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Background: Muscle wasting is a common complication of Chronic Kidney Disease

(CKD) and is clinically important given its strong association with morbidity and mortality

in many other chronic conditions. Exercise provides physiological benefits for CKD

patients, however the molecular response to exercise remains to be fully determined.

We investigated the inflammatory and molecular response to resistance exercise before

and after training in these patients.

Methods: This is a secondary analysis of a randomized trial that investigated the effect

of 8 week progressive resistance training on muscle mass and strength compared to

non-exercising controls. A sub-set of the cohort consented to vastus lateralis skeletal

muscle biopsies (n = 10 exercise, n = 7 control) in which the inflammatory response

(IL-6, IL-15, MCP-1 TNF-α), myogenic (MyoD, myogenin, myostatin), anabolic (P-Akt,

P-eEf2) and catabolic events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates) and overall

levels of oxidative stress have been studied.

Results: A large inflammatory response to unaccustomed exercise was seen

with IL-6, MCP-1, and TNF-α all significantly elevated from baseline by 53-fold

(P < 0.001), 25-fold (P < 0.001), and 4-fold (P < 0.001), respectively. This

response was reduced following training with IL-6, MCP-1, and TNF-α elevated

non-significantly by 2-fold (P = 0.46), 2.4-fold (P = 0.19), and 2.5-fold (P = 0.06),

respectively. In the untrained condition, an acute bout of resistance exercise did

not result in increased phosphorylation of Akt (P = 0.84), but this was restored

following training (P = 0.01). Neither unaccustomed nor accustomed exercise resulted

in a change in myogenin or MyoD mRNA expression (P = 0.88, P = 0.90,

respectively). There was no evidence that resistance exercise training created a

prolonged oxidative stress response within the muscle, or increased catabolism.
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Conclusions: Unaccustomed exercise creates a large inflammatory response within

the muscle, which is no longer present following a period of training. This indicates

that resistance exercise does not provoke a detrimental on-going inflammatory response

within the muscle.

Keywords: resistance exercise, CKD, cachexia, protein synthesis, protein degradation, inflammation, myogenesis

INTRODUCTION

Patients with Chronic Kidney Disease (CKD) commonly
experience muscle wasting which can start early in the disease
process not only impacting upon their quality of life and physical
functioning, but there is also evidence that it increases their
risk of death (Carrero et al., 2008; Isoyama et al., 2014; Harada
et al., 2017) as in other chronic diseases (Zhou et al., 2010;
Greening et al., 2015). A reduced muscle mass was found to
be associated with mortality risk in end stage renal patients
under conservative care (Pereira et al., 2015), but in patients
undergoing hemodialysis, reduced strength was found to have
a stronger association with risk of death rather than a low
muscle mass (Isoyama et al., 2014). Evidence is lacking if this
association is also true for patients at earlier stages of CKD.
Recently physical function has been shown to be associated
with mortality in both pre dialysis as well as dialysis patients
(Morishita et al., 2017). The cause of this muscle loss is not
yet fully understood, but is likely to be multifactorial including
metabolic acidosis, inflammation, insulin resistance, oxidative
stress, and physical inactivity (Mak and Cheung, 2006; Johansen
and Painter, 2012).

There is a growing body of evidence demonstrating
exercise provides a multitude of benefits for CKD patients
including improved physical functioning and exercise tolerance,
increased muscle mass, reduced cardiovascular risk and systemic
inflammation and improved quality of life, (Castaneda et al.,
2001, 2004; Moinuddin and Leehey, 2008; Mustata et al., 2011;
Kosmadakis et al., 2012; Baria et al., 2014; Viana et al., 2014;
Greenwood et al., 2015) and which is discussed in more depth
a recent review (Gould et al., 2014). For these reasons exercise
is increasingly recommended as an important adjunct to usual
care in CKD (Koufaki et al., 2015). However, the mechanism by
which exercise creates an increase muscle mass, or the molecular
responses mounted to a bout of exercise by CKD patients are not
yet fully described. It is important to understand how exercise
interacts with the mechanisms underlying muscle loss in CKD to
inform future guidelines for optimal exercise prescription in this
population.

We have shown that 8 weeks of resistance exercise training
improved muscular strength and size (Watson et al., 2014). The
aim of the work we report here was to investigate the molecular
response this exercise elicited. Specifically we investigated the
inflammatory response (IL-6, IL-15, MCP-1 TNF-α), myogenic
(MyoD,myogenin, myostatin), anabolic (Akt, eEf2) and catabolic
events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates) and
overall levels of oxidative stress to an acute bout of resistance
exercise before and after 8 weeks of training. It was hypothesized
that CKD patients would only exhibit a small molecular

response to unaccustomed resistance exercise, which would be
significantly increased with training.

MATERIALS AND METHODS

This is a secondary analysis of a randomized controlled trial
described previously (Watson et al., 2014). Briefly, 38 patients
with CKD stage 3b-4 were randomized to receive an 8 week
resistance exercise training intervention (n = 20), or to the
control group (n = 18). A sub-set of this main cohort also
consented to skeletal muscle biopsies from vastus lateralis
(exercise n = 11 however one patient was excluded due to poor
tissue quality, analysis was performed on n = 10; control n = 7),
the analysis of which is presented here. A CONSORT diagram
describing the cohort is shown in Figure 1.

Patients
Patient characteristics of this sub-cohort are presented inTable 1.
All patients were recruited from nephrology outpatient clinics
at Leicester General Hospital, UK. Patients were excluded from
biopsy if receiving warfarin or clopidogrel, or suffering any
clotting disorder. The study received approval from the UK
National Research Ethics Committee, East-Midlands-Leicester
(Ref 10/H0406/50); all patients gave written informed consent to
participate in accordance with the Declaration of Helsinki.

Resistance Exercise Training
Patients randomized to the exercise group attended the hospital
three times a week to participate in an 8 week progressive
resistance training programme. Briefly, patients performed 3
sets of 10–12 repetitions of leg extension exercise at 70% 1-
repetitionmaximum.When subjects could comfortably complete
3 sets with good form, the training load was increased. The
control groupwas instructed to continue with their usual physical
activity.

Muscle Biopsy Sampling and Processing
Three muscle biopsies were collected from the vastus lateralis
of exercising patients at the following time points: Baseline, 24
h after the first exercise session (investigating the acute effect
of exercise in the untrained state; untrained), 24 h after the last
exercise session (investigating the acute effect of exercise in the
trained state; trained). The timing of the biopsies was based
on those employed in a similar study in patients with COPD
(Constantin et al., 2013) that also investigated the molecular
response to resistance exercise. Two muscle biopsies were
collected from the control group, at baseline and 8 weeks later.
All biopsies were taken after an overnight fast using the micro
biopsy technique (Hayot et al., 2005). The site was cleaned using
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FIGURE 1 | CONSORT diagram to show flow of patients through the study.
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TABLE 1 | Patient characteristics.

