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One dimensional Doppler Ultrasound (DUS) is a low cost method for fetal auscultation.

However, accuracy of any metrics derived from the DUS signals depends on their quality,

which relies heavily on operator skills. In low resource settings, where skill levels are

sparse, it is important for the device to provide real time signal quality feedback to allow

the re-recording of data. Retrospectively, signal quality assessment can help remove low

quality recordings when processing large amounts of data. To this end, we proposed a

novel template-based method, to assess DUS signal quality. Data used in this study were

collected from 17 pregnant women using a low-cost transducer connected to a smart

phone. Recordings were split into 1990 segments of 3.75 s duration, and hand labeled

for quality by three independent annotators. The proposed template-based method uses

Empirical Mode Decomposition (EMD) to allow detection of the fetal heart beats and

segmentation into short, time-aligned temporal windows. Templates were derived for

each 15 s window of the recordings. The DUS signal quality index (SQI) was calculated by

correlating the segments in each window with the corresponding running template using

four different pre-processing steps: (i) no additional preprocessing, (ii) linear resampling

of each beat, (iii) dynamic time warping (DTW) of each beat and (iv) weighted DTW of

each beat. The template-based SQIs were combined with additional features based on

sample entropy and power spectral density. To assess the performance of the method,

the dataset was split into training and test subsets. The training set was used to obtain

the best combination of features for predicting the DUS quality using cross validation, and

the test set was used to estimate the classification accuracy using bootstrap resampling.

A median out of sample classification accuracy on the test set of 85.8% was found using

three features; template-based SQI, sample entropy and the relative power in the 160 to

660 Hz range. The results suggest that the new automated method can reliably assess

the DUS quality, thereby helping users to consistently record DUS signals with acceptable

quality for fetal monitoring.

Keywords: doppler ultrasound, empirical mode decomposition, fetal monitoring, dynamic time warping, sample
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1. INTRODUCTION

Although medical care has reduced mortality rates across
the globe, birth has still remained an event of extreme risk.
Approximately 2.6 million stillbirths and 2.8 million early
neonatal deaths occur each year (World Health Organization,
2016a,b). Different factors contribute to this high burden,
such as the lack of specialized medical professionals and the
high cost of the medical devices, mainly affecting low and
middle income countries (LMICs). Leading causes for perinatal
mortality include Intrauterine Growth Restriction (IUGR) and
congenital abnormalities of which, Congenital Heart Disease
(CHD) is the most common (van der Linde et al., 2011;
Gardosi et al., 2013; Lawn et al., 2016). These abnormalities
are currently being detected using ultrasound imaging and
more specifically, fetal echocardiography is performed for CHD
diagnosis. However, these techniques are expensive and can only
be performed by trained sonographers or physicians; hence, their
use is limited in LMICs (McClure et al., 2014).

Due to the high incidence and fatal consequences of these
abnormalities in low-resource settings, affordable perinatal
monitoring solutions are required. One of the most widely used,
yet affordable methods for perinatal screening is fetal heart rate
(FHR) monitoring. This technique has contributed to reduce
perinatal and maternal risks through identification of non-
reassuring fetal status (Ayres-de Campos and Bernardes, 2010).
Moreover, FHR has the potential for detecting IUGR (Nijhuis
et al., 2000; Ferrario et al., 2009), as well as CHD complications
(Cullen et al., 1992; Berghella et al., 2001).

FHR monitoring is commonly performed through
Cardiotocography (CTG) based on one dimensional Doppler
Ultrasound (DUS), that is also used in low cost (under $17)
hand-held devices which can be operated by non-experts. This
DUS-based low-cost device has been used to develop affordable
perinatal monitoring systems, thus facilitating screening in
LMICs. Stroux et al. introduced a mobile-health monitoring
system, based on a low-cost transducer and operated by illiterate
birth attendants, to detect fetal compromise, such as IUGR, in
rural Guatemala (Stroux, 2016; Stroux et al., 2016). DUS can also
provide more information beyond the FHR, such as the cardiac
valve function, which can further facilitate detection of CHDs
and assessment of the fetal development (Marzbanrad, 2015;
Marzbanrad et al., 2016b).

