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The presence of modular organization is a common property of a wide range of complex

systems, from cellular or brain networks to technological graphs. Modularity allows some

degree of segregation between different parts of the network and has been suggested

to be a prerequisite for the evolvability of biological systems. In technology, modularity

defines a clear division of tasks and it is an explicit design target. However, many natural

and artificial systems experience a breakdown in their modular pattern of connections,

which has been associated with failures in hub nodes or the activation of global stress

responses. In spite of its importance, no general theory of the breakdown of modularity

and its implications has been advanced yet. Here we propose a new, simple model

of network landscape where it is possible to exhaustively characterize the breakdown

of modularity in a well-defined way. Specifically, by considering the space of minimal

Boolean feed-forward networks implementing the 256 Boolean functions with 3 inputs,

we were able to relate functional characteristics with the breakdown of modularity. We

found that evolution cannot reach maximally modular networks under the presence of

functional and cost constraints, implying the breakdown of modularity is an adaptive

feature.
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1. INTRODUCTION

Complex networks pervade the evolution and organization of a wide range of systems, from
cellular or brain webs to technological graphs. Their structure has important consequences for their
stability, resilience and fragility. Some particular properties of these networks are very common,
such as the presence of modular organization (Bonner, 1988; Hartwell et al., 1999; Ravasz et al.,
2002; Schlosser and Wagner, 2004). In modular webs, different subsets of nodes display a higher
integration among them than with the rest of the system. This feature allows some degree of
segregation between different parts of the network and has been suggested to be a prerequisite
for the evolvability of biological webs (Gerhart and Kirschner, 1997). Within the context of
technological evolution, modular structures have been often proposed as a target for engineering
design.

Modules are also expected to play a key role in providing a source of specialization, while their
proper interconnection guarantee integration at the system-level scale. Both are needed in order to
sustain proper functionality and we need to understand both how modules are generated and how
their disconnection leads to functional decay. An illustrative example is provided by brain network
topology or the so called connectome (Sporns, 2010). Connectomics has been a major breakthrough
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in pushing forward a new approach to brain disease where both
brain areas and their connectivity patterns become integrated in a
single picture. Under this view, neurological disorders including
Alzheimer’s disease or schizophrenia to challenged healthy
cognition, such as in sleep or awareness, can be understood
in terms of faulty intermodule communication (David, 1994;
Alexander-Bloch et al., 2010; Meunier et al., 2010; Bashan et al.,
2012; Godwin et al., 2015). This failure can lead to the so called
breakdown of modularity (BM) first proposed in Valverde and
Solé (2007). It involves a transition from high modularity to low
modularity. Similar patterns can be found in other areas, but no
general theory of this phenomenon and its implications has been
advanced yet.

In spite of its importance, BM has received little attention
and it is not well-understood. One important reason of this is
connected with the difficulties associated to understanding the
mapping between structure (genotype) and function (phenotype)
in evolved networks. This is specially difficult when dealing with
a property as modular structure, and the need for understanding
how and when modular networks are expected to evolve and
how optimality is tied to modular architecture. For example,
it has been suggested that networks evolved under “modularly
varying goals” must be modular (Kashtan and Alon, 2005).
Specifically, computational experiments showed that optimal
networks are non-modular whenever the goal was kept fixed
or under randomly varying goals (with no common subgoals).
However, Clune and co-workers have shown that modular
networks evolve even in the presence of fixed and modular
input-output mappings (Clune et al., 2013). Here modular
patterns would be the byproduct of a cost-dependent selection
process. More generally, when dealing with evolving networks,
an important question is the role played by modular structures in
enhancing robust functionalities and howmodular structures are
associated to evolvable designs. In other words: is the landscape
of modularity associated to Boolean functions smooth? Are
optimal modular solutions always tied to efficient functions and
evolvable architectures?