Characteristic Exercise group

(n = 11)

Control group

(n = 7)

P-value

Age (yr) 62 ± 5 67 ± 11 0.17

Sex (n men/women) 6/5 6/1 0.05

Weight (kg) 97 ± 26 84 ± 18 0.24

Height (cm) 165 ± 12 165 ± 5 0.9

BMI (kg/m2) 36 ± 9 31 ± 6 0.19

eGFR (ml/min/1.73 m2) 27 ± 7 20 ± 6 0.09

Venous Bicarbonate

(mmol/L)

26 ± 4 24 ± 2 0.72

Rectus Femoris CSA

(cm2)

6.4 ± 2.0 5.1 ± 1.1 0.19

Isokinetic Strength

(Nm)

109.3 ± 35.3 102.5 ± 46.9 0.52

Diabetes (%) 27 28 0.9

Data are mean ± SD. BMI, body mass index; eGFR, estimated glomerular filtration rate

(calculated using the 4-variavle MDRD [modification of Diet in Renal Disease] equation);

CSA, cross sectional area.

an iodine based solution and 5 ml 1% lidocaine administered.
Samples were taken using an 11 g ACECUT automatic biopsy
needle (TSK Laboratory, Netherlands) which yielded ∼60mg
tissue. Samples were immediately placed in liquid nitrogen after
dissection of any visible fat and connective tissue and freeze-dried
(Edwards, Modulyo, UK with RV8 vacuum pump).

Western Blotting
Lysates were prepared by homogenization of ∼5 mg/dw muscle
tissue in Tris buffer containing 0.5 M EDTA, 40 nM EGTA,
10% Triton X-100, 0.1% betamercaptoethanol, supplemented
with Phosphatase Inhibitor-3 (Sigma Aldrich, UK) and the
following protease inhibitors Leupeptin (1 µg/ml), Pepstatin A
(1 µg/ml), Benzamidine (1 mM) and PMSF (0.2 mM). Muscle
extracts were rotated at 4◦C for 90 min and centrifuged at
13,000 g for 15 min. Supernatant was collected and protein
concentration determined using the Bio-Rad Protein Assay.
Pellets were retained for determination of 14 kDa actin fragment
(Du et al., 2004; Workeneh et al., 2006). Lysates containing
30 µg protein were subjected to SDS-PAGE using 10–12%
gels on a mini-Protean Tetra system (Bio-Rad, UK). Proteins
were transferred onto nitrocellulose membranes, blocked for 1
h with Tris-buffered saline with 5% (w/v) skimmed milk and
0.1% (v/v) Tween-20 detergent. Membranes were incubated with
the primary antibody overnight. Antibodies to determine p-
Akt (Ser473), p-eEF2 (Thr56) were obtained from Cell Signaling
Technology (Danvers, MA, USA) 1:1,000 dilution, ubiquitin
conjugates 1:150 dilution (Enzo Life Sciences, MI, USA) and
AC40 Actin clone (Sigma Aldrich, UK) 1:500 dilution for analysis
of 14 kDa actin fragment. The antibody against 14 kDa actin
fragment also recognizes the 42 kDa fragment which was used as
a loading control developed with a much shorter exposure time
so not to be overexposed. For all other proteins β-actin (Abcam,
Cambridge, UK) 1:5,000 dilution was used as a loading control.
This was found to be the most stable of those tested (β-actin,
α-tubulin and GAPDH). Oxidative stress was determined using

the oxyblot protein oxidation detection kit (Merk Millipore, US).
Bands were quantified using a Bio-Rad GS7000 densitometer and
Molecular Analyst v1.4 Software. Due to the sample processing
procedure for protein carbonylation analaysis, it was not possible
to re-probe membranes for a loading control. To correct for
protein concentration, lysates were also run for β-actin using the
same protein calculations.

Quantitative RT-PCR
RNA was isolated from 2 mg/dw muscle samples using
TRIzol R© (Invitrogen, UK) and reverse transcribed to
cDNA using an AMV reverse transcription system
(Promega, Madison, WI, USA). Primers, probes and
internal controls for all genes were supplied as Taqman
gene expression assays (Applied Biosystems, Warrington,
UK. MAFbx:Hs00369714_m1, MuRF-1:Hs00822397_m1,
Myogenin:Hs01072232_m1, MyoD:Hs02330075_g1, IL-
6:Hs00985639_m1, IL-15:Hs01003716_m1, MCP-1:Hs00234140,
TNF-α:Hs01113624_g1 and TBP:Hs00427620_m1 as an internal
control which was determined to be stable over the course of
the intervention (validation data is provided in Supplementary
Methods section). All reactions were carried out in a 20 µl
volume, 1 µl cDNA, 10 µl 2X Taqman Mastermix, 8 µl water,
1 µl primer/probe on an Agilent Biosystem Light Cycler with
the following conditions, 95◦C 15 s, followed by 40X at 95◦C for
15 s and 60◦C for 1 min. The Ct values from the target gene were
normalized to TBP and expression levels calculated according to
2−11Ct method to determine fold changes. Data in graphs are
presented as 2−1Ct.

Statistics
Data are presented asmean± SD unless otherwise stated. All data
sets were tested for normal distribution using the Kolmogorov–
Smirnov test. For data shown to be skewed, log transformation
was performed prior to analysis. Data was analyzed using
repeated measures mixed ANOVA with pairwise comparisons
of pre-specified comparisons of interest (baseline vs. untrained,
baseline vs. trained in the exercise group and baseline vs. 8 weeks
in the control group). This analysis was fitted using the xtmixed
command in Stata v14. Statistical significance was accepted at
P < 0.05.

RESULTS

Intramuscular Inflammatory and Oxidative
Stress Response to Exercise
Unaccustomed resistance exercise induced a large increase in the
expression of a number of inflammatory cytokines within skeletal
muscle (Figure 2). 24 h after the first resistance exercise training
session IL-6, MCP-1 and TNF-α mRNA expression were all up-
regulated from baseline by means of 53-fold (P < 0.001), 25-fold
(P < 0.001) and 4-fold (P < 0.001), respectively. These increases
were blunted after 8 weeks of training with IL-6 increased just
2-fold when compared to baseline (P = 0.46), and MCP-1 2.4-
fold (P = 0.19). There was a trend for TNF-α to still be elevated
2.5-fold above baseline in response to exercise following 8 weeks
of training, but this fell short of significance (P = 0.06). IL-15
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FIGURE 2 | Changes in mRNA expression of intramuscular inflammatory cytokines after accustomed and unaccustomed resistance exercise. Skeletal muscle

biopsies were drawn from exercising CKD patients at baseline, 24 h after first bout of exercise (Untrained) and 24 h after the final bout of exercise following 8 weeks of

resistance exercise training (Trained) (A) and at baseline and after 8 weeks in the non-exercising control group (B). *P < 0.05 vs. representative baseline sample.

