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Efferent circuits within the nervous system carry nerve impulses from the central

nervous system to sensory end organs. Vestibular efferents originate in the brainstem

and terminate on hair cells and primary afferent fibers in the semicircular canals and

otolith organs within the inner ear. The function of this efferent vestibular system (EVS)

in vestibular and motor coordination though, has proven difficult to determine, and

remains under debate. We consider current literature that implicate corollary discharge

from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a

potential role in overall vestibular plasticity and compensation. Hypotheses range from

differentiating between passive and active movements at the level of vestibular afferents,

to EVS activation under specific behavioral and environmental contexts such as arousal,

predation, and locomotion. In this review, we summarize current knowledge of EVS

circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its

potential functional roles.

Keywords: efferent vestibular system, efferent vestibular nucleus, EVS, EVN, corollary discharge, VOR, vestibular,

vestibular plasticity

INTRODUCTION

The flow of information through the nervous system can be viewed as relatively simple. Sensory
stimuli from the external environment activates peripheral receptors and, in turn, sensory afferent
neurons. Alteration in firing patterns of sensory afferents encodes information used by the
central nervous system to modulate motor output. This linear description of nervous system
function is complicated by the central recruitment of efferent pathways, which innervate peripheral
sensors and modulate their activity. When considered in the context of sensory information,
efferent pathways provide the nervous system with the ability to adjust its own view of the
external environment. This type of efferent modulation is common in many vertebrate sensory
systems, some examples of which include olfactory efferents in the pigeon (Atoji and Wild, 2014),
somatosensory efferents in the rat (Zakiewicz et al., 2014), and retinal efferents in primates (Ortiz
et al., 2017).

A classic example of efferent modulation of sensory inflow can be found in the auditory system.
Auditory efferents (the olivocochlear system) have been implicated in noise protection, sound
localization, and the ability to discriminate signal from background noise (Kawase and Liberman,
1993; Kawase et al., 1993; Guinan, 2006, 2010; Ciuman, 2010). This latter function of signal
extraction could be used as a means of filtering self-generated sounds (Tomchik and Lu, 2006).
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For example, the medial olivocochlear bundle (MOC) has
been shown to restore the dynamic range (cochlear gain) and
ensuing signal responsiveness of the auditory nerve (Giraud
et al., 1997; Liberman and Guinan, 1998), probably in a context
dependentmanner (for example during attention and experience;
de Boer et al., 2012), or in accordance with signals generated
from cortical (auditory) regions (Xiao and Suga, 2002). This
“anti-masking” hypothesis effectively enhances the perception
of noise, for example from self-generated sound, in a noisy
environment (for review, see Guinan, 2006). Other efferent
systems exist in the somatosensory system, where feedback
from muscle spindles can be modulated by Gamma (fusimotor)
motor neurons. This efferent projection may sensitize primary
afferents to detect changes in muscle length, as well as
deviations from intended movement, and extend the dynamic
range of spindle responses (Burke et al., 1979; Ellaway et al.,
2015).

In general, efferent neurons are reasonably well characterized
in terms of their anatomy, physiology, and molecular properties,
and most efferent systems have at least a putative function
ascribed to them. The efferent vestibular system (EVS) however
has consistently received less attention, and as such, its direct
function has been difficult to define. The potential functional
significance of the EVS is underscored by the fact that all
vertebrates possess some form of a vestibular efferent system
(Meredith, 1988). However, despite previous physiological and
anatomical studies a conclusive functional role in mammals
remains unclear. Here, we briefly summarize current knowledge
concerning the anatomy, pharmacology, and physiological
actions of the EVS. The main purpose of this publication is
however to discuss potential mammalian functional roles within
sensorimotor circuits, brought about by a review of relevant
literature, with a particular focus on recent work. Although
this review focuses on labyrinth efferents, lateral line efferents
are also indirectly addressed when considering non-mammalian
species, particularly given evidence for common lateral line
and labyrinth efferents in the frog (see Hellmann and Fritzsch,
1996).

ANATOMY AND MORPHOLOGY OF THE
EVS ACROSS VERTEBRATES

The vestibular labyrinth provides the nervous system with
information regarding head and body movement in space. This
sensory information plays a critical role in our ability to interact
with the environment through our capacity for coordinated
motor actions, maintenance of balance, and spatial navigation.
Briefly, the vestibular component of this process includes the
generation of the initial movement signal by the activation of hair
cells in the semicircular canals and/or otolith organs in the inner
ear, and reaches the brain via primary sensory afferents. Efferent
projections arise from the brainstem and project to the periphery,
forming synapses with vestibular hair cells and afferents. For a
detailed review of this neuroanatomical organization including
cell body and dendritic morphology, axonal pathways to the

periphery, and peripheral branching patterns, see Holt et al.
(2011).

As mentioned above, all vertebrates possess some form of
a vestibular efferent system (Meredith, 1988; Highstein, 1991),
central neurons of which derive from a similar developmental
origin (for example rhombomere 4 in mice, and 4 and 5 in
chicken; see Hellmann and Fritzsch, 1996). In mice, efferent
vestibular nucleus (EVN) neurons express high levels of the
transcription factors Gata2 and Gata3 (Tiveron et al., 2003).
Knockout of Hoxb1 (which controls the expression of Gata2 and
Gata3) prevents the development of EVN neurons, along with
populations of spinally projecting cells in the medial and lateral
vestibular nuclei (Di Bonito et al., 2015).

The position of efferent vestibular neurons within their final
brainstem nuclei is remarkably conserved across species. This
conservation of both system and anatomical localization hints
toward a common function of this circuit. However, there
appears to be three main phylogenetic modifications of the EVN
as we transition fromnon-mammalian tomammalian vertebrates
(summarized in Figure 1).