In order to address these limitations, a simple case study
that can be systematically explored would be desirable. Here we
propose such a toy model of network landscapes where it is
possible to exhaustively characterize BM in a well-defined way.
In this context, it is worth noting that BM seems to be a common
feature of computational systems (Valverde and Solé, 2007; van
den Berg et al., 2012). Because computation-related networks can
be seen as instances of functional Boolean processes performed
on well-defined circuits, a minimal case study can help to gain
insight into the role played by modular architecture. Specifically,
we consider the set of minimal Boolean feed-forward networks
implementing the 28 = 256 Boolean functions fµ with 3 input
variables, i. e., the mapping

fµ : 63 → 6

where6 = {0, 1} is the Boolean state space. Such kind of Boolean
representation has been widely used in the study of evolved
networks and in different contexts, including cellular circuits
(Macia and Solé, 2009) or pattern-forming genetic circuits

(Munteanu and Solé, 2008). A systematic exploration requires
necessarily a limitation of the combinatorial space to be analyzed.
However, relevant computational spaces and specific cases can be
observed even in the simplest networks (Gates and Rocha, 2016).
Our analysis suggests that the optimization of specific input-
output mappings is not always compatible with highly modular
structures and how the BMmight be an adaptive feature.

2. FEED-FORWARD BOOLEAN NETWORKS

The model used here is based on Boolean logic (Wegener,
1987), which has been used in the modeling and analysis of
the flow of information in natural and artificial systems, such
as gene regulatory networks (Kauffman, 1969; Shmulevich et
al., 2005). A Boolean function can be represented using a truth
table, functional forms and networks and it is worth noting
that, despite the Boolean picture is a necessarily simple, neural
and genetic networks display nonlinear functional responses
that ultimately involve an almost all-or-none behavior. The
interactions between these representations reveal the presence
of functional constraints in the organization of complex systems
(see below). Our truth tables give the value for the function
fµ(a, b, c) ∈ {0, 1} for each possible combination of the inputs
a, b, and c. The function is identified by its designation number

X = fµ(1, 1, 1)fµ(1, 1, 0)...fµ(0, 0, 0)

that is, the binary sequence of all function values (see Figure 1A).
We can achieve more readable (but ambiguous) expressions
using functional forms. The full disjunctive normal form
(Figure 1A, top) is the sum of elementary products (terms)
corresponding to input combinations on which fµ is true
(minterms). For example, the minterm abc represents the
combination 111, ab¬c represents 110 and so on.

A common network representation of a Boolean function is
the simple feed-forward Boolean network (FFBN) without no
feedback loops. We focus on a subset of the function space
fµ : 63 → 6 involving all the FFBNs that compute single-
output Boolean functions fµ : {0, 1}ν → {0, 1} with ν = 3 input
variables and one output. The FFBN is a directed graph in which
all the nodes carry the labels of negative-AND (NAND) gates
while input nodes carry the labels of input variables.

Formally, a directed network G = (V ,E) consists of a set of
nodes vi ∈ V and a set of edges (vi, vj) ∈ E. The adjacency matrix
A = [Aij] has elements such as Aij = 1 if there is link (i, j) ∈ E
and Aij = 0 otherwise. The size of the network is the number of
nodes N = |V| (logic gates) that it contains. The number of links
is the sum,

L =
∑

ij

Aij

In the following, we will study the undirected version of the
FFBN. The network is undirected if for each edge (vi, vj) ∈ E
there is another edge (vj, vi) ∈ E. An undirected network has
m = L/2 edges. We also define the degree ki =

∑

j Aij as the
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FIGURE 1 | Different representations of a Boolean function. (A) Each function

has ν = 3 variables named a, b and c. The truth table specifies the value

fµ(a,b, c) ∈ {0, 1} for each of the 23 possible combinations of 3 binary inputs

(columns). Combinations corresponding to fµ = 1 are called minterms. A

function is identified by its designation number X = 11101010 (last row). More

readable representations are the full (top) and minimized (bottom) disjunctive

normal forms. (B) Hypercube consists of the set of terms (nodes), minterms

(gray nodes) and the edges connecting the closest terms in the function. (C) A

feed-forward Boolean network (FFBN) is a directed network made up of logic

gates and wires that implement the function. The figure shows the FFBN of

minimal cost.

number of edges attached to the vi node. The average degree of
the network

〈

k
〉

=
1

N

∑

i

ki = L/N

measures the overall connectivity in the system and it is one of
the main network parameters.