Expression is displayed as relative change from baseline according to 2−1Ct method and normalized to Tata box binding protein. Data are mean ± SD.

mRNA expression was significantly suppressed from baseline 24
h following the first bout of unaccustomed resistance exercise
(P < 0.001), which was not seen following training (P = 0.46).
Finally, acute exercise before or after training had no effect upon
total protein carbonylation (Figure 3; P= 0.34), suggesting there
was not a significant increase in oxidative stress in response
to resistance exercise in these patients. Pairwise comparisons
showed there was no change in the expression of IL-6, MCP-1,
TNF-α, or IL-15 over the control period (P = 0.33, P = 0.76,
P = 0.47, and P = 0.98, respectively).

Changes in Protein Expression Relating to
Myogenesis
Changes in expression of genes relating to myogenesis are
shown in Figure 4. Repeated measures mixed ANOVA revealed
no change in MyoD (P = 0.90) or Myogenin (P = 0.88)
mRNA expression following exercise either before or after
training, suggesting that resistance exercise does not alter
mRNA expression of these myogenic regulatory factors either
positively or negatively before or after training at the time
points assessed here. However, myostatin mRNA expression was
significantly suppressed from baseline following exercise both
prior to (P = 0.005) and following training (P = 0.04). Pairwise
comparisons showed no change in mRNA expression of either
MyoD (P = 0.18), Myogenin (P = 0.08) or myostatin (P = 0.78)
in the control group over the 8 week period.

Changes in Proteins Relating to Protein
Synthesis
Changes in phosphorylation of Akt and eEf2 are shown in
Figure 5. Akt phosphorylation increases in the hours following
resistance exercise, although its necessity for muscle hypertrophy
is in question. (Philp et al., 2011) There was no increase

in Akt phosphorylation from baseline in response to acute
unaccustomed exercise (P = 0.84). However, this response was
somewhat restored after 8 weeks of resistance exercise training,
where phosphorylation was seen to increase 2-fold above baseline
(P = 0.01). Pairwise comparisons showed no change in the
phosphorylation of Akt seen in the control group (P = 0.35).
Repeatedmeasures mixed ANOVA showed no effect of resistance
exercise either before or after training on phosphorylation status
of eEF2 (P = 0.44; Figure 5C).

Changes Relating to Markers of Protein
Degradation
Changes in expression of genes relating to protein degradation
are shown in Figure 6. An unaccustomed acute bout of resistance
exercise resulted in a non-significant 3-fold increase in MuRF-1
mRNA expression (P = 0.10), which then fell just below baseline
24 h after the final training session (P = 0.15). There was a
non-significant 1.4-fold increase in MAFbx mRNA expression
following a bout of exercise in the untrained condition (P =

0.80), which then was seen to fall significantly below baseline after
training (P = 0.01).

The 14 kDa fragment is a cleavage product produced during
the degradation of actin and myosin that is used as a biomarker
of muscle proteolysis (Workeneh et al., 2006; Wang and Mitch,
2013). We found no evidence that unaccustomed or accustomed
exercise resulted in any change in the amount of 14 kDa present
in the insoluble fraction of the muscle biopsies (P = 0.36;
Figure 7), or in the level of ubiquitin conjugation in response
to either unaccustomed or accustomed exercise (P = 0.20;
Figure 8), suggesting there was no change in the overall rate
of protein degradation in these patients. Pairwise comparisons
showed no change in the expression of MuRF-1 (P = 0.64),
MAFbx (P = 0.62), or in the amount of the 14 kDa fragment
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FIGURE 3 | Total protein carbonylation as a marker of oxidative stress after accustomed and unaccustomed resistance exercise. Skeletal muscle biopsies were

drawn from exercising CKD patients at baseline, 24 h after first bout of exercise (Untrained) and 24 h after the final bout of exercise following 8 weeks of resistance

exercise training (Trained) and at baseline and after 8 weeks in the non-exercising control group. Representative oxyblots are shown for exercising (A) and control

patients (B) together with β-actin loading controls for these groups. Histograms show densitometric data (C,D). B, denotes Baseline; U, denotes untrained; T, denotes

Trained; 8, denotes 8 weeks. Data are mean ± SD.

(P = 0.65) in the control group. There was however, a significant
decrease in the level of ubiquitin conjugates from baseline to 8
weeks (P = 0.02).

DISCUSSION

Evidence is accumulating for the benefits of exercise in advanced
CKD making it a promising therapeutic intervention (Watson
et al., 2014; Greenwood et al., 2015; Howden et al., 2015).
However, little is known about themechanisms ofmuscle wasting
that is commonly seen in these patients, the ability of exercise

to overcome it, or how these patients respond to exercise at
a molecular level. There are a number of studies that describe
the anabolic and inflammatory response to exercise in human
CKD (Kouidi et al., 1998; Wagner et al., 2001; Kopple et al.,
2007; Balakrishnan et al., 2010; Coletta et al., 2016), however
to the authors acknowledge, this is the first study to describe
this response to exercise training in non-dialysis CKD. Here,
we show that when patients are untrained exercise results
in a large increase in the expression of several inflammatory
cytokines, and a suppression of IL-15. Exercise training however,
does appear to reduce the expression of these inflammatory
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FIGURE 4 | Changes in mRNA expression of proteins relating to Myogenesis after accustomed and unaccustomed resistance exercise. Skeletal muscle biopsies

were drawn from exercising CKD patients at baseline, 24 h after first bout of exercise (Untrained) and 24 h after final bout of exercise following 8 weeks of resistance

exercise training (Trained) (A) and at baseline and after 8 weeks in the non-exercising control group (B). Expression is displayed as relative change from baseline

according to 2−1Ct method and normalized to Tata box binding protein. *P < 0.05 vs. respective baseline sample. Data are mean ± SD.

cytokines provoked by an acute bout of accustomed resistance
exercise.