Cell Body Clustering
In non-mammalian vertebrates efferent neurons are confined to a
single cluster (Claas et al., 1981; Eden and Correia, 1981; Fritzsch,
1981; Strutz, 1981, 1982a; Strutz and Schmidt, 1982; Fritzsch
and Crapon de Caprona, 1984; Pellegrini et al., 1985; Highstein
and Baker, 1986; Meredith and Roberts, 1987; Barbas-Henry and
Lohman, 1988; Fritzsch et al., 1989; Koyama et al., 1989; Birinyi
et al., 2001). However, the mammalian EVS can possess multiple
groups, dependent on species. Mouse and cat have only one
cluster of EVN neurons, located near the facial nerve genu (Warr,
1975; Leijon and Magnusson, 2014; Mathews et al., 2015). In
other mammalian studies, more than one cluster was observed
with themajor nucleus being referred to as group e (Goldberg and
Fernàndez, 1980), located dorsal and/or ventral to the facial nerve
(Shumilina et al., 1986; Perachio and Kevetter, 1989). Smaller
clusters are scattered in the caudal pontine reticular nucleus and
the medial reticular nucleus (Strutz, 1982a,b). Interestingly, in
the chinchilla, three anatomically distinct groups near the facial
nerve, abducens nerve, and vestibular nuclei were distinguished
(Marco et al., 1993; Lysakowski and Singer, 2000), though the
cluster ventral to the facial nerve likely reflects projections to
the middle ear rather than the peripheral vestibular labyrinth
(Lysakowski and Singer, 2000).

Peripheral Innervation Pattern
The mammalian EVN projects bilaterally in the chinchilla
(Marco et al., 1993; Lysakowski and Singer, 2000), guinea
pig (Strutz, 1982a,b; Shumilina et al., 1986), squirrel monkey
(Goldberg and Fernàndez, 1980), marmoset (Strutz, 1982a),
gerbil (Perachio and Kevetter, 1989), and cat (Warr, 1975). Non-
mammalian vertebrates on the other hand have a heterogeneous
projection profile. For example, the oyster toadfish (Highstein
and Baker, 1986), pigeon (Eden and Correia, 1981), chicken
(Strutz and Schmidt, 1982), salamander (Claas et al., 1981;
Fritzsch, 1981), lizard (Barbas-Henry and Lohman, 1988), eel
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FIGURE 1 | Anatomy and morphology of the EVS across vertebrates. Studies that directly investigated EVS anatomy and morphology were separated under the

following categories—cell body clustering, innervation pattern, and dendritic arborization. Studies that assessed more than one category are mentioned in each

respective category they investigated. Where more than one cell body cluster was observed, the number of clusters is labeled and depicted with the respective

number of blue pictorial clusters. Asterisk next to Lysakowski and Singer (2000) denotes one cluster likely projecting to middle ear instead of peripheral vestibular

labyrinth. Uni- and bi-lateral projections are also labeled and depicted with pink lines from a coronal brainstem schematic out towards the inner ear (drawings not to

scale). Only one bilateral projection is drawn for Meredith and Roberts (1987) eel as they denoted it as a minor finding. Expansive green lines along the brainstem

tegmentum denote widespread arborization of dendrites, and shorter green lines depict restricted arborization, as labeled. Non-mammalian species included all

animals groups not classified as mammals.
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(Meredith and Roberts, 1987), and frog (Myers et al., 1997),
project bilaterally, while the spectacled caiman (Strutz, 1981),
toad (Pellegrini et al., 1985), poeciliidae (fish) (Claas et al., 1981),
lamprey (Fritzsch et al., 1989), and the amphibian gymnophion
(Fritzsch and Crapon de Caprona, 1984) project unilaterally. The
functional reasons why mammalian (and some non-mammalian
vertebrate) neurons require the ability to modulate vestibular
input bilaterally though is unclear.

Dendritic Arborization
Dendritic arbors of efferent neurons are spread out across the
brainstem tegmentum, and also cross to the contralateral side
in animals such as the lamprey, toadfish, eel, salamander, and
amphibian (Fritzsch, 1981; Fritzsch and Crapon de Caprona,
1984; Highstein and Baker, 1986; Meredith and Roberts, 1987;
Fritzsch et al., 1989). In the lamprey and other non-mammalian
vertebrates, this widespread arborization could serve as a means
of obtaining information from both the ipsi- and contralateral
CNS that can then be used to modulate peripheral action
bilaterally despite unilateral efferent projection. This mechanism
could reflect an early approach to bilateral efferent modulation
given the phylogenetic age of the lamprey that precedesmammals
(Neidert et al., 2001). In chinchilla however, their dendritic
arbors are significantly more compact (Lysakowski and Singer,
2000). The relatively sparse studies of dendritic arborization in
different species though make it difficult to extrapolate whether
this reduction in arborization is ubiquitous. This information is
useful though, because dendritic patterns and arbor could reflect
specific transcription factors, cell surface receptors, various
cytoskeletal elements and pathways, as well as interactions
between synaptically connected neurons (reviewed in Jan and
Jan, 2010).

VESTIBULAR AFFERENT AND HAIR CELL
RESPONSES TO EVS ACTIVATION

Below, the literature concerning how primary vestibular afferents
and hair cells respond to vestibular efferent activation is
summarized (see also Figure 2).