We will also be interested in measuring the flow of
information in the network. The path length is a measure of
the distance between nodes in the network. The length l of a
path is the number of edges traversed along the path. Let’s define

N
(l)
ij as the number of paths of length l that relate any pair of

nodes vi and vj. Among all the alternative paths, we choose the
path of minimal distance (or geodesic path), which defines the
shortest path distance d(i, j) or the smallest value of l such that

N
(l)
ij > 0. The average path length of a graph (or network

diameter) provides a measure of network efficiency and it is
defined as follows:

〈

d
〉

=
1

n(n− 1)

∑

i,j

d(i, j) (1)

where the normalization term discounts the influence of nodes
on themselves.

3. FUNCTIONAL MODULARITY

The main goal of this paper is to characterize the landscape of
Boolean functions associated to our system, and specifically the
modularity of neighboring functions and how is the modularity
of the circuit implementing each function with its one-bit
neighbors. Given a decomposition of the network into a set
of subgraphs Ci, the degree of modularity Q associated to this
partition can be measured as follows (Girvan and Newman,
2002):

Q =
1

2m

∑

ij

[

Aij −
kikj

2m

]

δ(Ci,Cj) (2)

where ki =
∑

j Aij is the number of connections attached to the

i-th node (or node degree), Ci is the partition the i − th node
belongs to and δ(x) = 1 is x >= 1 and δ(x) = 0 otherwise.
Here, we use the Louvain method for community detection in
order to find the optimal partition of the FFBN that maximizes
the modularity value (Blondel et al., 2008).

Our hypothesis is that functional requirements constrain
structural modularity, that is, evolution cannot reach maximally
modular networks under the presence of functional constraints.
In this case, we can define a functional (or phenotype) modularity
or upper bound for the network (or genotype) modularity (2).
However, several genotypes (FFBNs and functional forms) can
be found for the same phenotype. When there is representation
ambiguity, we often prefer shorter or minimized forms among
all the alternatives. For example, a shorter functional form
(Figure 1A, bottom) divides the support of fµ into groups (red
circles and blue squares) that exploit functional symmetries
(Quine, 1952; McCluskey, 1956).

Engineers are often concerned with the problem of obtaining
the most economical design for electronic circuits. This is
particularly relevant in the design of hardware systems. For
example, the cost of VLSI (very large-scale integrated) circuits
is determined by many factors including the chip area (Mead
and Conway, 1980). When many of these factors are fixed, the
minimization of cost can be solved by constructing networks
which minimize the number of gates and the number of
connections (Hellerman, 1963). We define functional modularity
Q(X) as the modularity of the FFBN with minimal cost L + N
or sum of number of logical gates and wires (see Figure 1C).
This is equivalent to the minimization of Boolean circuits,
which is a hard problem (in general) and there is no simple
way to obtain the optimal solution (Wegener, 1987), although
good approximate solutions exist (like “Espresso” Rudell and
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Sangiovanni-Vincentelli, 1987). Following (Hellerman, 1963), we
perform an exhaustive search to obtain the optimal solution
for each of the 256 Boolean functions of 3 variables (see
SM for a detailed listing of the functions and their minimal
FFBNs).

