change, the imitation
strength remains unchanged. To make a comparison with the
global condition we evaluate also the mean imitation strength

K(t) = 1

M

M
∑

r

Kr(t). (8)

Figure 1 shows the self-organization of the social system as a
result of individual choices of the interacting units. The average
imitation strength moves very quickly from the vanishing initial
value, corresponding to no social interaction, toward a maximal
value which is K ≈ 1.8. Notice that in the absence of interaction
with the Prisoner’s Dilemma process, the Ising-like DMM for the
case of a regular two-dimensional lattice (West et al., 2014) would
require the critical value KC ≈ 1.65 for M = ∞ and, as earlier
mentioned, KC ≈ 1.5 forM = 100.

It is important to notice that in the case of criticality generated
by a fine tuning parameter the fluctuations of the mean field

Frontiers in Physiology | www.frontiersin.org 4 July 2017 | Volume 8 | Article 478

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Mahmoodi et al. Self-organizing Complex Networks

FIGURE 1 | Individual case: Time evolution of, from the top to the bottom, the

benefit 5(t) of Equation (6), the variable K(t) of Equation (8) and the mean field

x(t) of Equation (5). We adopted the values: T = 1.5, χ = 4, M = 100.

around the equilibrium value have an increasing intensity upon
decrease of the number of units (Beig et al., 2015). We show that
this property is shared by the SOTC. Let us define

ζ (t) = K(t)− K, (9)

ζ (t) = x(t)− x (10)

and

ζ (t) = 5(t)−5. (11)

The symbols K, x and t 5 denote the time mean values of the
corresponding fluctuations evaluated on the time series of length
L. The intensity of these fluctuations is defined by

1ζ =
√

V(ζ ), (12)

where

V(ζ ) ≡
∫ L
0 dtζ (t)2

L
, (13)

with L denoting the length of time series.
We expect that

1ζ ∝ 1

Mν
. (14)

In the case of the criticality with a fine tuning parameter of Beig
et al. (2015), ν = 0.25. Presently we do not have a theory to
determine ν for SOTC, but it is interesting to notice that the
numerical calculations illustrated in Figure 2 show that ν =
0.5, making fluctuation intensity of ζ (t) more significant than
in the case of the ordinary criticality of Beig et al. (2015). The
fluctuations of ζ are determined by the crucial events and their

FIGURE 2 | Individual case: The square root of the fluctuation variance, 1ζ of

Equation (12), as a function of M. In this case ζ ≡ K(t)− K. We adopted the

values: T = 1.5,χ = 4.

complexity constitutes the information transferred from one
to another self-organizing network. Increasing the intensity of
these fluctuation favors this transport process, but, as we see in
Section 5, there exists a crucial value ofM, below which no signs
of the IPL properties of temporal complexity remain.

4.2. Global
In the global case we assume that all the units share the same K,
which changes in time according global choice rule:

K(t) = K(t −1t)+ χ
(

5(t −1t)−5(t − 21t)
)

(

5(t −1t)+5(t − 21t)
) . (15)

The global payoff 5(t) is evaluated by making a sum over all
possible pairs (i, j), as defined by Equation (6). In the global case
we select as initial condition K(0) = 0.5. The implicit rationale
for Equation (15) is that the social community makes the same
assumption as the individuals of Equation (7), namely that a
payoff increase (decrease) in the last two trades before setting
the imitation strength to adopt at time t suggests its increase
(decrease) to be convenient. This condition requires a top down
process, a decision made by a leader on the appropriate imitation
strength that the single units are forced to adopt for the benefit of
society.

Figure 3 shows the self-organization of the social system as a
result of the global choices with all units sharing the same value
of imitation strength. The qualitative behavior is similar to that
of the individual choice, thereby suggesting that the individual
choices of the interacting units are characterized by the same
intelligence as that of the leader driving the global choice. In
fact, the global case is tacitly based on the assumption that the
collective payoff is communicated to the individuals who are
forced to share the same imitation strength, while the individual
choice is based on the realistic assumption that each unit is
aware of its individual payoff, without requiring any information
transmission from a leader to the individuals. Thus, we are led
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FIGURE 3 | Global case: Time evolution of, from the top to the bottom, the

benefit 5(t) of Equation (6), the variable K(t) of Equation (15) and the mean field

x(t) of Equation (5). We adopted the values: T = 1.5, χ = 4, M = 100.

to the conclusion that the SOTC should be interpreted as a
spontaneous emergence of the swarm intelligence that in the
earlier work is based on tuning a control parameter K to a critical
value (Vanni et al., 2011).