A majority of non-mammalian, and all mammalian
vertebrates (i.e., fish and mammals, respectively) demonstrate
increases in background afferent discharge in response to
stimulation of the efferent pathway. These effects are particularly
pronounced in irregularly firing afferents and may result
in a concomitant reduction in sensitivity or gain (Goldberg
and Fernàndez, 1980; Highstein and Baker, 1985; Boyle and
Highstein, 1990; Boyle et al., 1991, 2009; McCue and Guinan,
1994; Marlinski et al., 2004; Sadeghi et al., 2009; Rabbitt
et al., 2010), similar to gain control mechanisms observed in
other efferent systems including the MOC described above
(see Introduction). While the predominant effect is afferent
excitation in these animals, Goldberg and Fernàndez (1980)
also observed inhibitory responses in three afferent fibers in the
squirrel monkey. Although this recording represented <1% of
their total recordings, it may hint toward heterogeneity of EVN

cell types, particularly since heterogeneity of afferent response to
EVS activation is found in other species.

Other such species where heterogeneous afferent responses
were found include red-eared turtles and amphibians, where
both excitatory and inhibitory afferent responses were routinely
observed; suggesting that the reduced number of inhibitory
responses found in mammals may represent an evolutionary
modification. It is notable that these responses were dependent
on the location of the afferent fiber within the crista (Rossi
et al., 1980; Bernard et al., 1985; Valli et al., 1986; Sugai et al.,
1991; Brichta and Goldberg, 2000; Holt et al., 2006). In the
frog, ipsilateral efferent-mediated effects were predominantly
excitatory (92% of recordings), while contralateral efferent-
mediated effects were inhibitory (95% of recordings; Myers et al.,
1997). Moreover, this efferent-mediated afferent inhibition is
dependent on the release of acetylcholine (ACh) at efferent
post-synaptic terminals (Rossi et al., 1980), the application of
which at the vestibular labyrinth mimics stimulation of the
efferent fibers and produces both inhibitory and excitatory effects
on afferent fibers (Guth et al., 1986; Norris et al., 1988; Holt
et al., 2003), though inhibition was predominant in saccular
afferents while excitation was predominant in semicircular
canal afferents (Guth et al., 1994; Perin et al., 1998; Holt
et al., 2001, 2003). Interestingly, efferent activation induces
larger excitation responses in irregular, than regularly firing
afferents (Marlinski et al., 2004), that can be decomposed
into fast (10–100ms kinetics), and slow (declines over several
seconds following an initial build) components (Goldberg and
Fernàndez, 1980; Brichta and Goldberg, 2000). Further, in
goldfish excitatory afferent post-synaptic potentials (EPSPs) were
shown to be abolished (Furukawa, 1981), and semicircular
canal afferent discharges were tonically inhibited (Hartmann and
Klinke, 1980) following efferent stimulation, suggesting that at
least in some species inhibition predominates central-peripheral
synaptic transmission.

Despite a relative scarcity of direct hair cell recordings, there
is a general consensus that vestibular efferent stimulation elicits
inhibition in target hair cells (Sugai et al., 1992; Boyle et al.,
2009; Castellano-Munoz et al., 2010; Rabbitt et al., 2010). This
is surprising particularly because excitation has been observed
in a minority of hair cells (Castellano-Munoz et al., 2010),
and efferent projections are extremely divergent to both hair
cells and afferents (Goldberg et al., 1990; Lysakowski and
Goldberg, 1997). Moreover, application of cholinergic agonists
and antagonists that activated mAChRs or nAChRs on vestibular
hair cells produced excitatory and inhibitory effects on the
membrane potential in the pigeon (Li and Correia, 2011).
Cholinergic excitation was also observed in the frog (Housley
et al., 1990; Holt et al., 2003). Nonetheless, this consensus
presumably stems from the neurotransmitter and receptor
composition used by the EVS (for a detailed review of EVN
neurotransmitter profile, see Holt et al., 2011). In particular,
there is ample evidence for the presence of acetylcholine in
EVN neurons (Schwarz et al., 1986; Perachio and Kevetter,
1989; Ishiyama et al., 1994), as well as in the terminals in
the sensory epithelium of vestibular end organs (Hilding and
Wersall, 1962; Kong et al., 1994; Matsuda, 1996). The release of
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FIGURE 2 | Responses of primary vestibular afferents and hair cells to EVS activation and ACh application. Studies that electrically activated the EVS (i.e., efferent

fibers at the level of the vestibular nerve or the EVN itself), or applied acetylcholine (ACh) at the vestibular labyrinth, before measuring the responses of vestibular hair

cells or primary afferents were included in this Figure. They were categorized along the vertebrate scale, whether they measured vestibular hair cell or afferent

responses, and the nature of the response itself. Asterisk denotes papers where excitation or inhibition was stated by the authors as a minor response subset. As

labeled in this Figure, calyx and boutons endings of primary vestibular afferents are drawn in purple, while type I and II hair cells are drawn in yellow and red. These

simplified illustrations do not represent the anatomical differences between species; instead reflect general peripheral targets (i.e., hair cells or primary afferents).
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ACh, and activation of nicotinic ACh receptors at the efferent
synapse produces inhibitory post-synaptic potentials in hair cells
of the inner ear and cochlea (Art et al., 1984; Sugai et al.,
1992; Elgoyhen et al., 1994, 2001; Goutman et al., 2005). As
previously described though, ACh has also been implicated in
excitatory (Rossi et al., 1980; Bernard et al., 1985; Sugai et al.,
1991; Holt et al., 2015), as well as inhibitory (Holt et al.,
2001, 2006) responses evoked in vestibular afferents by efferent
stimulation.

There is evidence that this heterogeneity of afferent and
hair cell responses by efferent stimulation across species is
related to distinct post-synaptic cholinergic receptors at efferent
synapses (for a detailed review, see Jordan et al., 2013). For
example, efferent-mediated activation of α9/10 nicotinic ACh
receptors (nAChR) in type II hair cells underlies their inhibition
(Elgoyhen et al., 1994, 2001; Oliver et al., 2000; Weisstaub et al.,
2002), while α6β2 nAChRs have been implicated in afferent
excitation (Holt et al., 2015). Moreover, the kinetics of slow
afferent excitation suggests that muscarinic AChRs (mAChRs)
mediate this response (reviewed in Jordan et al., 2013). Indeed
recent work in turtles demonstrated mAChR activation during
efferent-mediated slow excitatory responses of primary vestibular
afferents (Holt et al., 2017).