Despite the benefits of 1D-DUS, it is susceptible to noise
affecting its quality, and it is non-stationary due to the fetal
movements, which can complicate the FHR monitoring. Since
the quality of the recorded signals is critical to properly detect
FHR abnormalities, the assessment of the signal quality is an
essential part of the recording process. Stroux and Clifford
reported that the accuracy of FHR analysis depends on the
signal quality, hence the quality should be ensured during the
data collection (Stroux and Clifford, 2013). Magenes et al. also
showed the necessity of removing CTG signals with low quality
before applying methods for detecting fetal anomalies (Magenes
et al., 2001). The quality assessment process, enables providing
feedback to the operator during data collection, allowing them to
retake or exclude the low-quality signals.

To date, little work has been published concerning the quality
assessment of the DUS signals. Stroux and Clifford proposed a
method to validate the quality of DUS signals recorded using
a hand-held device connected to a smart phone (Stroux and
Clifford, 2014; Stroux, 2016). For this purpose, they extracted
features based on sample entropy, wavelet decomposition
coefficients, and the phone’s triaxial accelerometer output. To
assess the quality, a logistic regression and a support vector
machine (SVM) were trained to classify the recordings into noisy
and clean categories. The logistic regression model was able to
classify the signal quality with an accuracy of 95.14% on test
data, while the SVM achieved an accuracy of 94.44%.Marzbanrad
et al. proposed an automated method to assess the DUS signal
quality for the application of fetal valve motion identification
(Marzbanrad, 2015; Marzbanrad et al., 2015). In their method,
DUS signals were segmented into cardiac cycles using non-
invasive fetal electrocardiogram (fECG) as reference. Then, 12
features including power, statistical and entropy-based measures,
were extracted from a frequency range associated with the fetal
cardiac valve motion. Using these features, the signals collected
from 57 fetuses were classified as good and poor quality, using
a na ive Bayes model. The accuracy of the classification was 86%
using 10-fold cross validation.

In the current paper, to improve the quality assessment
for perinatal monitoring, we propose a simpler template-based
method using only the DUS signal recorded by a low cost device,
thus facilitating its implementation in LMICs.

2. METHODS

2.1. Database
The DUS database used in this paper was collected at the John
Radcliffe Hospital in Oxford as a part of the study presented in
Stroux and Clifford (2014) and Stroux (2016). The study was
approved by the NHSHealth Research Authority, REC reference:
12/SC/0147 and written consent was obtained from each study
subject prior to data collection. Each subject received detailed
information on the study protocol and their right to withdraw
from the study at any stage of the recording session. This
database contained 1D-DUS signals recorded from 17 subjects at
a sampling frequency of 44.1 KHz using a hand held transducer
(AngelSounds Fetal Heart Detector, Jumper Medical Co., Ltd.)
with an ultrasound frequency of 3.3 MHz. Subjects were women
with singleton pregnancy, over the age of 18, who were scheduled
for a routine CTG. The duration of recording per subject is shown
in Figure 1.

2.2. Segment selection
Each of the 1 min-length DUS signals were labeled by
three different annotators who had relevant experience in
analyzing cardiac audio recordings for quality. Each reviewer
independently labeled each second of the record as good or poor
quality. After labeling, each record was split into segments of 3.75
with a 3 s sliding window (i.e., a 0.75 s overlap). The duration
of 3.75 was fixed since it is the usual length for computerized
analysis of fetal non-stress tests based on the Dawes/Redman
criteria (Dawes et al., 1981; Pardey et al., 2002). To ensure that
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FIGURE 1 | Duration in minutes of the total number of records per subject.

each segment belongs to only one class, only the segments with
all their samples of the same class were kept. These segments were
assigned to 4 different classes as follows:

• Good Quality: Three annotators labeled all the segment as
good quality.

• Mostly clean: Two annotators labeled all the segment as good
and one labeled all the segment as poor quality.

• Mostly noisy: One annotator labeled all the segment as good
and two labeled all the segment as poor quality.

• Poor Quality: Three annotators labeled all the segment poor
quality.

A total of 1,990 segments (430 good, 1,062 poor, 292mostly clean,
and 206 mostly noisy quality) were identified. Figure 2 illustrates
the balance of segments across patients. Note that the quality
of the recorded signals varies from one patient to another and
may change over a single recording session because we observed
that for some recordings there are both good and bad quality
segments.

The classifier in this work was only trained using poor and
good quality segments. The rationale behind this stems from the
fact that segments on which one or more experts cannot agree are
not meaningful in reporting statistics, since we cannot categorize
them in a single class. However, after training the classifiers,
the optimal classifier was also evaluated with the mostly clean
and mostly noisy segments to determine its capacity for detect
intermediate quality segments.