Inflammation seems to play a key role in the pathogenesis
of muscle wasting in CKD (Wang and Mitch, 2014).
Pro-inflammatory gene and protein expression are up-regulated
in the skeletal muscle of patients with CKD (Garibotto
et al., 2006; Verzola et al., 2011; Zhang et al., 2013), creating
local and systemic inflammation that contributes to muscle
atrophy through reduced protein synthesis and increased
protein degradation. We, (Viana et al., 2014) and others,
(Castaneda et al., 2004) have shown that both aerobic and
resistance exercise may confer systemic anti-inflammatory
benefits in pre-dialysis CKD, but little is known about the
intramuscular inflammatory response to exercise in CKD. In
healthy individuals, acute resistance exercise induces a transient
inflammatory response that is required for appropriate muscle
regeneration and adaptation (Louis et al., 2007; Pillon et al.,
2013). We observed a previously undocumented inflammatory
response to unaccustomed resistance exercise in the skeletal
muscle of non-dialysis CKD patients, with significant increases
in the expression of IL-6, MCP-1, and TNF-α. This large
inflammatory response may have consequences for the activation
of anabolic processes such as protein synthesis, as it is now
established that there is a strong interaction between increased
cytokine expression and suppression of insulin signaling. This
likely occurs through activation of the suppressor of cytokine
signaling (SOCS) proteins, which have been shown to degrade
the IRS-1 protein (Kawazoe et al., 2001), or through activation
of the NF-kβ pathway. The NF-kβ pathway also affects the
abundance and activation of IRS-1 by increasing expression of
a transmembrane glycoprotein SIRP-α (Thomas et al., 2013),
a mechanism that is currently being explored as a contributor
to muscle wasting in CKD. However, the magnitude of this
inflammatory response was greatly reduced following 8 weeks

of exercise training, suggesting that exercise training does
not provoke a large and on-going inflammatory environment
within skeletal muscle, which could be detrimental for muscle
health. We also saw a suppression of IL-15 expression after
unaccustomed exercise. IL-15 is known to have anabolic effects
in skeletal muscle (Quinn et al., 2002) and its expression has
been reported to increase 24 h after resistance exercise in healthy
individuals (Nielsen et al., 2007). Regular resistance training
appears to restore the IL-15 response, which may contribute
to the significant muscle hypertrophy observed and previously
reported (Watson et al., 2014).

Earlier work byWang et al. (2009) has demonstrated that mice
with CKD have blunted insulin/insulin like growth factor 1 (IGF-
1) signaling which centers around a reduced phosphorylation
of Akt in these animals and which ultimately results in muscle
atrophy that is commonly seen in CKD. This reduction in Akt
phosphorylation reduces the phosphorylation of the forkhead
transcription factors (foxO) leading to an increase in the
expression of the E3 ligases MuRF-1 and MAFbx and an
acceleration of the ubiquitin proteasome system. On the other
side of the equation, a reduction in Akt phosphorylation results
in a suppression of protein synthesis. However, the authors
were able to demonstrate that muscle overload in the CKD
mice was able to restore Akt signaling, significantly elevating it
above that in the non-exercised mice. This led to the conclusion
that muscle overload can blunt the development of muscle
atrophy in CKD, which was strongly linked to the observed
increase in Akt phosphorylation. The results we present here
support this previous observation in nephrectomised mice.
In response to unaccustomed resistance exercise there was
no change in Akt phosphorylation from baseline which was
seen to significantly increase in response to resistance exercise
following 8 weeks of training, where it was elevated 2-fold above
baseline.
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FIGURE 5 | Changes in the phosphorylation status of proteins involved in protein synthesis in response to accustomed and unaccustomed resistance exercise.

Skeletal muscle biopsies from exercising CKD patients were drawn at baseline, 24 h after first bout of exercise (Untrained) and 24 h after final bout of exercise following

8 weeks of resistance exercise training (Trained) (A,C) and at baseline and 8 weeks later in the non-exercising control group (B,D). Phosphorylation levels of Akt on

Ser473 and phosphorylation levels of eEF2 on Thr56 are normalized to β-Actin. Histograms show densitometric data and are shown with representative blots. *P <

0.05 vs. respective baseline sample. Data are mean ± SD.

eEF2 is an important regulator of translation elongation,
mediating translocation of the ribosome along the mRNA strand
(Proud, 2015). Phosphorylation of eEF2 by eEF2 kinase prevents
it from binding to the ribosome slowing the rate of elongation
(Kenney et al., 2014). We found eEF2 phosphorylation was
unchanged 24 h after a bout of resistance exercise both before and
after training. There is little research on the effect of exercise on
regulation of eEF2, but one study showed P-eEF2 was reduced 3

h following sprint exercise (Rundqvist et al., 2013). In the absence
of direct protein turnover measurements we must interpret
these results with caution—especially in light of an apparent
disconnect between synthetic rates and phosphorylation of
anabolic factors (Greenhaff et al., 2008). However, as there are
now several reports that describe abnormal anabolic signaling
in CKD (Chen et al., 2008; Wang et al., 2009), more detailed
investigation into this area in response to exercise is warranted.
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FIGURE 6 | Changes in mRNA expression of proteins relating to muscle protein breakdown after accustomed and unaccustomed resistance exercise. Samples from

exercising CKD patients were drawn at baseline, 24 h after the first exercise bout (Untrained) and 24 h after the final bout of exercise after 8 weeks of resistance

exercise training (Trained) (A,C). Samples from the non-exercising control group were drawn at baseline and 8 weeks later (B,D). *P < 0.05 vs. respective baseline

sample. Expression is displayed as relative change from baseline according to 2−1Ct method and normalized to Tata box binding protein. Data are mean ± SD.

The myogenic regulatory factors (MRF’s) MyoD and
myogenin, are important regulators of muscle cell growth and
differentiation and have an important role in the adaptive
response to overload. It is generally accepted that an increase
the expression of these proteins infers activation of myogenesis
(Yang et al., 2005). Previous work in CKD mice has shown
that the mRNA expression of these MRF’s is reduced, but that
muscle overload results in an increase in mRNA expression of
both MyoD and Myogenin (Wang et al., 2009). Here we show
that 24 h following an unaccustomed bout of resistance exercise
there was no change in the mRNA expression of either MyoD or
Myogenin. However, as no measure of muscle damage was made,
it is difficult to appropriately interpret these results. We used a
relatively moderate intensity resistance exercise protocol, which
may not have caused any significant degree of muscle damage. If
this is the case, there would not have been a sufficient stimulus
to initiate the process of myogenesis. To draw firm conclusions,
it would be important to investigate this further using a muscle
damage protocol. A suppressed gene expression in response
to exercise has been described previously in CKD and kidney
transplant patients (Coletta et al., 2016), albeit in genes relating

to the NFAT/calcineurin pathway, which taken together with
the observations reported here, may suggest that exercise is not
able to fully initiate molecular pathways necessary for adequate
adaptation to exercise. This requires further investigation.