4. PHENOTYPE NETWORK

In order to uncover the relationship between modularity and
functional requirements, we will make use of the concept of
phenotypic network. A phenotypic network is a graph whose
nodes represent (in our case) Boolean functions and where two
functions are connected if they differ in only one minterm of
the full disjunctive normal form. In this metagraph, each node
maps a function onto its genotype (a FFBN). The notion of
phenotypic network is derived from the conceptual framework
associated to genotypic and phenotypic spaces proposed by
several authors (Fontana and Schuster, 1987; Schuster et al.,
1994; Huynen, 1996; Stadler et al., 2001; Crutchfield and van
Nimwegen, 2002; Stadler, 2002). The hypercube is also related
to the above definition. The hypercube Qν is a network of 2ν

nodes represented by binary sequences Si = (si1, s
i
2, s

i
3, ..., s

i
ν)

where si
k
∈ 6 = {0, 1}. The edges of the hypercube connect

nodes whose sequences differ in exactly one bit, i.e., there is
an edge (Si, Sj) ∈ Qn when dH(Si, Sj) = 1. Let’s define the
Hamming distance dH(Si, Sj) between any pair of sequences as
follows:

dH(Si, Sj) =

ν
∑

k =1

|sik − s
j

k
| (3)

In addition, every Boolean function can be represented as a
subgraph of the hypercube (Harary, 1989) (see Figure 1B).
Functions in the phenotype network are labeled with its
designation number (a binary sequence) and thus, adjacent
functions can be formally defined using the Hamming distance
between the corresponding designation numbers. The only
relevant difference between the standard hypercube and the
phenotype network is that the same function can be represented
with several nodes (genotypes).

Figure 2 maps the space of all reachable Boolean functions
with 3 input variables. Even in this case, which is small and might
not seem so relevant, several key classes of functions and circuit
designs are involved (see below) either as single networks or as
part of larger webs. Thesemaps reveal several interesting features.
First, a few functions appear several times in the network because
they have more than one minimal FFBNs. For example, the
function f10000110 accepts three different genotypes with the same
minimal cost (they are displayed at the bottom left of Figure 2).
Second, the network only considers 80 different functions out
of the 256 logical functions of 3 variables. Two functions are
equivalent and belong to the same class if one can be obtained
from the other by a permutation of the input variables. We
have discarded from further consideration functions that are
equivalent to any class representative and have the same minimal
FFBN (Hellerman, 1963).

5. ADAPTATION AND THE BREAKDOWN
OF MODULARITY

The phenotype network maps the pathways to an eventual BM.
Specifically, we can check if it is possible to evolve a less modular
target function from any other source function. The distribution
of modularity values P(Q) in this space has a well-defined peak
with mean 〈Q〉 ≈ 0.2 (see Figure 3A). However, the variance
displayed by this distribution suggests the possibility that BM is
widespread. Specifically, we can find five functions with minimal
modularity (Q(X) ≈ 0) that can be accessed from different
neighborhoods of the phenotypic space (see yellow region in
Figure 3B).

There are also highly modular functions surrounded by
modular neighbors. To illustrate this behavior, we have chosen
two important functions, namely the multiplexer (see Figure 4A)
and the majority function (see Figure 4B). Both circuits have
special relevance in both electronic designs and in synthetic
biology (Macia and Solé, 2009). Each of these functions can be
accessed in a few mutation steps from functions with higher
modularity, i.e., Q(10101110) ≈ 0.3 and Q(00000111) ≈

0.3, respectively. At least in these two cases, the evolution of
useful functions is coupled to a reduction in modularity. These
examples suggest how adaptation might lead to a BM. A decrease
of functional modularity takes place when the evolutionary goal
is non-separable, i.e., the computation of the output requires the
interaction of several inputs. For example, the majority function
is a global computation that combines all input variables to obtain
the output. Similarly, consciously effortful tasks (like working
memory) are expected to break the modularity of neural systems
(Dehaene et al., 1998).

How can we relate functional characteristics with the breaking
of modularity? Figure 3B shows the absence of a clear correlation
between the modularity of specific Boolean functions and the
average modularity of its nearest neighbors in the phenotype
network. Additional network analyses might be helpful to
understand this pattern. In a previous study, we have suggested
that the BM is related to the small-world behavior of complex
networks (Valverde and Solé, 2007). Software projects have a
natural tendency to become disordered structures (Peter, 1986;
Eick et al., 2001). This degradation is caused by widespread
software changes and indirect dependencies between unrelated
pieces of code.