2.3. Preprocessing
The DUS signals were resampled at 4,000Hz using a least-
square linear phase anti-aliasing filter. This downsampling does
not affect the information content of the signal, since the fetal
heart activity corresponds to the DUS signal frequencies below
1,650 Hz for a transducer of 3.3 MHz (Shakespeare et al., 2001).
Hence, the Nyquist-Shannon sampling criterion was satisfied
after downsampling.

FIGURE 2 | Number of poor and good quality 3.75 s segments for each of the

subjects for which all three annotators agreed on labels.

2.4. Template-based quality assessment of
1-D Doppler Ultrasound
To assess the quality of the DUS segment, a template-based
algorithm was developed. This method consists of 4 stages
(Figure 3). First, the beats of the DUS signals were estimated
using Empirical Mode Decomposition (EMD). Then, using the
estimated beats, templates for windows of 15 s were derived.
These templates were then optimized in stage 3, and finally, the
quality index of the DUS segment was calculated in stage 4. These
stages are illustrated in Figure 3 and explained in the following
sections.

This method, as all the remaining methods of this work,
were implemented in Matlab and executed in a machine with
a standard processor (Intel(R) Xeon(R) CPU E5-2660 v2 @
2.20GHz).

2.4.1. Beat Detection
Individual cardiac cycles (or beats) were detected using EMD,
based on amethod presented inMarzbanrad et al. (2014). EMD is
an empirical method for decomposing non-stationary and non-
linear signals into a set of components called Intrinsic Mode
Functions (IMFs). It is a data-driven method that is able to adapt
to the signal properties without requiring a basis function, unlike
other time-frequency decomposition methods (Huang, 2014).
This characteristic allows EMD to properly analyze non-linear
and non-stationary natural processes.

Each extracted IMF satisfies 2 properties: firstly, the number
of maxima and minima and the number of zero crossing should
differ at most by 1; secondly, the mean value between the
envelope of the local maxima and the envelope of the local
minima must be zero at any point. To obtain the IMFs, EMD
uses an intuitive algorithm called “sifting procedure.” It is an
iterative procedure, which finds all the IMFs of the signal until the
difference between output and the input of the sifting procedure
becomes a monotonic function. More details of the method can
be found in Huang et al. (1998).
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FIGURE 3 | Overview of the template-based quality method for the Doppler signal.

To find the beats from the DUS signals an algorithm was
developed to allow switching between the first four IMFs, which
were obtained over 4 s windows. For each of these IMFs, the
peaks were detected based on the positive first derivative and
negative second derivative criteria. Then, using the identified
peaks, the IMFs were enveloped to obtain four IMF envelopes
for each window. To detect the best envelope for segmentation,
a metric based on the standard deviation of the peak to peak
intervals (PPIs) was applied. Namely, the IMF with the minimum
average of the standard deviation of PPIs was selected as the

optimum IMF. To deal with the possible mismatching of the
selected IMFs in adjacent windows, a short overlapping window
of 1 s was used to correct missing or double identified peaks.
The peaks of the optimum IMFs were selected as possible beat
locations. These peak locations were further corrected through
a moving windows of 5 PPIs, replacing the middle PPI by the
average of the rest in the window, if they differed by more than
20% (Marzbanrad et al., 2016a). The corrected peaks were set as
beat location, and were used to segment the 1D-DUS signal into
Beat to Beat Intervals (BTBI).
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Continuous Wavelet transform (CWT) was then applied to
the DUS signal over 25 s windows. In this work, the CWT
was applied using second order complex Gaussian function as
Wavelet mother. Moreover, only the signal decomposed at scale
3 was selected since it was found that the 3rd level is the most
relevant for detecting value movement. This scale contained
frequencies below 1,000 Hz, which mainly reflect the fetal heart
activity; valve motion is around 990 Hz for a transducer of 3.3
MHz (Murata and Martin Jr, 1977), and wall velocities between
257 and 429 Hz for a transducer of 3.3 MHz (Shakespeare et al.,
2001).

After applying the CWT, the envelope of the absolute value
of the decomposed signal was estimated by interpolating the
maxima. This envelope was then smoothed using a low pass
filter and segmented into cardiac cycles using the estimated
beat locations. Each segment was normalized by subtracting its
mean and dividing by its standard deviation. These normalized
segment were used to generate the templates for the signal quality
assessment.