There is a consensus that skeletal muscle atrophy in CKD
occurs largely through ubiquitin-proteasome mediated protein
degradation (Wang and Mitch, 2013). Therefore, we investigated
the effect of resistance exercise upon the two muscle specific E3
ligases, MuRF-1 and MAFbx, the level of total protein ubiquitin-
conjugation and the concentration of the 14 kDa fragment
present in the biopsies. We observed a 3-fold increase in MuRF-
1 and a smaller 1.5-fold increase in MAFbx mRNA expression
24 h post exercise. Neither of which were significant, but these
increases disappear after training where MAFbx expression was
actually suppressed below baseline. This response is generally in
line with that previously reported in healthy individuals where
the increase in the mRNA message for these ligases tends to
peak 1–4 h post exercise (Louis et al., 2007) and then falls below
baseline. We believe that the small but non-significant increase
in expression seen here to an unaccustomed and therefore
potentially damaging bout of exercise, serves to remove and
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FIGURE 7 | Abundance of the 14 kDa fragment in skeletal muscle biopsies in response to accustomed and unaccustomed resistance exercise. Samples from

exercising CKD patients were drawn at baseline, 24 h after first bout of exercise (Untrained) and 24 h after final bout of exercise following 8 weeks resistance exercise

training (Trained) and at baseline and 8 weeks later in the non-exercising control group. Representative blots are shown for loading controls in exercising (A) and

control patients (B) and full experimental blots (C,D) that are labeled to show 42 kDa actin and 14 kDa actin fragment. Histograms (E,F) show densitometric data. Bm

denotes Baseline; U, denotes untrained; T, denotes Trained; 8, denotes 8 weeks. Data are mean ± SD.

degrade damaged protein, which does not occur to the same
extent following training (Constantin et al., 2013). This early
increase in expression did not translate into a detectable increase
in protein destruction as we did not find any changes in global
ubiquitin conjugation, or in the amount of the 14 kDa fragment
present. This suggests that resistance exercise does not negatively
affect muscle protein balance, either acutely, or in the longer-
term with training. Therefore, resistance exercise does not place
an additional severe metabolic stress on the muscle of these
patients, which could worsen existing muscle loss.

Myostatin is a potent negative regulator of growth (Han and
Mitch, 2011). Following both unaccustomed and accustomed
exercise we saw a significant reduction in myostatin expression
that has been reported previously in healthy individuals (Louis
et al., 2007) and is a normal response to exercise.

Finally, CKD patients experience high levels of oxidative
stress, contributing to systemic inflammation, and ultimately
muscle wasting (Sung et al., 2013). Depending upon its
intensity, exercise can generate reactive oxygen species (ROS),
which in healthy individuals increases the production of
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FIGURE 8 | Abundance of ubiquitin conjugates in skeletal muscle biopsies in response to accustomed and unaccustomed resistance exercise. Samples from

exercising CKD patients were drawn at baseline, 24 h after first bout of exercise (Untrained) and 24 h after final bout of exercise following 8 weeks resistance exercise

training (Trained) and at baseline and 8 weeks later in the non-exercising control group. Representative ubiquitin-protein conjugates blots are shown for exercising (A)

and control patients (B) together with β-Actin loading controls for these groups. Histograms show densitometric data (C,D). B, denotes Baseline; U, denotes

untrained; T, denotes Trained; 8, denotes 8 weeks. *P < 0.05 vs. respective baseline sample. Data are mean ± SD.

antioxidant enzymes (Gomez-Cabrera et al., 2008). If patients
are unable to mount a suitable response to this transient
increase in ROS production it may worsen oxidative stress
in these patients. However, we did not see any evidence
that oxidative stress was exacerbated by exercise. Whether,
additional oxidative stress caused by the exercise was offset

here by an increase in antioxidant enzyme production is
unknown.

A limitation of this study concerns sampling time points.
Post exercise biopsy samples were only collected 24 h after
exercise and we therefore cannot comment on the intramuscular
responses before 24 h. It is possible that other important effects
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on gene expression or phosphorylation events were missed and
had returned to baseline by the time of the post exercise biopsy.
The lack of a healthy control group here means we are unable
to associate changes seen with disease specific mechanisms
and to confirm that they do not simply reflect deconditioning.
However, these responses in untrained healthy individuals are
well documented and do appear to differ from the response we
report in CKD patients. There are differences in eGFR at baseline
between the two groups; there was however, no difference in the
rate of change of eGFR over the course of the study. Finally, the
markers we have chosen to study here are only static measures
and provide no information on protein turnover kinetics, which
can be studied using more invasive techniques.

In conclusion, our data has shown that CKD patients exhibit
a large intramuscular inflammatory response to exercise in the
untrained state. However, resistance exercise training attenuated
the expression of these inflammatory markers following acute
exercise, suggesting that this form of exercise does not provoke
an on-going inflammatory response within the muscle. We have
also shown that resistance exercise training was able to restore
the expected increase in Akt phosphorylation in response to acute
exercise, supporting the previous work byWang et al. (2009). We
believe that further investigation is warranted to better define the
effect of exercise on the activation of proteins and inflammatory
factors likely to be involved in a hypertrophic response in CKD.

AUTHOR CONTRIBUTIONS

My co-authors have all contributed to this manuscript and
relative contributions made by the listed authors are as follows;
EW, JV, and AS were involved in the study design and developed
the protocol and JB was responsible for patient recruitment. EW,
NG, DW, and AS were involved in the sample collection and
laboratory analysis. EW, DW, NM, JV, and AS were involved

in data analysis and data interpretation. EW performed the
literature search and compiled the figures and EW, JV, DW, NM,
NG, JB, and AS were responsible for preparing the manuscript
for submission. EW takes responsibility that this study has
been reported honestly, accurately, and transparently; that no
important aspects of the study have been omitted; and that any
discrepancies from the study as planned have been explained. All
authors approve this submission.

ACKNOWLEDGMENTS

The research was supported by the National Institute for Health
Research (NIHR) Leicester Biomedical Research Centre. The
views expressed are those of the authors and not necessarily those
of the NHS, the NIHR or the Department of Health. The funders
had no role in study design, collection, analysis, or interpretation
of data; writing the report; or decision to submit this manuscript
for publication. This study and Dr. Emma Watson’s salary was
funded by a private charitable trust who had no role in study
design, collection, analysis or interpretation of the data, writing
of the report or the decision to submit for publication. Some of
the data here has been presented in abstract form at the American

Society of Nephrology’s KidneyWeek in Atlanta November 5–10
2013 and Philadelphia November 11–16 2014, UK Kidney week
inGlasgowApril 29-May 2 2014 and at the annualmeeting for the
American Society of Sports Medicine in Orlando 31 May-4 June
2104. We would like to thank the patients for giving up their time
so generously to take part in this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fphys.
2017.00541/full#supplementary-material

REFERENCES

Balakrishnan, V. S., Rao, M., Menon, V., Gordon, P. L., Pilichowska,

M., Castaneda, F., et al. (2010). Resistance training increases muscle

mitochondrial biogenesis in patients with chronic kidney disease.