The comparison between Figure 3 and Figure 1 leads us to
an even more interesting observation. We notice that the global
choice yields an intermittent behavior that has the effect of
significantly reducing the social benefit, even if, in qualitative
accordance with the individual choice rule, the system moves
toward cooperation. The individual choice rule is more efficient
than the global choice rule and is not affected by the strong
fluctuations that intermittently reduce the social wealth. For
this reason we are inclined to identify the society leader of
the global choice with the benevolent dictator discussed by
Helbing and Pournaras (2015). According to these authors, in
fact, the centralized top-down organization has various flaws
reducing their efficiency and they propose instead a bottom
up pluralistic model inspired by neural processes. We believe
that the numerical results of this paper lend support to the
conclusion that the bottom up process of the individual choice
is more efficient than the top down process of the global
choice. Therefore it seems that our model of a self-organizing
network supports the concluding remarks of Helbing: “I am
convinced that co-creation, co-evolution, collective intelligence,
self-organization and self-governance, considering externalities
(i.e., external effects of our actions), will be the success principles
of the future” (Helbing, 2017). In fact, the spontaneous transition
to criticality proposed in this paper is associated with the
emergence of significant resilience and adaptivity. This will
be made clear in the next two sections devoted to designate
temporal complexity rather than spatial avalanches as a signature
of criticality (Section 5) and to illustrate the related property of
complexity matching (Section 6). We think that the individual

choice is an example of SOTC which is more interesting than the
global choice and for this reason we restrict our attention to study
the individual dependence onM.

5. TEMPORAL COMPLEXITY

How is criticality defined in a social model? This is a difficult
question, because even in the well known condition of the
Ising Universality class (West et al., 2014) we have to take into
account the observation of systems with a number of units much
smaller than the virtually infinite Avogadro number of units in a
physical network, which has the effect of breaking the singularity
condition of ordinary thermodynamic systems. The authors of
Turalska et al. (2011) and Zare and Grigolini (2013) defined
the occurrence of criticality through the observation of temporal
complexity. In the case of a phase transition falling in the range of
the Ising Universality class, the occurrence of phase transition in
a systemwith a finite number of interacting units, at criticality the
mean field x(t) fluctuates around the vanishing value and the time
interval between two consecutive origin crossings is described by
a markedly non-exponential waiting time PDF ψ(τ ) (Turalska
et al., 2011). In the subcritical regime the interval between
two consecutive crossings of the origin is exponential and in
the supercritical regime the interval between two consecutive
crossings of the non-vanishing mean field is again exponential.
Temporal complexity emerges at criticality and for the proper
function of the network it requires that the IPL PDF of the
distances between two consecutive crucial events is exponentially
truncated (Lukovic and Grigolini, 2008; Vanni et al., 2011; Beig et
al., 2015).

The adoption of temporal complexity as the signal of criticality
occurrence led the authors of Zare and Grigolini (2013) to
notice that this may be a more convenient indicator than
the observation of avalanches with a PDF becoming IPL.
This assumption was confirmed by the authors of Mafahim
et al. (2015), who found that two networks in critical states
signaled by temporal complexity exchange information with
an efficiency larger than in the correspondence with the state
of criticality signaled by IPL avalanches. The reason for the
close connection between maximal efficiency of information
transport and temporal complexity is based on the theory
illustrated in Vanni et al. (2011), Turalska et al. (2011) and
Luković et al. (2014). Criticality generates non-Poisson renewal
events characterized by the IPL indexes and the exchange of
information is based on the occurrence of the non-Poisson
renewal events of network influencing the occurrence of the
non-Poisson renewal events of the other network, this being the
Principle of Complexity Management (West et al., 2014).

We conjecture that the SOTC model spontaneously generates
temporal complexity. The present section is devoted to
establishing that this conjecture is correct and to prove it we use
a numerical approach treatment, applied to the individual choice
rule.

We monitor the times at which the fluctuations ζ (t) cross
the origin and find that the three waiting time PDF coincide.
For simplicity, in Figure 4 we illustrate only the waiting time
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FIGURE 4 | Waiting time distribution density of the time distance between two

consecutive origin crossings of the function ζ (t) defined by Equation (10). We

adopted the values: T = 1.5,χ = 4,M = 100.