2.4.2. Initial Template Generation
Using the normalized cardiac cycle segments, the initial templates
were calculated using a window of 15 s. The length (L) of the
template was calculated as the average of BTBIs in each 15 s
window. The initial template of the window was determined by
averaging the segments starting at the beat location and lasting at
length L. This procedure was repeated for each window, thereby
obtaining an initial template for each window of 15 s.

2.4.3. Updating Templates
The initial template of each window was updated based on the
correlation function. For each window, the correlation of the
template and the segments starting in a beat location and lasting
at length L was calculated. The window template was updated
by averaging only the segments with a correlation (r) greater
than or equal to 0.6. In case the initial template of a window
did not have a correlation of r ≥ 0.6 for at least 20% of the
beats, the template was assumed as invalid, and replaced by the
one from the previous window. If the initial template of the
previous window was invalid, the one from the next window was
selected.

2.4.4. Signal Quality Metrics
After updating templates for each window, the quality indices
were calculated as the correlation of the segments with the
template in their corresponding window. The correlations was
calculated in four ways:

• Direct matching SQI. The segments of each 15 s window,
beginning at the beat location and ending at the length of the
template (L) were used to calculate the correlation coefficient
with the template and this was denoted as SQI1. If the segment
was shorter than L, it was padded by zeros.

• Linear resampling SQI. Each estimated beat of the window
was linearly stretched or compressed, if the length of the
beat was shorter or longer than L, respectively. Then, the
correlation coefficient with the template was denoted as SQI2.

• Dynamic time warping SQI. Using Dynamic Time Warping
(DTW), the segments were transformed to the length L [as
performed in our earlier work (Li and Clifford, 2012)] and the
correlation with templates was denoted as SQI3.

• Weighted dynamic time warping SQI. One drawback of
DTW is that it gives too much freedom to the segment to
adapt to the template. This was addressed by Jeong et al. who
introduced the weighted DTW (wDTW) (Jeong et al., 2011).
This method penalizes points with higher phase from the
reference template by applying weights, thereby minimizing
the distortion caused by outliers. In the current work, the
parameter controlling the penalty was optimized through
cross-validation to achieve the highest accuracy. The best value
was found to be 0.02. The correlation of the transformed
segments in the window with the corresponding template, was
denoted SQI4.

For all methods, any negative values of these SQI (negative
correlation) were set to zero.

2.5. Sample Entropy and Power Spectrum
Density (PSD)
In addition to the Template-based SQIs, two other key features
were estimated from the DUS signals. The first one was sample
entropy (Hs), which has shown a promising potential for
discriminating between good and poor quality DUS segments
(Stroux and Clifford, 2014). Sample entropy measures the
regularity of a signal by finding reoccurring patterns in it. To this
end, three parameters are defined: the length of the signal N, the
pattern length m and the matching tolerance r. Sample entropy
is defined as the negative logarithm of the probability that a time
series of length N with reoccurring pattern of length m within a
set tolerance of r, also has reoccurring patterns of length m + 1
under the same tolerance constraint. In this work, the sample
entropy was calculated setting the parametersm = 2, and r as 0.1
times the standard deviation of the input time series. The entropy
was calculated using the procedure described in Richman and
Moorman (2000).

The second additional feature extracted was the Power
Spectrum Density (PSD) ratio. This feature was used in order to
the evaluate the power of the DUS signals at different frequency
ranges. The range for calculating the ratio was determined using
a grid search. Since cardiac movements are associated with a
Doppler frequency range of 100 to 600 Hz using a 2 MHz
transducer (Wheeler et al., 1987), which translate to a scaled
range of 165 to 990Hz for 3.3MHz transducer, the ranges of
values of the grid search were fixed from 80 to 400Hz and from
580 to 900Hz for the low and high frequency interval limits,
respectively. For each possible pair of values, the capacity for
discriminating between good and poor quality segments was
measured using the earth mover’s distance. The range with the
highest earth mover’s distance between the distribution of the
ratios of good and poor classes was found to fall in the range 160–
660Hz. Thus, the PSD ratio of each DUS segment was calculated
by dividing the power spectrum contained in the interval [160 −

660 Hz] by the total power, thereby measuring the percentage of
power associated with cardiac movements.
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2.6. Feature Vectors
Applying the template-based method resulted in four different
SQIs for each estimated beat of the segment, thus obtaining a
total of 4Nb indices by segment, where Nb is the number of beats
of the segment. As the number of beats varied for each segment,
we selected the median value of each quality index of the segment
as the final SQI. Thus, each segment had only one value for SQI1,
SQI2, SQI3, and SQI4. Finally, the sample entropy and the PSD
ratio were added to the feature vector, thereby obtaining a total
of six features for each segment.