These changes in modular organization have important
implications for both engineering and evolved circuit designs.
In this context, it was early suggested that software design is an
instance of a multi-objective optimization process (Valverde et
al., 2002). When designing software, there is a tradeoff between
efficient communication and separation of functional tasks
(i.e., modularization). Indeed, small-sized software architectures
are trees (as one should expect from optimization leading to
hierarchical structures) but clustering emerges at larger sizes.
As the number of components increases, conflicting constraints
arise between different components that would prevent the
reaching of an optimal solution. A need to exchange information
between distant parts of a system can lead to a modularity
reduction.
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FIGURE 2 | Phenotype network showing all reachable Boolean functions of 3-inputs. Each function fµ is labeled with its designation number X and mapped onto a

minimal FFBN. Edges connect pairs of functions fµ and fY with Hamming distance dH (X,Y ) = 1. Node color depicts functional modularity, i.e., the modularity value of

the minimal FFBN (see text). The black square and circle mark the location of the majority and the multiplexor function, respectively.

The minimization of FFBNs is a similar problem. The
presence of functional constraints in the Boolean function creates
a larger density of connections and a more regular or lattice-
like topology (see Figure 5). On the other hand, the optimal
circuit under a minimal number of functional contraint is a
tree-like, modular architecture (Bagrow, 2012). Indeed, we can
check there is a positive correlation between the average path
length (Equation 1) and the modularity of minimal FFBNs (see
Figure 5A). For example, the addition of a link between the two
branches of the multiplexer (see Figure 4A) leads to a sharp
decrease of its average path length.

We can look at these results from the perspective of spectral
graph theory (Chung, 1997). Optimal characteristics of network
structures can be mapped onto the spectrum of the graph
Laplacian matrix. For example, the larger the second smallest
eigenvalue λ2, the faster the information diffuses through the
network. The magnitude of λ2 is inversely related to the mixing
time for Markov chains, or the time required to achieve the
steady state distribution (Mohar, 1997). In this context, the
maximization of modularity is not compatible with low mixing
time, i.e., rapid diffusion of information (Donetti et al., 2006).

In other words, the breakdown of modularity in minimal
feed-forward Boolean circuits involves a transition from
separable tasks (e.g., tree-like architectures) to rapid diffusion of

information (well-connected networks). When functions can be
separated into a set of disjoint tasks, we can design a modular
network and different modules can process different tasks or
different components of the inputs. On the other hand, we cannot
simply obtain modularity and short path lengths when networks
target non-separable tasks under cost pressures.

6. DISCUSSION

The interplay between fitness and system-level properties such
as modularity has been investigated in natural and artificial
designs. Simon proposed that nearly decomposable systems
composed by independent modules allow faster adaptation to
highly fluctuating environments (Simon, 1962, 1995). A modular
architecture allows independent changes in different parts of
the system without affecting the whole. Well-adapted modules
are conserved and provide a robust infrastructure for future
adaptation. This poses a puzzle because modular architectures
cannot be always maintained or reached in artificial evolution.
For example, evolutionary algorithms often yield designs that
are not decomposable and it is difficult to understand the way
these systems work. In software engineering, even if a modular
design is provided as initial solution, development rapidly moves
to entangled and monolithic solutions (Eick et al., 2001).

Frontiers in Physiology | www.frontiersin.org 5 July 2017 | Volume 8 | Article 497

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Valverde Breakdown of Modularity

FIGURE 3 | Statistical properties of the phenotype network. (A) distribution of

modularity values and (B) correlation between node modularity and the

average modularity of its nearest neighbors. The lack of correlation suggests

the breakdown of modularity is not a specific property of some

systems/environments. Green circles depict the location of two highly modular

functions.