Clin. J. Am. Soc. Nephrol. 5, 996–1002. doi: 10.2215/CJN.091

41209

Baria, F., Kamimura, M. A., Aoike, D. T., Ammirati, A., Rocha, M. L., de

Mello, M. T., et al. (2014). Randomized controlled trial to evaluate the

impact of aerobic exercise on visceral fat in overweight chronic kidney

disease patients. Nephrol. Dial. Transplant. 29, 857–864. doi: 10.1093/ndt/

gft529

Carrero, J. J., Chmielewski, M., Axelsson, J., Snaedal, S., Heimburger,

O., Barany, P., et al. (2008). Muscle atrophy, inflammation

and clinical outcome in incident and prevalent dialysis

patients. Clin. Nutr. 27, 557–564. doi: 10.1016/j.clnu.2008.

04.007

Castaneda, C., Gordon, P. L., Parker, R. C., Uhlin, K. L., Roubenoff, R., and Levey,

A. S. (2004). Resistance training to reduce the malnutrition-inflammation

complex syndrome of chronic kidney disease. Am. J. Kidney Dis. 43, 607–616.

doi: 10.1053/j.ajkd.2003.12.025

Castaneda, C., Gordon, P. L., Uhlin, K. L., Levey, A. S., Kehayias, J. J., Dwyer,

J. T., et al. (2001). Resistance training to counteract the catabolism

of a low-protein diet in patients with chronic renal insufficiency.

A randomized, controlled trial. Ann. Intern. Med. 135, 965–976.

doi: 10.7326/0003-4819-135-11-200112040-00008

Chen, Y., Sood, S., Biada, J., Roth, R., and Rabkin, R. (2008). Increased

workload fully activates the blunted IRS-1/PI3-kinase/akt signaling pathway

in atrophied uremic muscle. Kidney Int. 73, 848–855. doi: 10.1038/sj.ki.

5002801

Coletta, D. K., Campbell, L. E., Weil, J., Kaplan, B., Clarkson, M.,

Finlayson, J., et al. (2016). Changes in pre- and post-exercise gene

expression among patients with chronic kidney disease and kidney

transplant recipients. PLoS ONE 11:e0160327. doi: 10.1371/journal.pone.

0160327

Constantin, D., Menon, M. K., Houchen-Wolloff, L., Morgan, M. D., Singh,

S. J., Greenhaff, P., et al. (2013). Skeletal muscle molecular responses to

resistance training and dietary supplementation in COPD. Thorax 68, 625–633.

doi: 10.1136/thoraxjnl-2012-202764

Du, J., Wang, X., Miereles, C., Bailey, J. L., Debigare, R., Zheng, B., et al.

(2004). Activation of caspase-3 is an initial step triggering accelerated

muscle proteolysis in catabolic conditions. J. Clin. Invest. 113, 115–123.

doi: 10.1172/JCI18330

Garibotto, G., Sofia, A., Procopio, V., Villaggio, B., Tarroni, A., Di Martino,

M., et al. (2006). Peripheral tissue release of interleukin-6 in patients

with chronic kidney diseases: Effects of end-stage renal disease and

microinflammatory state. Kidney Int. 70, 384–390. doi: 10.1038/sj.ki.

5001570

Frontiers in Physiology | www.frontiersin.org 12 July 2017 | Volume 8 | Article 541

http://journal.frontiersin.org/article/10.3389/fphys.2017.00541/full#supplementary-material
https://doi.org/10.2215/CJN.09141209
https://doi.org/10.1093/ndt/gft529
https://doi.org/10.1016/j.clnu.2008.04.007
https://doi.org/10.1053/j.ajkd.2003.12.025
https://doi.org/10.7326/0003-4819-135-11-200112040-00008
https://doi.org/10.1038/sj.ki.5002801
https://doi.org/10.1371/journal.pone.0160327
https://doi.org/10.1136/thoraxjnl-2012-202764
https://doi.org/10.1172/JCI18330
https://doi.org/10.1038/sj.ki.5001570
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Watson et al. Molecular Response to Exercise in CKD

Gomez-Cabrera, M. C., Domenech, E., and Vina, J. (2008). Moderate exercise is

an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol.

Med. 44, 126–131. doi: 10.1016/j.freeradbiomed.2007.02.001

Gould, D. W., Graham-Brown, M. P., Watson, E. L., Viana, J. L., and Smith, A. C.

(2014). Physiological benefits of exercise in pre-dialysis chronic kidney disease.

Nephrology 19, 519–527. doi: 10.1111/nep.12285

Greenhaff, P. L., Karagounis, L. G., Peirce, N., Simpson, E. J., Hazell, M., Layfield,

R., et al. (2008). Disassociation between the effects of amino acids and insulin

on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J.

Physiol. Endocrinol. Metab. 295, E595–E604. doi: 10.1152/ajpendo.90411.2008

Greening, N. J., Harvey-Dunstan, T. C., Chaplin, E. J., Vincent, E. E.,

Morgan, M. D., Singh, S. J., et al. (2015). Bedside assessment of

quadriceps muscle by ultrasound after admission for acute exacerbations of

chronic respiratory disease. Am. J. Respir. Crit. Care Med. 192, 810–816.

doi: 10.1164/rccm.201503-0535OC

Greenwood, S. A., Koufaki, P., Mercer, T. H., MacLaughlin, H. L., Rush, R.,

Lindup, H., et al. (2015). Effect of exercise training on estimated GFR, vascular

health, and cardiorespiratory fitness in patients with CKD: a pilot randomized

controlled trial. Am. J. Kidney Dis. 65, 425–434. doi: 10.1053/j.ajkd.2014.07.015

Han, H. Q., and Mitch, W. E. (2011). Targeting the myostatin signaling pathway

to treat muscle wasting diseases. Curr. Opin. Support. Palliat. Care 5, 334–341.

doi: 10.1097/SPC.0b013e32834bddf9

Harada, K., Suzuki, S., Ishii, H., Aoki, T., Hirayama, K., Shibata, Y., et al. (2017).

Impact of skeletal muscle mass on long-term adverse cardiovascular outcomes

in patients with chronic kidney disease. Am. J. Cardiol. 119, 1275–1280.

doi: 10.1016/j.amjcard.2017.01.003

Hayot, M., Michaud, A., Koechlin, C., Caron, M. A., Leblanc, P., Prefaut, C., et al.