2.7. Classification
The above features were used to train an SVM classifier. SVM
is a classifier that finds the best hyperplane that maximizes the
margin between two classes. When the data are not linearly
separable, a kernel function is used to transform the data to a
different space in which the data can be separated. In this work, a
Gaussian radial basis function kernel was used:

k(xi, xj) = exp

(

−|xi − xj|
2

2σ 2

)

, (1)

where xi and xj are feature vectors, and σ is a free parameter
of the kernel. A large value of σ increases the bias but reduces
the variance of the classifier and a small value causes the
opposite effect. To find the best value for a given training set,
σ is usually tunned using heuristic methods or a brute force
search.

The class prediction, y, of a given feature vector, x, is calculated
using the dual representation of SVM as:

y = sgn

(

N
∑

i= 1

αiyik(xi, x)+ b

)

, (2)

where xi is the i-th feature vector of the training set and yi =

[−1, 1] is its class; α ≥ 0 are Lagrange coefficients obtained
by quadratic optimization; b is the intercept of the margin; and
k(xi, xj) is the kernel function (Equation 1). The α coefficient is
only greater than 0 for those points that are in the margin. These
points are called support vectors. In addition to the parameters
of Equation 2, SVM has a hyperparameter called the soft margin
constraint (C). This parameter regularizes the margin allowing
the cost function to ignore some points to establish an adequate
margin for the training set. More details concerning the SVM
can be found in Abe (2005). In this work, the SVM parameters
C and σ were optimized using five-fold cross-validation and a
grid search on the training set. The grid search was defined by
C ∈ {2−3, 2−1, ..., 25} and σ ∈ {2−5, 2−2, ..., 22}.

2.8. Method performance assessment
To assess the performance of the method proposed here, the
dataset was split into two equal subsets; the training and test sets.
The the training set was used to determine the combination of
features most relevant for assessing the quality of DUS segments.
The test set provides an assessment of the accuracy on an
independent dataset.

To split the dataset into two equal subsets (training and test
sets), the subjects were ranked based on their number of good

segments in descending order. Then, the data of each of the
subjects were alternately assigned to the subsets. In other words,
the first subject’s samples were assigned to the training subset,
the second ones to the test subset, the third one to the training
subset, and so on. As the number of patients was odd (17), the
samples of the last subject were assigned to the subset with the
lowest number of segments.

The best combination of features was found by calculating
the accuracy of all possible feature combinations on the training
set. Since the dataset presented an imbalance among classes
(Figure 2), the accuracy was calculated using stratified five-fold
cross validation with bootstrapping. Specifically, the accuracy of
each feature combination was determined as follows: subjects of
the training set were split into 5 folds. For each fold, 120 signals
(60 per class) samples from the subjects of the fold were randomly
selected using sampling with replacement (bootstrapping). The
selection was performed in proportion to the subjects’ sample
quantity in each fold. The rationale behind this validation process
is that the bootstrap applied to the cross validation folds adjusts
the class imbalances, which is a critical factor for SVM classifiers
(Chawla et al., 2004). Moreover, as the cross validation did not
assign samples of the same subject to different folds, it provided
an unbiased accuracy estimation. To obtain a more reliable
accuracy, the described validation process was repeated 100
times, assigning subjects into different folds at each repetition.

For each iteration of the five-fold cross validation, the training
set was normalized by subtracting the mean of the respective
feature vector and dividing by its standard deviation. The test
set was normalized using both mean and standard deviation
derived from the training data. The cross validation accuracy
of each iteration was averaged by selecting the median of the 5
accuracy values of the folds. Likewise, the accuracy of the 100
repetitions was selected as the median of the 100 accuracy values.
This procedure was performed for each combination of features.

In addition to the overall accuracy of the classifiers, the
sensitivity and specificity were also estimated. Sensitivity was
defined as the proportion of good quality segments properly
classified, whereas specificity denoted the portion of poor quality
segments correctly classified.

To determine the capacity of the method for predicting
intermediate quality segments, a SVM classifier was trained with
the good and poor segments of the test set using the most
common parameters C and σ for the 100 bootstrap repetitions.
Once the best combination of features was determined
(maximizing accuracy, then specificity), the classifier was fixed
and assessed on the test using the same bootstrap cross-validation
validation procedure used for the training set. Finally, the
probability of belonging to good class was also estimated for the
mostly noisy, and mostly clean segments without retraining to
assess the performance of the classifier on all data.