Establishing a neurotransmitter and receptor profile for the
EVN is helpful in formulating an improved understanding of its
function. EVN neurons are generally accepted to be cholinergic
but also express calcitonin gene-related peptide (CGRP; Perachio
and Kevetter, 1989; Tanaka et al., 1989; Ohno et al., 1991;
Wackym et al., 1991). Substances commonly co-expressed in
cholinergic neurons, or those that parallel auditory efferents may
also be present in EVN neurons. For example, adenosine 5′-
triphosphate (ATP) which is commonly released together with
ACh, noradrenaline, dopamine (DA) and GABA (Abbracchio
et al., 2009), has also been shown to depolarize vestibular hair
cells (Rennie and Ashmore, 1993; Aubert et al., 1994, 1995; Rossi
et al., 1994). Likewise, neuronal nitric oxide synthase (nNOS) that
synthesizes nitric oxide has been localized in EVN neurons as
well as their terminals within the end organs (Lysakowski and
Singer, 2000; Takumida and Anniko, 2002; Desai et al., 2005).
Opioid receptors have also been implicated in excitatory post-
synaptic input to vestibular afferents (Andrianov and Ryzhova,
1999; Vega and Soto, 2003) and inhibitory pre-synaptic input to
hair cells (Vega and Soto, 2003). Together, these studies highlight
the complexity of central-peripheral vestibular interactions and
again hint at diversity in functional output of the EVS both within
and across species.

PHYSIOLOGY OF EVN NEURONS

To date, few studies have directly recorded from neurons
within the EVN either in vitro or in vivo. Marlinsky (1995)
recorded the extracellular discharge activity of EVN neurons
in response to semicircular canal stimulation as well as
from their neighboring medial vestibular nucleus (MVN)
neurons in decerebrate and decerebellate guinea-pigs. Paralleling
MVN neuron responses, a majority of EVN neurons were

antidromically excited by ipsilateral but not contralateral
canal stimulation, suggesting direct vestibular afferent input
(Marlinsky, 1995). A minor subset of EVN neurons also
responded with an increased activity to contralateral canal
stimulation and contralateral tilt, which was also observed in
recordedMVN neurons (Marlinsky, 1995). Importantly, neurons
were classified as vestibular efferents if they were antidromically
excited following electrical stimulation of the anterior semi-
circular canal, while cells that were monosynaptically activated
were classified as MVN neurons. Although, this study implicates
the EVN in mediating changes to contralateral vestibular nuclei
interactions that occur at the level of peripheral sensors, the
classification of recorded neurons was not conclusive (for
example, retrograde staining of recorded neurons was not
performed to confirm their locations), and therefore provides
a caveat to their results. However, in addition to canal
stimulation, a significant increase in the discharge rate of
40% of peripheral efferent fibers was observed in response
to sciatic nerve stimulation in the frog (Caston and Bricout-
Berthout, 1984), suggesting that the function of the EVN
may be linked to the spinal circuits underlying locomotion, a
potential functional role elaborated further in Section The EVS
Signals Corollary Discharge between Vestibular and Other CNS
Structures.

More recent work has investigated the physiological
characteristics of EVN neurons including passive membrane
properties, discharge profiles, and synaptic input profile.
Cholinergic EVN neurons were identified in one study
using transgenic mice engineered to express enhanced green
fluorescent protein (eGFP) under the choline-acetyltransferase
(ChAT) promotor (Leijon and Magnusson, 2014). In another
study, the location of EVN neuronal recordings were confirmed
using retrograde tracing from the posterior semicircular canal
in ChAT:: tdTomato transgenic mice which confirmed the
location of cholinergic EVN neurons, and the staining of
each recorded neuron (Mathews et al., 2015). Both studies
were conducted in vitro. EVN neurons displayed a negative
membrane potential and characteristic firing pattern (Leijon
and Magnusson, 2014; Mathews et al., 2015), that appear to be
mediated by fast transient outward K+ currents (IA) (Leijon and
Magnusson, 2014). EVN neurons demonstrated two discharge
profiles at rest—spontaneous and non-spontaneously active
(Highstein and Baker, 1985; Mathews et al., 2015), perhaps
indicating a neuronal heterogeneity within the EVN. When
compared to lateral olivocochlear (LOC) neurons (as recorded
in Leijon and Magnusson, 2014)—typified with a long first
spike latency followed by tonic firing—vestibular efferent
neurons displayed onset burst spiking followed by sparse firing
(Leijon and Magnusson, 2014; Mathews et al., 2015), indicating
distinct functional roles of both inner-ear projecting brainstem
nuclei. However, the discharge profile of these EVN neurons
bears a striking resemblance to earlier electrophysiological
recordings of rat LOC neurons in response to depolarising
current steps from a hyperpolarized membrane potential (Fujino
et al., 1997). If these nuclei share similar firing patterns, it
could suggest a common functional role. For example, in
mice where the LOC system was lesioned, sound localization
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in space was impaired indicating a role for the LOC system
in balancing interaural cues (Darrow et al., 2006). Given the
ipsilateral and contralateral projection patterns of the EVN (see
Figure 1) a similar function in balancing vestibular asymmetries
may also be important for modulating bilateral vestibular
sensitivity.