PDF of ζ (t) of Equation (10). The fact that fluctuations of K(t),
x(t), and5(t) around their average values yield indistinguishable
results is an incontrovertible consequence of the fact that all three
properties are driven by the non-Poisson renewal events with the
same statistical properties.

It is known that in systems of finite size the IPL are
exponentially truncated (Beig et al., 2015). As a consequence,
the non-Poisson nature of the crucial events is established
analyzing the intermediate time region. Therefore, to estimate
with accuracy the IPL index generated by the SOTC of Section
3 we focus on the time region between t ≈ 2 and t ≈ 200, as
illustrated by Figure 4. We find that the waiting time PDF is IPL:

ψ(τ ) ∝ 1

τµ
(16)

with

µ = 1.3. (17)

rather than the traditional µ = 1.5 generated by DMM at
criticality (Beig et al., 2015).

It is interesting to notice the length of the time region
characterized by µ = 1.3 depends on M. Figure 5 shows that
for M = 225 the IPL region is more extended. We also see,
Figure 5, that forM = 25 the short time region is characterize by
a very large value ofµ and by a pronounced exponential shoulder,
both conditions generating non-crucial events. Although the
fluctuation intensity is very large, much larger than forM = 100
and M = 225 (see Figure 2), the extended IPL region is lost and
with it the efficiency of the process of information transport, as
we see in Section 6.

It is out of scope of this paper to afford a theory for these
results, but to help the reader to appreciate the importance of the
SOTCmodel wemention that the research work done some years
ago (Failla et al., 2004) on the random growth of surfaces, which

FIGURE 5 | Waiting time PDF of the time distance between two consecutive

origin crossings of the function ζ (t) defined by Equation (10) for different values

of M. We adopted the values: T = 1.5,χ = 4.

can be interpreted as a form of SOC (Kim et al., 1992), suggests
that the Laplace transform of the survival probability

9(t) ≡
∫ ∞

t
dt′ψ(t′) (18)

has the following form, using the notation 9̂(u) ≡
∫∞
0 dtexp(−ut)9(t),

9̂(u) = 1

u+ λα(u+1)1−α
, (19)

where α = µ − 1 < 1 and λ is a parameter measuring
the interaction between the unit and 1 ∝ λ determines the
exponential truncation of ψ(t). In the case where λ ≫ 1 an
extended time interval exists, 1/λ≪ t ≪ 1/1, where ψ ∝ 1

t1+α ,
thereby yielding Equations (16, 17) when α = 0.3. This structure
is lost forM = 25, when temporal complexity is gone.

The most important reason for the use of Equation (19) is that
when an extended IPL emerges from it, the process is distinctly
non-ergodic. The spectrum of the fluctuation in that case cannot
be derived from the Wiener-Khintchine theorem, resting on the
stationarity assumption. It is necessary to take into account that
µ < 2,µ = 1.3 in this case, the average time interval between two
consecutive events diverges, thereby making non-stationary the
process driven by the crucial events. This anomalous condition
yields (Lukovic and Grigolini, 2008)

S(ω) ∝ 1

L2−µ
1

ωβ
, (20)

with

β = 3− µ. (21)

In the case where the process yields a slow but stationary
correlation function, we would have β < 1 (Lukovic and
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FIGURE 6 | Spectrum of the fluctuations of K(t) for T = 1.5,χ = 4,M = 100.

Grigolini, 2008). Evaluating the power spectrum in this case
becomes computationally challenging because, as shown by
Equation (20), the noise intensity decreases with increasing the
length L of the time series. Nevertheless, the results of Figure 6,
yielding β = 1.67, afford a satisfactory support to our claim that
the origin crossings of ζ are renewal non-stationary events. In
conclusion, the SOTC spontaneously generates the crucial events
of criticality-induced temporal complexity.

6. COMPLEXITY MATCHING

It has to be stressed that the synchronization between two
networks is not a form of chaos synchronization. It is due to
the non-Poisson renewal events of the driving network exerting
influence on the renewal events of the driven network, as pointed
out in Piccinini et al. (2016) (see also Aquino et al., 2010).
The non-Poisson renewal events are generated by criticality and
in the composite network proposed in this paper they are the
result of a spontaneous process. In Figure 7 we illustrate the
remarkable synchronization between two identical self-organized
complex networks, A and B, with M = 100. We select a random
subgroup SA of the network A, consisting of 5% of the units of
A, and we assign to each of them the strategy of a unit of B,
also randomly selected. We follow the same prescription with
a subgroup SB consisting of 5% of units of B following the
strategy of randomly selected units of A. We see in Figure 7

that a remarkable synchronization between the two networks is
realized.