3. RESULTS

3.1. Feature Selection
Table 1 presents the median accuracy, sensitivity and specificity
of the best combination of input features for up to 6 possible
features. As can be seen, the classifier was able to classify
the quality of a DUS segments with up to 85.8% accuracy
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using either the combination SQI2 and sample Entropy (HS),
or the combination SQI2, PSD ratio and HS. The accuracy of
these two combinations of features resulted in a statistically
significant improvement over the use of only one feature, HS (p
<0.05, one-sided Wilcoxon rank-sum test). The results for all
possible combination of features are presented in the appendix
(Table A1).

It can also be seen from Table 1 that the sensitivity tended
to decrease with an increase in the number of features, whereas
specificity steadily increase until three features were used.
Since the combination of both two and three features leads to
equivalent accuracy, the combination SQI2, PSD ratio and HS

was chosen to be evaluated on the test set, since this maximizes
specificity, and reduces the chances that a poor quality segment
is labeled as good quality.

3.2. Test Set Performance
Table 2 displays the accuracy, sensitivity and specificity of the
combination of the SQI2, PSD ratio andHS features. The median
accuracy of this classifier using this combination was similar
to the highest median accuracy achieved on the training set.
However, the interquartile range for the test set was almost twice
than that for the training set, indicating that the test set may
exhibit a higher heterogeneity of features. Both sensitivity and
specificity exceeded 90%.

3.3. Performance of classifier on
intermediate quality segments
The classes of the mostly clean and mostly noise segments of
the test set were also predicted using the same classifier [using

TABLE 1 | Median classification performance of the 100 five-fold cross validation

balanced with bootstrapping.

Feature combination Median Median Median

accuracy ± IQR

(%)

sensitivity

(%)

specificity

(%)

Hs 84.2 ± 5.8 100.0 78.3

SQI2,Hs ‡ 85.8 ± 5.0 93.3 80.0

SQI2,PSD,Hs 85.8 ± 5.0 83.3 90.0

SQI2,SQI4,PSD,Hs 85.0 ± 8.3 85.8 88.3

SQI1,SQI2,SQI4,PSD,Hs 84.7 ± 5.0 85.0 86.7

SQI1,SQI2,SQI3,SQI4,PSD,Hs 83.8 ± 6.7 81.7 86.7

IQR indicates inter-quartile range; ‡ indicates a significant improvement (Wilcoxon rank-

sum test, P<0.05) of a given feature combination compared to using a combination with

one less feature.

TABLE 2 | Performance of the classifier averaged over 100 five-fold cross

validation runs balanced with bootstrapping for the test set (with ) using SQI2,

PSD ratio, and sample entropy (SQI2,PSD,Hs) as features.

Measure Minimum 1st Quantile Median 3rd Quantile Maximum

(%) (%) (%) (%) (%)

Accuracy 65.8 79.2 85.8 90.0 96.7

Sensitivity 71.7 85.0 91.7 96.7 100.0

Specificity 61.7 89.3 91.7 95.0 98.3

SQI2, PSD ratio and sample entropy (HS) as features]. Note that
these segments were not used in training. Figure 4 shows the
relative distribution of output probabilities from the classifier of
belonging to the good quality class for all four types of segments.
The classifier established a probability threshold of 0.5575 for
distinguishing between good quality and poor quality segments.
The percentage of segments which lay above the threshold for
good quality and mostly clean segments were 86.53 and 69.06%,
respectively. On the other hand, the percentage of segments
that lay below the threshold for poor quality and mostly noise
segments were 96.50 and 63.69%, respectively.

4. DISCUSSION

The results presented here suggest that it is possible to
accurately classify the DUS quality using SQIs derived from
DUS signals alone. Among the extracted features, sample
entropy and PSD ratio provided suitable discrimination between
good and poor quality segments, which is consistent with
previous works (Stroux and Clifford, 2014; Marzbanrad et al.,
2015). However, the addition of our proposed template-based
method, particularly after linear resampling of the beats to
match the running template (SQI2), provided a statistically
significant improvement in accuracy (see Table 1). Either
combinations SQI2 and Hs or SQI2, PSD ratio and Hs resulted
in a statistically significant accuracy; nevertheless, in order to
maximize specificity, the combination of SQI2, PSD ratio and Hs

was selected for assessing the classifier on the test set.
The selected features achieved an accuracy of 85.8% on the

test set, thus suggesting that this metric is suitable for quality
assessment based only on DUS signals. Although this feature
combination exhibited more variance on the test set than on
the train set, the achieved accuracy indicates that the model
was not overfitted, and its complexity of three features is viable
for assessing DUS quality. Furthermore, the balance toward
specificity provided by the three chosen features (SQI2, PSD