Neighboring brainstem MVN neurons on the other
hand have been characterized by tonic discharge (Beraneck
et al., 2003; Camp et al., 2006, 2010), known to code for
intensity of inputs. Burst firing similar to that seen in
the EVN has previously been demonstrated to serve as a
“wake-up” call during dormancy in response to novel stimuli—
it has been suggested to be advantageous in improving
stimulus detectability and enhancing cortical activation
(Weyand et al., 2001; Sherman, 2005; Llinas and Steriade,
2006). It is plausible for EVN neurons to generate short
bursts in response to various synaptic inputs that serve to
modulate peripheral targets, and thus aid in quick vestibular
accommodation.

EVN neurons also demonstrate a high gain, or sensitivity to
inputs, when compared with MVN neurons (Mathews et al.,
2015)—they appear better suited to responding rapidly to
changes in synaptic strength (i.e., inputs). But what drives
EVN activation? It appears that individual EVN neurons receive
exclusively excitatory or inhibitory inputs, or a combination of
both (mixed), although excitatory inputs predominate (Mathews
et al., 2015). This suggests that the homogenous output of EVN
neurons is governed by an excitatory drive from other parts
of the CNS, at least in mice in vitro. While the afferent input
system demonstrates properties consistent with a feedback loop
(Plotnik et al., 2005), other direct connections to the EVN have
yet to be identified. A study that exploited pseudorabies virus
to trace polysynaptic inputs uncovered inputs from autonomic
centers including the hypothalamus, reticular formation, solitary
nucleus, raphe nucleus, as well as from other vestibular nuclei
and areas in the motor cortex (Metts et al., 2006). Establishing
a map of direct monosynaptic partners of the EVN could
shed light on the context in which this nucleus is activated
as well as its role in the central processing of balance and
coordination.

FUNCTIONAL ROLE/S OF THE EVS

The first studies of the vestibular efferent system began in
the 1960s, but despite over 50 years worth of physiological
recordings, anatomy, and pharmacology, its mammalian
functional role remains contentious. There are several broad,
and in many cases overlapping hypotheses based on the
fundamental vestibular efferent action of modulating hair cell
and primary sensory afferent firing. These broad hypotheses are
described below, and include:

(i) Differentiation of active and passive movements
(ii) Context dependent modulation of vestibular sensitivity
(iii) Top-down modulation of vestibular sensitivity
(iv) Efference copies of spinal motor commands
(v) Participation in vestibular plasticity.

The EVS Differentiates Between Active and
Passive Motion
One of the most popular suggestions surrounding EVS function
concerns the neural anticipation of volitional head movements.
It is understood that EVN neurons receive inputs and respond to
activation from semicircular canals (Schmidt, 1963; Precht et al.,
1971; Blanks and Precht, 1976), and otolith organs (Klinke and
Schmidt, 1968) from both ears. Efferent activation of afferent
fibers is non-uniform across vestibular end-organs (Plotnik et al.,
2002), and relative to afferent sensitivity (Highstein, 1992)—
such that low-gain afferents are minimally affected while high-
gain afferents are profoundly affected. This differential activation
of afferents that is specific to the context could potentially
contribute to the mechanisms used to differentiate the responses
(e.g., occulomotor) to volitional vs. passively-applied movement.

Indeed, an attractive early hypothesis implicated the EVS in
anticipation of volitional head movement and ensuing gaze shift,
by improving the dynamic range of primary vestibular afferents
(Goldberg and Fernàndez, 1980; Highstein, 1991; Brichta and
Goldberg, 2000). However, no changes were found in the resting
discharge of afferent fibers between passive, and active head
and eye movements in alert macaques under normal conditions
(Cullen and Minor, 2002) or after labyrinthectomy (Sadeghi
et al., 2007). For example, extracellular, single-unit semicircular
canal afferent recordings were comparable during passive head
rotations, as well as during volitional (including gaze shift
and pursuit) movements (Cullen and Minor, 2002). This has
also been demonstrated for passive and active linear head
movements (Jamali et al., 2009). Moreover, following unilateral
labyrinthectomy (UL), no differences were observed in canal
afferent sensitivity or phase—suggesting that they do not play
a role is vestibular compensation following labyrinthectomy
(Sadeghi et al., 2007). This role of the EVS in vestibular plasticity
and compensation is discussed in Section The Role of the
EVS in Vestibular Plasticity. Notably though, UL in macaques
resulted in a decrease in the proportion of regular and increase
in the proportion of irregular afferent fibers (Sadeghi et al.,
2007; Yu et al., 2014), while in contrast α9-knockout mice
displayed an increase in the proportion of regular and decrease
in the proportion of irregular afferent fibers (Han et al., 2007).
Therefore, it is plausible that the lack of change in sensitivity
during compensation observed by Sadeghi et al. (2007) could in
fact bemasked by changes in the distribution of afferent discharge
properties following UL. Overall, it appears that the EVS serves
a more complex role in motor and postural coordination
than simply coding active vs. passive head movements, which
represents only one example of context dependent modulation
of peripheral vestibular sensitivity.

The EVS Modulates Vestibular Sensitivity in
a Context Dependent Manner
Previous work has shown that vestibular reflexes can be altered
depending on environmental or behavioral context, such as
during a perceived threat to balance (Lim et al., 2016; Naranjo
et al., 2016). Pressure applied to skin, passive limb movement,
visual stimulation, as well as states of arousal and predation
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have all been demonstrated to activate the EVS (Schmidt, 1963;
Klinke, 1970; Precht et al., 1971; Highstein and Baker, 1985;
Highstein, 1992). For example, Highstein (1992) showed that
efferent neurons display a low (4–5 spikes/second), irregular
discharge frequency when the animal is at rest. Multimodal
stimulation including light touch, sound, visual stimuli as well
as vestibular sensation effectively increased efferent discharge
(Highstein and Baker, 1985; Highstein, 1992), however response
decay times varied between 100 and 600ms (Highstein and
Baker, 1985). This efferent “activation” was accompanied by
a proportionally increased level of animal arousal (Highstein,
1992). Locomotor activity could underlie the described efferent
activation under different stimuli and interestingly, a recent
study using tadpoles (Chagnaud et al., 2015) implicated the EVS
in corollary discharge from locomotion. However, given that
the oyster toadfish preparations were spinalized, this cannot be
inferred directly from this work. Highstein (1992) also supports
the hypothesis that efferent activation could serve as a “wake up
call” (see Section Physiology of EVNNeurons)—increasing firing
in neurons sequentially associated with vestibular processing. In
addition, electrical activation of vestibular efferents results in
behavior typical of aroused free-swimming toadfish (Highstein,
1992). These studies highlight the idea that the EVS is activated
under a diverse suite of contexts and an understanding of these
contexts will be informative for understanding specific functional
roles of the EVS.