(2005). Skeletal muscle microbiopsy: A validation study of a minimally invasive

technique. Eur. Respir. J. 25, 431–440. doi: 10.1183/09031936.05.00053404

Howden, E. J., Coombes, J. S., and Isbel, N. M. (2015). The role of exercise training

in the management of chronic kidney disease. Curr. Opin. Nephrol. Hypertens.

24, 480–487. doi: 10.1097/MNH.0000000000000165

Isoyama, N., Qureshi, A. R., Avesani, C. M., Lindholm, B., Barany, P., Heimburger,

O., et al. (2014). Comparative associations of muscle mass and muscle strength

with mortality in dialysis patients. Clin. J. Am. Soc. Nephrol. 9, 1720–1728.

doi: 10.2215/CJN.10261013

Johansen, K. L., and Painter, P. (2012). Exercise in individuals with CKD. Am. J.

Kidney Dis. 59, 126–134. doi: 10.1053/j.ajkd.2011.10.008

Kawazoe, Y., Naka, T., Fujimoto, M., Kohzaki, H., Morita, Y., Narazaki, M., et al.

(2001). Signal transducer and activator of transcription (STAT)-induced STAT

inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin

signal transduction pathway through modulating insulin receptor substrate 1

(IRS-1) phosphorylation. J. Exp. Med. 193, 263–269. doi: 10.1084/jem.193.2.263

Kenney, J. W., Moore, C. E., Wang, X., and Proud, C. G. (2014). Eukaryotic

elongation factor 2 kinase, an unusual enzyme with multiple roles. Adv. Biol.

Regul. 55, 15–27. doi: 10.1016/j.jbior.2014.04.003

Kopple, J. D., Wang, H., Casaburi, R., Fournier, M., Lewis, M. I., Taylor, W., et al.

(2007). Exercise in maintenance hemodialysis patients induces transcriptional

changes in genes favoring anabolic muscle. J. Am. Soc. Nephrol. 18, 2975–2986.

doi: 10.1681/ASN.2006070794

Kosmadakis, G. C., John, S. J., Clapp, E. L., Viana, J. L., Smith, A. C., Bishop,

N. C., et al. (2012). Benefits of regular walking exercise in advanced pre-

dialysis chronic kidney disease. Nephrol. Dial. Transplant. 27, 997–1004.

doi: 10.1093/ndt/gfr364

Koufaki, P., Greenwood, S., Painter, P., and Mercer, T. (2015). The BASES expert

statement on exercise therapy for people with chronic kidney disease. J. Sports

Sci. 33, 1902–1907. doi: 10.1080/02640414.2015.1017733

Kouidi, E., Albani, M., Natsis, K., Megalopoulos, A., Gigis, P., Guiba-Tziampiri, O.,

et al. (1998). The effects of exercise training onmuscle atrophy in haemodialysis

patients. Nephrol. Dial. Transplant. 13, 685–699. doi: 10.1093/ndt/13.3.685

Louis, E., Raue, U., Yang, Y., Jemiolo, B., and Trappe, S. (2007). Time

course of proteolytic, cytokine, and myostatin gene expression after acute

exercise in human skeletal muscle. J. Appl. Physiol. 103, 1744–1751.

doi: 10.1152/japplphysiol.00679.2007

Mak, R. H., and Cheung, W. (2006). Energy homeostasis and

cachexia in chronic kidney disease. Pediatr. Nephrol. 21, 1807–1814.

doi: 10.1007/s00467-006-0194-3

Moinuddin, I., and Leehey, D. J. (2008). A comparison of aerobic exercise and

resistance training in patients with and without chronic kidney disease. Adv.

Chronic Kidney Dis. 15, 83–96. doi: 10.1053/j.ackd.2007.10.004

Morishita, S., Tsubaki, A., and Shirai, N. (2017). Physical function was related to

mortality in patients with chronic kidney disease and dialysis. Hemodial. Int.

doi: 10.1111/hdi.12564. [Epub ahead of print].

Mustata, S., Groeneveld, S., Davidson, W., Ford, G., Kiland, K., and Manns, B.

(2011). Effects of exercise training on physical impairment, arterial stiffness

and health-related quality of life in patients with chronic kidney disease: a pilot

study. Int. Urol. Nephrol. 43, 1133–1141. doi: 10.1007/s11255-010-9823-7

Nielsen, A. R., Mounier, R., Plomgaard, P., Mortensen, O. H., Penkowa, M.,

Speerschneider, T., et al. (2007). Expression of interleukin-15 in human skeletal

muscle effect of exercise and muscle fibre type composition. J. Physiol. 584(Pt

1), 305–312. doi: 10.1113/jphysiol.2007.139618

Pereira, R. A., Cordeiro, A. C., Avesani, C. M., Carrero, J. J., Lindholm, B., Amparo,

F. C., et al. (2015). Sarcopenia in chronic kidney disease on conservative

therapy: prevalence and association with mortality. Nephrol. Dial. Transplant.

30, 1718–1725. doi: 10.1093/ndt/gfv133

Philp, A., Hamilton, D. L., and Baar, K. (2011). Signals mediating skeletal

muscle remodeling by resistance exercise: PI3-kinase independent activation of

mTORC1. J. Appl. Physiol. 110, 561–568. doi: 10.1152/japplphysiol.00941.2010

Pillon, N. J., Bilan, P. J., Fink, L. N., and Klip, A. (2013). Cross-talk

between skeletal muscle and immune cells: muscle-derived mediators and

metabolic implications. Am. J. Physiol. Endocrinol. Metab. 304, E453–E465.

doi: 10.1152/ajpendo.00553.2012

Proud, C. G. (2015). Regulation and roles of elongation factor 2 kinase. Biochem.

Soc. Trans. 43, 328–332. doi: 10.1042/BST20140323

Quinn, L. S., Anderson, B. G., Drivdahl, R. H., Alvarez, B., and Argiles, J. M.

(2002). Overexpression of interleukin-15 induces skeletal muscle hypertrophy

in vitro: implications for treatment of muscle wasting disorders. Exp. Cell Res.

280, 55–63. doi: 10.1006/excr.2002.5624

Rundqvist, H. C., Lilja, M. R., Rooyackers, O., Odrzywol, K., Murray, J. T.,

Esbjornsson, M., et al. (2013). Nutrient ingestion increased mTOR signaling,

but not hVps34 activity in human skeletal muscle after sprint exercise. Physiol.

Rep. 1:e00076. doi: 10.1002/phy2.76

Sung, C. C., Hsu, Y. C., Chen, C. C., Lin, Y. F., and Wu, C. C. (2013). Oxidative

stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid.