FIGURE 4 | Distributions of classifier probability outputs for DUS segments of

test set for each of the four classes (n.u. stands for normalized units). The

threshold of belonging to the Good class was fixed at 0.56 for the classifier.

The majority of the distribution of the Good and Mostly Clean classes lies

above this threshold, whereas the majority of Poor and Mostly Noise classes

lies below this threshold, as was expected. The probability distributions were

smoothed using a normal kernel function (Bowman and Azzalini, 1997).
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ratio, and sample entropy) ensures a high number of good quality
segments is preserved, as well as small number of false-positive
segments.

The best combination of features also showed an adequate
capacity for classifying segments associated with intermediate
quality zones (mostly noisy and moistly clean segments).
Although both mostly clean segments andmostly noisy segments
exhibited a mostly flat distribution, their centers where more
closer to the good quality center and poor quality centers,
respectively as it was expected. Specifically, almost 70% of
the mostly clean probabilities laid above the SVM prediction
threshold, whereas higher than 63% of the mostly noise
probabilities laid below the SVM prediction threshold. This
discrimination ability for the two ambiguous classes indicates the
potential of the approach outlined in this work.

Regarding the template-based SQIs, the EMD-based approach
appeared to facilitate identification of beat intervals, since the
correlation with each template was generally high. Small offsets
in the relative start and end point of each beat were mitigated
by the use of resampling prior to correlation. The segmentation
facilitated beat-by-beat quality assessment, which is the first
step toward detecting fetal abnormalities from DUS signals. The
template optimization process obtained representative templates
for quality assessment since the initial template was only averaged
with those segments which exhibited a moderate or strong
correlation (r ≥ 0.6) with the initial template (average of first
N beats).

Although Stroux and Clifford reported a higher accuracy
(95.14%) on the same database (Stroux and Clifford, 2014),
their work cannot directly compared to the current work since
different statistical validation approaches were used. Specifically,
Stroux and Clifford trained on two thirds of the data set and held
out one third for testing, with no cross validation. In this work,
stratified five-fold cross validation was used with bootstrapping
(repeated 100 times), with subject stratification across different
folds in each repetition. The accuracy obtained in this work
cannot directly compared to that of Marzbanrad et al. (2015)
since they tested their method with a different dataset. However,
our method can be compared to the aforementioned previous
works by analyzing the effect of adding the index SQI2 to
common features of the other works, namely, sample entropy.
As was previously showed in Table 1, by using the SQI2 feature
in addition to sample entropy, the accuracy statically significantly
increased.

Another advantage of our method over previous works is that
the proposed method does not need additional sources, such
as accelerometer data (Stroux and Clifford, 2014) or an fECG
signal (Marzbanrad et al., 2015) to assess the DUS quality. A key
advantage of using only DUS signal is that the recording process
is simple, facilitating the use of this technology by non-experts in
low-resource settings. Finally, using only one source for quality
assessment reduces health screening costs, facilitating its use in
LMICs.

Despite the promising results, one limitation of the current
method is that it was only tested using DUS signals recorded
by professional midwives in hospital settings. The LMIC context
is often severely resource constrained and there is a lack of

widespread training for midwives, particularly in the use of
technology. Consequently, signal quality is likely to be lower
in recordings taken in LMICs. The noise content may also
be different if the audio cable is not incorrectly inserted,
introducing ambient sounds such as animals, extreme weather,
and interference from non-hospital electronics. Nevertheless,
the template-based method proposed here could be adjusted to
specific conditions with a relevant training set.

Another possible limitation may be that the introduced
method was only tested using one database labeled by three
annotators. As DUS quality annotation is prone to inter-
observer variability, testing the method with datasets annotated
by different experts may reduce the accuracy. However, the high
accuracy achieved by the combination of sample entropy, PSD
ratio and SQI2 used in this work, provides optimism for the use of
the template-based method for different datasets, especially with
retraining.