If vestibular efferents are activated following both vestibular
and non-vestibular stimulation, it is interesting to speculate
whether the EVN could influence or be influenced by other
systems implicated in vestibular labyrinth activity, such as during
vestibular control of sympathetic responses. When compared
with other sensors, central processing of vestibular information
is profoundly convergent, with vestibular nuclei receiving inputs
from an array of cortical, cerebellar, and brainstem structures
(reviewed in Cullen and Roy, 2004). In fact, the EVN receives
polysynaptic innervation by autonomic centers including the
hypothalamus, reticular formation, solitary nucleus, and raphe
nucleus (Metts et al., 2006). Although, work is yet to explicitly
consider the role of the EVN in sympathetic responses, its
participation or influence remains plausible, particularly given
vestibular involvement in the vestibulo-sympathetic pathway
(Holstein et al., 2014, 2016). Indeed, vestibular activation has
been shown to alter sympathetic efferent discharge arising from
the thoracic spinal cord (Ray et al., 1997; Kerman et al., 2000;
Zakir et al., 2000; Voustianiouk et al., 2006). As well, there is
convincing evidence for vestibular participation in compensating
for posture-related blood pressure changes in cats and humans
(Yates and Miller, 1994; Kaufmann et al., 2002; Voustianiouk
et al., 2006), which is likely via vestibular output to the
diencephalon (Matsuda et al., 2004). In mice where auditory and
vestibular hair cells failed to differentiate, normal physiological
responses to hypergravtiy were absent (Murakami et al., 2002).
This may implicate a role for vestibular hair cells as primary
regulators of autonomic responses to elevated gravity levels.
Given hair cell and afferent responses to EVS activation (see
Section Vestibular Afferent and Hair Cell Responses to EVS
Activation), and the extensive innervation of these end organs by

the EVN neurons, it remains plausible that the EVS is not only
activated but also functions in maintaining and regulating these
reflexes.

Indeed, recent work has implicated central vestibular nuclei
in the vestibulo-sympathetic pathway and reflex. Particularly,
direct connections were shown between caudal vestibular nuclei,
and the caudal and rostral ventrolateral medulla (Holstein
et al., 2011), which partakes in vestibular-related blood pressure
changes (Yates and Bronstein, 2005). Spinal, medial, and superior
vestibular nuclei were also activated in response to sinusoidally-
modulated galvanic vestibular stimulation that modulated blood
pressure (Holstein et al., 2012). More recent work identified
central vestibular nuclei participation in sympathetic blood
pressure changes, but interestingly found no participation of
the efferent vestibular pathway during the vestibuolosympathetic
reflex (Holstein et al., 2014, 2016). Given that polysynaptic
connections to the EVN were identified with autonomic centers
such as the hypothalamus (Metts et al., 2006), it remains plausible
that the EVS contributes to other sympathetic activities.

Involvement of the EVS in Top-Down
Modulation of Vestibular Sensitivity
Most hypotheses regarding EVS function are concerned with
the modulation of afferent discharge on a short time scale—that
is, to modulate incoming afferent discharge for quick vestibular
accommodation. Early reports of excited efferents and afferents
during states of arousal in the oyster toadfish support this
suggestion (Highstein and Baker, 1985; Boyle and Highstein,
1990). To implicate vestibular efferents in afferent discharge,
Plotnik et al. (2002) obtained efferent-mediated responses by
adjusting the head position of decerebrate and anesthetized
chinchillas such that the innervated semicircular canal was
placed at near right angles to the plane of motion, so that
conventional rotational responses of vestibular afferent fibers
were nulled (Plotnik et al., 2002). Unlike the variety of responses
previously observed in semicircular canal afferents of decerebrate
pigeons to contralateral canal stimulation (Dickman and Correia,
1993), the responses here were solely excitatory, and also
considerably larger in irregular firing afferents in decerebrate
when compared with anesthetized chinchilla (Plotnik et al.,
2002). These type III responses (i.e., bidirectional excitatory
rotational responses) resembled those obtained from electrical
stimulation of efferent pathways and were abolished following
vestibular nerve sectioning (Plotnik et al., 2002). In addition to
these efferent-mediated rotational responses, Plotnik et al. (2005)
also observed periodic fluctuations (up to 300 spikes/s) in the
background discharge of irregular afferent fibers. The amplitude
of fluctuations positively correlated to the size of individual
afferent type III efferent-mediated rotational responses (Plotnik
et al., 2002, 2005), hinting at an excitatory feed-forward
positive feedback loop (Plotnik et al., 2005). Importantly, these
fluctuations are not observed in alert-behaving animals (Louie
and Kimm, 1976; Sadeghi et al., 2007, 2009). Nonetheless,
efferent-mediated afferent rotational responses were indeed
recorded in alert monkeys, but were typically small in irregular
fibers, suggesting that vestibular efferents weakly act upon
afferent discharge in the absence of high frequency shock trains
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(Sadeghi et al., 2009). Given the mutual excitation of afferents
and efferents, these findings support a positive feedback loop. It
is possible that this loop is mediated and modulated by higher
centers and/or other systems to generate motor and vestibular
coordination (for review, see Holt et al., 2011).