To establish the accuracy of this synchronization we apply the
same procedure to two self-organized networks A and B with
M changing from M = 25 to M = 900. We study the cross
correlation C(τ ) defined by

C(τ ) ≡
∫ L−τ
0 dt

(

x(t)− x
) (

y(t + τ )− y
)

√

∫ L
0 dt

(

x(t)− x
)2 ∫ L

0 dt
(

y(t)− y
)2
. (22)

FIGURE 7 | The mean field x(t) of two identical self-organizing networks

connected to each other according to text illustration. The self-organization is

realized through the individual choice. We adopted the values: T = 1.5, χ = 4,

M = 100.

The numerical result is illustrated in Figure 8. To understand
the importance of this result, we must make a short digression
to mention an important result recently reached in the field
of evolutionary game theory (Stewart and Plotkin, 2016). This
earlier paper stresses the connection between emergence of
cooperation and memory. Our SOTC model based on the
memory of the last two trades before making a decision about
the degree of attention to the nearest neighbor may be related
to the model of Stewart and Plotkin (2016). Figure 8 seems to
confirm this interesting relation insofar as it establishes that
the cooperation-induced efficiency increases with decreasing the
size of the interacting networks. However, Figure 8 shows that
there exists a small size, M = 100, at which the efficiency
of information transport from one to another self-organizing
network is maximal. The heuristic interpretation of this effect
is that temporal complexity is a finite size property with 1ζ
proportional to 1/

√
M, as shown in Figure 2, namely, with a

dependence on the number of units even more significant than
in the case of ordinary criticality (Beig et al., 2015), thereby
explaining why the communication efficiency increases upon
decreasingM.

Temporal complexity is the signature of criticality that we
adopt, rather than avalanche size, to reveal criticality in the case
of self-organization as well as in the case of criticality generated
by the fine tuning of the control parameter K. In the case of this
paper as we have shown earlier with the help of Figures 1, 3, the
fluctuating fieldmay beK itself, which, as we have seen in the case
of individual choice fluctuates around K ≈ 1.8, when M = 100.
Figure 5 shows that the region with µ = 1.3 decreases with
increasing M and that at M = 25 a Poisson shoulder emerges,
implying that temporal complexity is lost. Therefore, it explains
the interesting result that an optimal size exists, at which the
efficiency of information transport becomes maximal. In other
words, the intensity of the complex fluctuations transmitting
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FIGURE 8 | Cross correlation between two identical self-organizing networks.

The different curves refer from top to bottom to:

M = 100, 225, 400, 49, 900, 25. The self-organization is realized through the

individual choice. We adopt for the cross-correlation the definition of Equation

(22) and the values: T = 1.5, χ = 4.

information increases with decreasingM, but an excessively small
value ofM annihilates their temporal complexity.

It is important to stress that M = 100 depends also on
the parameters defining the Prisoners’ Dilemma game. The
weakening of cooperation with the increase of the number of
players is a subject of interest, see Hauert and Schuster (1997) as
well as Stewart and Plotkin (2016), thereby generating the issue
of establishing if there exists an optimal size of the number of
interacting units (Nosenzo et al., 2015). We cannot rule out that
a more refined treatment of the dependence on the parameters
of the Prisoner’s Dilemma game may lead to an optimal value
of M much smaller than M = 100 of Figure 8. However, the
emergence of a waiting time PDF with IPL seems to prevent us
from accounting for the results of the experimental investigation
of Nosenzo et al. (2015), setting M = 2 as the optimal size for
cooperation emergence.

7. CONCLUSIONS

This research work has been stimulated by the manifesto of
computational science (Conte et al., 2012) listing scaling and
criticality as two crucial aspects of computational social science.
Herein, criticality was not forced upon the networks by setting
the suitable value K for the imitation strength, as done in earlier
work (Turalska et al., 2011; Zare and Grigolini, 2013; Mahmoodi
and Grigolini, 2017). The critical value of K is spontaneously
reached without artificially enhancing altruism, but assuming
that each unit selects the value of K assigning to themselves the
maximal benefit.