5. CONCLUSION

The work presented in this article proposed a template-based
method to assess the quality of 1D-DUS signals recorded by a
low cost device. The introduced template-based indices provided
a simpler method based on only DUS signals, thus facilitating
its implementation in LMICs. The approach described in this
work can provide the operator with an accurate and timely
feedback on the quality of the recordings, to allow discarding
the low quality signals in real time and prompt users to re-
record data. Therefore, this quality assessment technique could
potentially facilitate reliable fetal monitoring by non-experts
toward reducing perinatal health burdens.
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APPENDIX

TABLE A1 | Median classification performance of the 100 five-fold cross

validation balanced with bootstrapping for all the possible feature combinations.

Feature combination Median Interquartile

accuracy (%) range (%)

Hs 84.17 5.83

PSD 84.17 6.67

SQI4 64.17 11.25

SQI3 67.92 5.00

SQI2 74.17 6.67

SQI1 61.67 10.42

PSD,Hs 85.06 5.00

SQI4,Hs 84.58 5.00

SQI4,PSD 78.42 15.42

SQI3,Hs 83.33 6.67

SQI3,PSD 84.17 12.92

SQI3,SQI4 65.00 9.58

SQI2,Hs 85.83 5.00

SQI2,PSD 84.65 10.83

SQI2,SQI4 69.17 5.83

SQI2,SQI3 73.33 7.50

SQI1,Hs 85.83 5.46

SQI1,PSD 81.67 8.33

SQI1,SQI4 61.67 9.17

SQI1,SQI3 62.50 7.22

SQI1,SQI2 71.67 8.75

SQI4,PSD,Hs 81.67 8.75

SQI3,PSD,Hs 85.00 7.50

SQI3,SQI4,Hs 81.67 5.83

SQI3,SQI4,PSD 80.83 10.83

SQI2,PSD,Hs 85.83 5.00

SQI2,SQI4,Hs 84.17 5.00

SQI2,SQI4,PSD 83.33 8.33

SQI2,SQI3,Hs 84.17 5.47

SQI2,SQI3,PSD 80.00 9.58

SQI2,SQI3,SQI4 67.50 8.33

SQI1,PSD,Hs 85.00 6.67

SQI1,SQI4,Hs 82.50 6.25

SQI1,SQI4,PSD 78.33 12.92

SQI1,SQI3,Hs 83.33 5.00

SQI1,SQI3,PSD 82.50 14.58

SQI1,SQI3,SQI4 65.00 7.08

SQI1,SQI2,Hs 85.00 5.83

SQI1,SQI2,PSD 84.17 8.33

SQI1,SQI2,SQI4 69.17 5.83

SQI1,SQI2,SQI3 72.50 6.67

(Continued)

TABLE A1 | Continued

Feature combination Median Interquartile

accuracy (%) range (%)

SQI3,SQI4,PSD,Hs 80.83 7.50

SQI2,SQI4,PSD,Hs 85.00 8.33

SQI2,SQI3,PSD,Hs 82.92 5.83

SQI2,SQI3,SQI4,Hs 83.33 5.83

SQI2,SQI3,SQI4,PSD 77.08 9.17

SQI1,SQI4,PSD,Hs 82.50 7.83

SQI1,SQI3,PSD,Hs 85.00 10.83

SQI1,SQI3,SQI4,Hs 79.17 5.00

SQI1,SQI3,SQI4,PSD 79.17 12.50

SQI1,SQI2,PSD,Hs 84.17 6.25

SQI1,SQI2,SQI4,Hs 82.50 5.83

SQI1,SQI2,SQI4,PSD 80.83 7.15

SQI1,SQI2,SQI3,Hs 82.92 6.67

SQI1,SQI2,SQI3,PSD 79.17 8.75

SQI1,SQI2,SQI3,SQI4 68.33 7.08

SQI2,SQI3,SQI4,PSD,Hs 80.83 10.00

SQI1,SQI3,SQI4,PSD,Hs 77.50 10.83

SQI1,SQI2,SQI4,PSD,Hs 84.65 5.00

SQI1,SQI2,SQI3,PSD,Hs 84.17 6.67

SQI1,SQI2,SQI3,SQI4,Hs 82.50 5.00

SQI1,SQI2,SQI3,SQI4,PSD 77.50 8.33

SQI1,SQI2,SQI3,SQI4,PSD,Hs 83.75 6.67

The table is grouped for feature vectors of the same length. For each combination of

features, the median and interquartile range of the accuracy rate of the 100 repetitions

are shown.
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