Med. Cell. Longev. 2013:301982. doi: 10.1155/2013/301982

Thomas, S. S., Dong, Y., Zhang, L., and Mitch, W. E. (2013). Signal regulatory

protein-alpha interacts with the insulin receptor contributing to muscle

wasting in chronic kidney disease. Kidney Int. 84, 308–316. doi: 10.1038/ki.

2013.97

Verzola, D., Procopio, V., Sofia, A., Villaggio, B., Tarroni, A., Bonanni, A.,

et al. (2011). Apoptosis and myostatin mRNA are upregulated in the skeletal

muscle of patients with chronic kidney disease. Kidney Int. 79, 773–782.

doi: 10.1038/ki.2010.494

Viana, J. L., Kosmadakis, G. C., Watson, E. L., Bevington, A., Feehally, J., Bishop,

N. C., et al. (2014). Evidence for anti-inflammatory effects of exercise in CKD.

J. Am. Soc. Nephrol. 25, 2121–2130. doi: 10.1681/ASN.2013070702

Wagner, P. D., Masanes, F., Wagner, H., Sala, E., Miro, O., Campistol, J. M., et al.

(2001). Muscle angiogenic growth factor gene responses to exercise in chronic

renal failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R539–R546.

Available online at: http://ajpregu.physiology.org/content/281/2/R539

Wang, X. H., and Mitch, W. E. (2013). Muscle wasting from kidney failure-

a model for catabolic conditions. Int. J. Biochem. Cell Biol. 45, 2230–2238.

doi: 10.1016/j.biocel.2013.06.027

Wang, X. H., and Mitch, W. E. (2014). Mechanisms of muscle wasting in chronic

kidney disease. Nat. Rev. Nephrol. 10, 504–516. doi: 10.1038/nrneph.2014.112

Wang, X. H., Du, J., Klein, J. D., Bailey, J. L., and Mitch, W. E. (2009).

Exercise ameliorates chronic kidney disease-induced defects in muscle

protein metabolism and progenitor cell function. Kidney Int. 76, 751–759.

doi: 10.1038/ki.2009.260

Watson, E. L., Greening, N. J., Viana, J. L., Aulakh, J., Bodicoat, D. H., Barratt, J.,

et al. (2014). Progressive resistance exercise training in CKD: A feasibility study.

Am. J. Kidney Dis. 66, 249–257. doi: 10.1053/j.ajkd.2014.10.019

Workeneh, B. T., Rondon-Berrios, H., Zhang, L., Hu, Z., Ayehu, G., Ferrando,

A., et al. (2006). Development of a diagnostic method for detecting increased

Frontiers in Physiology | www.frontiersin.org 13 July 2017 | Volume 8 | Article 541

https://doi.org/10.1016/j.freeradbiomed.2007.02.001
https://doi.org/10.1111/nep.12285
https://doi.org/10.1152/ajpendo.90411.2008
https://doi.org/10.1164/rccm.201503-0535OC
https://doi.org/10.1053/j.ajkd.2014.07.015
https://doi.org/10.1097/SPC.0b013e32834bddf9
https://doi.org/10.1016/j.amjcard.2017.01.003
https://doi.org/10.1183/09031936.05.00053404
https://doi.org/10.1097/MNH.0000000000000165
https://doi.org/10.2215/CJN.10261013
https://doi.org/10.1053/j.ajkd.2011.10.008
https://doi.org/10.1084/jem.193.2.263
https://doi.org/10.1016/j.jbior.2014.04.003
https://doi.org/10.1681/ASN.2006070794
https://doi.org/10.1093/ndt/gfr364
https://doi.org/10.1080/02640414.2015.1017733
https://doi.org/10.1093/ndt/13.3.685
https://doi.org/10.1152/japplphysiol.00679.2007
https://doi.org/10.1007/s00467-006-0194-3
https://doi.org/10.1053/j.ackd.2007.10.004
https://doi.org/10.1111/hdi.12564
https://doi.org/10.1007/s11255-010-9823-7
https://doi.org/10.1113/jphysiol.2007.139618
https://doi.org/10.1093/ndt/gfv133
https://doi.org/10.1152/japplphysiol.00941.2010
https://doi.org/10.1152/ajpendo.00553.2012
https://doi.org/10.1042/BST20140323
https://doi.org/10.1006/excr.2002.5624
https://doi.org/10.1002/phy2.76
https://doi.org/10.1155/2013/301982
https://doi.org/10.1038/ki.2013.97
https://doi.org/10.1038/ki.2010.494
https://doi.org/10.1681/ASN.2013070702
http://ajpregu.physiology.org/content/281/2/R539
https://doi.org/10.1016/j.biocel.2013.06.027
https://doi.org/10.1038/nrneph.2014.112
https://doi.org/10.1038/ki.2009.260
https://doi.org/10.1053/j.ajkd.2014.10.019
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Watson et al. Molecular Response to Exercise in CKD

muscle protein degradation in patients with catabolic conditions. J. Am. Soc.

Nephrol. 17, 3233–3239. doi: 10.1681/ASN.2006020131

Yang, Y., Creer, A., Jemiolo, B., and Trappe, S. (2005). Time course of myogenic

and metabolic gene expression in response to acute exercise in human skeletal

muscle. J. Appl. Physiol. 98, 1745–1752. doi: 10.1152/japplphysiol.01185.2004

Zhang, L., Pan, J., Dong, Y., Tweardy, D. J., Dong, Y., Garibotto, G., et al. (2013).

Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of

muscle mass. Cell Metab. 18, 368–379. doi: 10.1016/j.cmet.2013.07.012

Zhou, X., Wang, J. L., Lu, J., Song, Y., Kwak, K. S., Jiao, Q., et al. (2010). Reversal of

cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged

survival. Cell 142, 531–543. doi: 10.1016/j.cell.2010.07.011

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Watson, Viana, Wimbury, Martin, Greening, Barratt and Smith.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physiology | www.frontiersin.org 14 July 2017 | Volume 8 | Article 541

https://doi.org/10.1681/ASN.2006020131
https://doi.org/10.1152/japplphysiol.01185.2004
https://doi.org/10.1016/j.cmet.2013.07.012
https://doi.org/10.1016/j.cell.2010.07.011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease
	Introduction
	Materials and Methods
	Patients
	Resistance Exercise Training
	Muscle Biopsy Sampling and Processing
	Western Blotting
	Quantitative RT-PCR
	Statistics

	Results
	Intramuscular Inflammatory and Oxidative Stress Response to Exercise
	Changes in Protein Expression Relating to Myogenesis
	Changes in Proteins Relating to Protein Synthesis
	Changes Relating to Markers of Protein Degradation

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