The EVS in the CNS could also serve in an auto-regulatory role
with peripheral vestibular receptors, further giving merit to the
suggestion of a feedback loop. A system of vestibular sensory auto
regulation, which involves central and peripheral mechanisms,
exists (Fitzpatrick andWatson, 2015). In healthy human subjects,
vestibular perceptual and balance responses [assessed via galvanic
vestibular simulation (GVS)] were measured before and after
10min of imposed canal conditioning (stochastic yaw rotation)
to explore central auto regulation of vestibular afferent activity
during ambient motion (Fitzpatrick and Watson, 2015). The
conditioning attenuated both reflexive and perceptual vestibular
responses, while the threshold for detecting the imposed stimulus
more than doubled and remained elevated for 30min. Given
the anatomical outlay of the EVS, that is the pre- and post-
synaptic connections made with primary vestibular afferents,
as well as receiving dendritic inputs from other vestibular
nuclei and other sensory centers (Metts et al., 2006), Fitzpatrick
and Watson (2015) implicate vestibular efferents in this auto
regulation. Although, this functional hypothesis is in line with
a feedback loop with vestibular afferents, there remains no direct
connection. As well, these changes could occur at any stage of
vestibular circuitry, be it central or peripheral.

The EVS Signals Corollary Discharge
between Vestibular and Other CNS
Structures
The vestibular system is continuously bombarded with altering
stimulus amplitudes and frequencies that it decomposes for
use in orientation, posture, and spatial navigation (Straka and
Dieringer, 2004; Angelaki and Cullen, 2008). In addition, active
movement generates sensory reafference that can interfere with
original extrinsic exafference signal transduction (Cullen, 2004;
Cullen et al., 2011). The vestibular system as a whole therefore
requires an adaptable neural processing circuitry to ensure the
optimization and accuracy of mechanosensory signal detection
and interpretation during motion (Carriot et al., 2014). A model
that adaptively adjusts for this sensory encoding is corollary
discharge, or efference copy, of the motor command (von Holst
and Mittelstaedt, 1950). They serve to inform associated brain
regions of impending movements and generate the expected
sensory outcomes for overall sensorimotor transformation
(Crapse and Sommer, 2008; Sommer and Wurtz, 2008). In
context of vestibular coordination, efference copy signals are
in a perfect position to influence the continuous fluctuations
of vestibular signaling, both peripherally and centrally, and
comply with the multimodal nature of the vestibular system.
The EVS may behave as a conduit for corollary discharge
and communications between other CNS structures (e.g., the
cerebellum and/or the spinal cord) and the vestibular system.

To date, only one study has linked corollary discharge signals
from the central pattern generator (CPG) circuitry in the spinal

cord to vestibular efferent neurons, albeit in amphibians. In larva
Xenopus frogs, Chagnaud et al. (2015) found evidence for EVN
neuronal transmission of frequency, duration and amplitude
components of locomotor CPG output to vestibular afferents, to
attenuate their stimulus encoding during self-motion, by using
semi-isolated in vitro preparations (Chagnaud et al., 2015). They
showed that central anterior and posterior vestibular nerve (AVN
and PVN, respectively) fibers are phase-coupled with ipsilateral
spinal ventral roots, and out-of-phase with contralateral spinal
ventral root discharge. By comparing the activity between fibers
in the central and peripheral aspects of the vestibular nerve
during fictive swimming (the tadpole correlate for tail-based
swimming), Chagnaud et al. (2015) demonstrate that EVN fibers,
and not neighboring afferent fibers, are indeed active during,
and are rhythmically coupled with locomotion. Combined Ca2+

imaging and electrophysiological recordings of efferent activity
during spinal CPG activity, showed similar Ca2+ dynamics in all
recorded efferent neurons suggesting that all neurons participate
in conveying locomotor corollary discharge to the periphery.
Stepwise removal of spinal cord segments found that corollary
discharge information originates from rostral spinal segments,
but alteration in firing patterns and exclusive ipsilateral coupling
following hemisection at the level of the obex, excluded input
from the reticular formation. Although, earlier work in mice
showed dendritic inputs from the reticular formation to the
EVN (Metts et al., 2006). Presumably this is the result of species
differentiation (amphibians and mammals), the polysynaptic
nature of the viral tracing, or could a reflection of ipsilateral
connections.

Moreover, paired recordings of afferent fibers during fictive
swimming and rotational stimuli revealed a relationship between
efferent firing and afferent encoding. Interestingly, the authors
observed an ∼45% diminished peak-to-peak amplitude of
dischargemodulation during locomotor CPG activity than before
locomotion in vestibular afferent fibers, suggesting a considerable
attenuation of their gain during locomotion. This work suggests
that locomotor corollary discharge is delivered via vestibular
efferents to the periphery in order to attenuate the sensitivity of
stimulus encoding during self-motion (Chagnaud et al., 2015). In
this way, the EVS is able to modify peripheral signal transduction
and encoding in real time, and partake in sensory up-down
channeling for multisensory postural coordination. Combined,
this work clearly demonstrates a role of the EVS in corollary
discharge during patterned locomotion, at least in amphibians
in vitro. While it is possible that similar processes occur in
mammals, this is yet to be demonstrated. Indeed, as the authors
point out, the origin of the rhythmic locomotor and voluntary
head movement corollary discharge signals are very different
between larval Xenopus and monkeys, respectively, suggesting
that both the nature and origin of motor programming can
exert differential influence on sensory signaling (Chagnaud et al.,
2015).