Here we have proposed that the breakdown of modularity
takes place because there are changes in the fitness function,
e.g., a shift from a well-known environment to a less
predictable environment. There are functional constraints to
network modularity. For example, tasks involving non-separable
input-output mappings like learning a color naming task
with interference, evolving a robust metabolic network in a
highly fluctuating environment (Hintze and Adami, 2008) or
developing software under constantly changing requirements do
not seem to evolve modular networks. Everything is a novelty
for a network exposed to a highly fluctuating environment and
thus, it makes little sense to maintain costly memories for reusing
past information. In a highly fluctuating environment, the only
requirement for survival is to issue fast responses and quick
adaptations. The lack of memory imposes a strong constraint on
the complexity of evolved structures.

The reduction of modularity has to be contrasted with existing
theories for the emergence of modularity (Wagner et al., 2007).
For example, the breakdown to modularity does not require
a change from a modularly changing environment (Kashtan
and Alon, 2005) to another static environment. Introducing an

FIGURE 4 | Evolving specific functions might involve a breakdown of

modularity. (A) the multiplexer function has functional modularity

Q(10101100) < Q(10101110), and (B) the majority function has

Q(00010111) < Q(000000111). These target functions can be evolved from

more modular ancestors, that is, functions with specific groups of inputs

affecting different groups of outputs. Blue arrows represent edges in the

phenotype network or the specific changes transforming the source function

into the target function. Each function is represented with their minimal normal

disjunctive form (top), hypercube (middle), and minimal FFBN (bottom).

additional, temporal dimension in the fitness function is likely to
internally decouple the system (and thus creating the possibility
of increasing modularity). Moreover, looking at a few case studies
does not enable a full understanding of how and when modular
networks are expected to evolve. Instead, we have proposed
a simple model of network landscape where it is possible to
exhaustively characterize the breakdown of modularity in a well-
defined way and studied the influence of functional and cost
constraints.

The study of biological networks requires the examination
of the interactions between modularity, network diameter and
function. The phenotype space can be classified in two types of
functions depending if theminimal FFBNs (genotypes) is a sparse
or a dense network. Sparse genotypes have treelike topologies
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FIGURE 5 | Breakdown of modularity involves a transition from tree-like to well-connected networks. (A) Correlation between average shortest path and modularity.

(B) The average degree k∗ separates two main classes of minimal FFBNs: non-modular topologies with 〈k〉 > k∗ and tree-like networks with 〈k〉 ≤ k∗ ≈ 1.75 (cyan

area). The minimal FFBNs for the functions f10000000 (C) and f10010110 (D) and the location of the multiplexer (F) and its ancestor function (E) are also shown. Blue

lines denote the edge (f10101100, f10101110 ) in the phenotype network, which corresponds to a decrease in modularity and average shortest path.

and their computation involves minimal input interaction.
On the other hand, the modularity of dense networks drops
with the increasing number of distant interactions. Some
of the sparse networks are also maximally modular in our
system, contradicting the intuition that modularity depends on
densely intra-connected communities. It can be shown that
tree modularity is significant even when they are made of
sparse modules (Bagrow, 2012). Nodes in sparse trees acting
as bottlenecks are sufficient to achieve high modularity values.
The above suggests that we have to extend our definitions of
modularity to take into account different measures of internal
network connectivity.

Finally, our results might be useful to understand the limits
of the hypothesis put forward by Simon. The analysis of the
phenotype network reveals how the breakdown of modularity
is more likely to take place from regions of the landscape
populated by highly modular functions. Although neutral models
suggest that tinkering increases the possibilities to discover

modular designs (Solé and Valverde, 2006; Wagner et al., 2007;
Solé and Valverde, 2008; Tosh, 2016), the structure of the

phenotype network suggests that it is not always possible to
avoid the breaking of modularity. Sometimes modularity must
be spared, as in the evolution of novelties (Wagner and Lynch,
2010). The road to innovation is not necessarily paved by
modularity.
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