It is important to notice that the SOTC condition is reached
regardless of whether we adopt the individual or the global choice
rules. The global choice rule implies the existence of a leader

FIGURE 9 | The blue curves denote the mean field x(t). The red curves

denote the ratio of number of cooperator units that are surrounded by 4

cooperators to the total number of units. The top panel refers to the individual

choice and the bottom panel to the global choice. For both choices we

adopted the parameters: T = 1.5, χ = 4, K(1) = 0.5, M = 100.

and consequently of intelligence driving the social system. The
fact that criticality is spontaneously generated adopting also the
individual choice rule is a compelling indication that the model
of this paper can be interpreted also as a spontaneous transition
to the condition of swarm intelligence.

The connection between criticality and swarm intelligence
was widely discussed in Vanni et al. (2011) and Luković et
al. (2014). Due to the criticality-induced long-range correlation
a small number of lookout birds, perceiving the arrival of
a predator and changing flying direction, thanks also to the
simultaneous occurrence of crucial events, do succeed in exerting
a strong influence on the swarm, enough to make the swarm
change direction. This form of collective intelligence, due to the
criticality-induced long-range space correlation is the intuitive
explanation of the surprising fact that the local interaction
between the single individuals and their four nearest neighbors

Frontiers in Physiology | www.frontiersin.org 9 July 2017 | Volume 8 | Article 478

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Mahmoodi et al. Self-organizing Complex Networks

generates the emergence of cooperation at the level of the whole
network. This is due to the fact that the SOTC is equivalent to a
spontaneous transition to the condition of swarm intelligence.

Notice that K in the earlier work of our group was interpreted
as a form of blind imitation (West et al., 2014). On the other
hand the SOTC leads us to interpret K, the intensity of which
is decided by the individuals on the basis of their benefit as the
origin of intelligence and altruism, rather than a form of blind
imitation. Thismodel does not require to go through (Nowak and
May, 1992) to prevent the infiltration of defectors in cooperation
clusters but it establishes the emergence of cooperation with the
mere use of the Prisoner’s Dilemma payoff thereby connecting
the evolution of cooperation (Axelrod, 2006) with the search of
agreement between the individuals and their nearest neighbors.

The global choice does not prevent the occurrence of
organization collapses of the system, as clearly illustrated by
Figure 9. This figure indirectly evaluates the size of clusters
of cooperators by counting the number of cooperator units
surrounded by four cooperators. We see that the global condition
is characterized by frequent collapses corresponding to the
fragmentation of the clusters of cooperators, whereas the
individual self-organization is not affected by these collapses.

As mentioned earlier, the global choice rule is a form of
top-down process, implying the action of a benevolent dictator
(Helbing and Pournaras, 2015; Helbing, 2017). Thus, as earlier,
the SOTC model strongly supports the conjectures of Helbing
and Pournaras (2015) and Helbing (2017).

We stress that the SOTC model of this paper can also
be interpreted as a contribution to evolutionary game theory
explaining the origin of morality. In fact, we conjecture that
the swarm intelligence emerging from the SOTC bottom up
process may be a form of collective mind (Grigolini et al., 2015)
implying that all the individuals have the intuitive feeling that
cooperation is the convenient choice (Rand, 2016). Using the
terms adopted by (Rand, 2016) we may identify his intuitive
decision making with the choice of imitation strength and his
deliberative decisionmaking as a direct adoption of the Prisoner’s
Dilemma game. The theoretical prediction made by Rand that
“deliberation will undermine pure cooperation” seems to fit
the observation (Mahmoodi and Grigolini, 2017) that the lack
of criticality disrupts the Nowak and May network reciprocity
(Nowak and May, 1992).

The SOTC model of this paper is highly simplified and
ignores, for instance, the cost of the cooperation choice, which
is explicitly taken into account, for instance, by Archetti and
and Scheuring (2016). We expect that the inclusion of the cost
may have an effect equivalent to increasing the incentive to
cheat and that this will affect the time scale for the emergence
of cooperation. In other words, the transition to the complex
fluctuations that in Figure 1 is so fast as to be not visible in the
scale of that figure, may become significantly slower, without
changing, however, the main properties of temporal complexity
and complexity matching, illustrated in this paper.We conjecture
that this and other issues, including those of anthropological
interest, may be included in the composite network without
affecting the main conclusion that this form of SOTC has a
general validity, ranging from the random growth of surfaces
(Failla et al., 2004) to sociology.

It is also important to stress that SOC is invoked by an
increasing number of researchers in the field of complexity but
its connection with the open field of phase transitions in systems
of small size is not yet properly taken into account. This paper
affords a contribution to this still open research subject that
hopefully may attract the attention of the researchers in the
field of complexity, from biology to anthropology and from
neurophysiology to sociology.
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