The Role of the EVS in Vestibular Plasticity
The EVS has also been implicated in vestibular plasticity,
particularly regarding the vestibuloocular reflex (VOR). EVS
signalingmediated by α9 nAChRs expressed at efferent vestibular
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synapses on hair cells, can elicit inhibitory responses in afferents
(Elgoyhen et al., 1994; Hiel et al., 1996; Anderson et al., 1997;
Holt et al., 2001; Zhou et al., 2013) (extensively reviewed in
Jordan et al., 2013), while α6β2 nAChRs have been implicated
in efferent-mediated afferent excitation of calyx/dimorphic
neurons (Holt et al., 2015). It has been recently shown that
α9 nAChRs may influence vestibular compensation following
unilateral labyrinthectomy (Eron et al., 2015; Hübner et al.,
2017). Given that the α9 subunit is expressed at EVN synapses,
a missense mutation in the gene coding for this receptor
subunit could compromise EVN output to the periphery. Indeed,
the efficacy of the VOR was compromised in α9 nAChR
knockout mice with ∼70% reduction in vestibular adaptive
ability (Hübner et al., 2015). Moreover, when compared to
the baseline functional recovery of control mice following
UL (∼75% ipsilesional and ∼90% contralesional), α9 nAChR
knockout mice only regained ∼30% ipsilesional and ∼50%
contralesional function (Hübner et al., 2017). These data
implicate central and/or peripheral EVS mechanisms in VOR
adaptability and compensation. However, there is also evidence
that peripheral vestibular mechanisms (including vestibular
afferent changes) do not play a role in vestibular compensation
(Sadeghi et al., 2007), and that efferent activity does not
play a role in VOR adaptability in awake behaving monkey
(Miles and Braitman, 1980), with the latter suggesting that
the adaptive mechanisms of the VOR reside within central
circuits.

Along with ACh, CGRP is also co-expressed by EVN neurons
and peripheral efferent terminals (Ohno et al., 1991; Luebke
et al., 2014), and partakes in vestibular efferent and peripheral
interaction. CGRP null mice demonstrated an ∼50% decrease
in VOR sensitivity (Luebke et al., 2014), further suggesting that
disruption to normal EVN activity reduces the functionality
and efficacy of the VOR. Interestingly, cholinergic staining of
the same animals appeared normal (Luebke et al., 2014), with
the authors suggesting chronic loss of CGRP from birth may
contribute to compensatory mechanisms that mediate VOR
plasticity. Of note however is the suggestion that CGRP in the
EVN (as well as the auditory efferent system) instead plays
a role in maturation of peripheral inner ear structures, for
example by contributing to maturation of mechanical properties
of the inner ear, or by tuning afferent responses (for review,
see Simmons, 2002). Regardless, with this caveat in mind it
remains reasonable to suggest that the function of the EVS could
include some level of influence or participation in vestibular
plasticity and compensation of the VOR. Further support
for the EVS’s role in the VOR comes from data regarding
KCNQ potassium channels. The activation of mAChRs and
closure of KCNQ potassium channels have been implicated in
driving efferent-mediated slow afferent excitation in turtle (Holt
et al., 2017). Interestingly, in KCNQ4 and KCNQ5 knockout
mice, VOR performance again is impaired (Spitzmaul et al.,
2013).

It should be noted that the EVN is not the only candidate
to mediate compensation and habituation of the VOR, and has
only been implicated in this function in recent literature (for
example, Luebke et al., 2014; Hübner et al., 2015, 2017). Indeed,

there is an extensive body of literature regarding the role of the
nodulus and uvula in dynamic (i.e., gain) control of the VOR
(some examples of which includeWaespe et al., 1985; Torte et al.,
1994).

SUMMARY

While incomplete, the functional role of most efferent systems
in the nervous system has been characterized. In the vestibular
system however, a conclusive functional role in mammals has yet
to be confirmed. While there is a consensus regarding vestibular
efferent morphology, location, and action on peripheral
vestibular hair cells and primary afferents, a distinct functional
role in motor and vestibular coordination had not yet been
ascribed. Reasons for this include limited recordings from
EVN neurons themselves, as well as a lack of understanding
of EVS circuitry within the nervous system of any species.
Recent work though has suggested potential functional roles.
For example, the EVS has been implicated in efference copy
generated from spinal cord circuitry during locomotion,
while participation in vestibular plasticity and compensation
has also been suggested. Older work has also demonstrated
vestibular efferent activation following specific behavioral and
environmental cues, suggesting a context dependent efferent
activity. Given the unique nature of each of these different
findings, it appears that the EVS functions distinctly under a
diverse range of conditions. Investigations concerning direct
monosynaptic inputs to the EVN would help establish the
overall circuitry involved in EVS function by highlighting
the direct connections the EVN makes with other parts
of the brain and spinal cord. Such information could help
establish the context/s within which the EVN is activated.
Moreover, combining monosynaptic tracing technologies with
electrophysiological recordings could further investigate the
role of the EVS in corollary discharge signaling in mammals.
For example, recent work showed that introducing rabies
glycoprotein during in vivo patch recording in mouse layer
5 pyramidal cells, followed by glycoprotein-deficient rabies
virus 2 days following resulted in the successful bridging of
physiological and synaptic properties with anatomical and
circuitry profiles of individually recorded neurons (Rancz et al.,
2011). Alternatively, genetically encoded neural indicators of
cellular activity can also be selectively expressed in neurons of
interest (via viral techniques), and allow monitoring of their
activity under different behavioral conditions in vivo (Perry et al.,
2015). Targeted EVNmanipulation (for example via optogenetic,
electrophysiological or viral means), and subsequent behavioral
testing, as well as direct recording or manipulation of EVN
neurons and their inputs, could also expand hypotheses
concerning EVS function.
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