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The diversity of cephalopod species and the differences in morphology and the habitats
in which they live, illustrates the ability of this class of molluscs to adapt to all marine
environments, demonstrating a wide spectrum of patterns to search, detect, select,
capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools
for the acquisition of information about their potential preys. The use of vision to
detect prey and high attack speed seem to be a predominant pattern in cephalopod
species distributed in the photic zone, whereas in the deep-sea, the development of
mechanoreceptor structures and the presence of long and filamentous arms are more
abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in
disguise, among others are known modes of hunting in cephalopods. Cannibalism and
scavenger behavior is also known for some species and the development of current
culture techniques offer evidence of their ability to feed on inert and artificial foods.
Feeding requirements and prey choice change throughout development and in some
species, strong ontogenetic changes in body form seem associated with changes in
their diet and feeding strategies, although this is poorly understood in planktonic and
larval stages. Feeding behavior is altered during senescence and particularly in brooding
octopus females. Cephalopods are able to feed from a variety of food sources, from
detritus to birds. Their particular requirements of lipids and copper may help to explain
why marine crustaceans, rich in these components, are common prey in all cephalopod
diets. The expected variation in climate change and ocean acidification and their effects
on chemoreception and prey detection capacities in cephalopods are unknown and
needs future research.

Keywords: predation, feeding behavior, prey capture

INTRODUCTION

The physiology, behavior, and sensory world of cephalopods have been succesfully adapted from
the luminous shallow waters to the dark and cold deep-sea, where they look for the diverse prey
that meet their energy requirements. Thus, a variety of feeding behaviors have been recorded both
in the wild and laboratory, in association with diverse feeding strategies (see between others, the
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reviews of Nixon, 1987; Hanlon and Messenger, 1996; Rodhouse
and Nigmatullin, 1996). Despite being limited in number, with
845 cephalopod species described to date (Hoving et al., 2014)
when compared with the very populous phylum Mollusca
to which they belong, nautiluses and coleoid cephalopods
(cuttlefish, squid, octopus) are an astonishing example of
diversity of form and function well equipped to deal with
the various marine habitats they occupy (Clarke, 1988).
This is an example of how evolution can drive potential
limitations in design, based to their molluscan clade, to extreme
complexities (e.g., Young, 1977; Budelmann, 1995; Godfrey-
Smith, 2013; Albertin et al., 2015; Allcock et al., 2015; Shigeno,
2017). Cephalopod coastal species have received more research
attention because of their ease of accessibility in the field and
their ability to be maintained under laboratory conditions. Most
shallow water species are active visual predators with vigorous
metabolic activity and sophisticated behaviors (see between
others Hanlon et al., 2008; Ebisawa et al., 2011; Benoit-Bird and
Gilly, 2012; Vidal et al., 2014). On the other hand, mesopelagic
and deep-sea cephalopod species have been less well-studied
and their feeding strategies and behaviors are not well known.
Cephalopods show a significant negative relationship between
metabolism and minimum habitat depth (Seibel et al., 1997;
Seibel and Childress, 2000) however, in addition to buoyancy
and body mass, phylogenetic position also has an influence
on the metabolic rates of each individual species (Seibel and
Carlini, 2001). As showed by Seibel et al. (1997), cephalopods
of the family Cranchiidae as Cranchia and Liocranchia have
low metabolic rates. These cephalopods live both in epipelagic
waters (as subadults) and deep-sea (when adults) and do not
follow the negative relationship between minimum depth and
metabolic rate showed for most cephalopod species studied. The
example illustrate that phylogeny is also an important factor
when considering metabolic rates of individual species (Seibel
and Carlini, 2001).

The following text seeks to briefly review recent advances on
cephalopod predation and identify the main gaps in knowledge
on this aspect of cephalopod biology and behavior. Here, we
aim to briefly account for the wide spectrum of morphological,
behavioral, and physiological features that cephalopods use to
meet their energetic needs through predation and food intake.
Along this journey we will identify possible gaps in knowledge,
thus providing a short guide for future studies.

DETECTING PREYS

The physiology and sensory processing capabilities of
cephalopods are adapted to all marine environments. Animals
looking for diverse prey needed to meet energetic requirements;
metabolic energetic needs that change dramatically according
to the ontogenetic state, the habitat they live in and life cycle
stage. A variety of feeding behaviors have been recorded in
association with diverse feeding strategies (for review see Hanlon
and Messenger, 1996; but see also Rodhouse and Nigmatullin,
1996), and such richness is accompanied by a sophisticated
set of sensory systems (review in: Budelmann, 1994; Wells,

1994; Budelmann et al., 1997; Table 1). This developed sensory
system allows them to achieve sophisticated behaviors to detect
food, avoid predators and communicate between congeners
in a way comparable to vertebrates. Photo-, mechano-,
and chemoreceptors provide support for the collection of
information about their potential prey.

Probably one of the most striking features of cephalopods
is their developed eye, superficially resembling that of teleost
fish. It has a single nearly spherical lens with a graded refractive
index, the ability to accommodate the len and a similar capacity
for eye movement, showing an example of convergent evolution
(Packard, 1972). The use of an adjustable pupil to control the
amount of light entering the eye distinguishes the cephalopods’
eye from their fish counterpart and the light-evoked pupillary
constriction in cephalopods is among the fastest in the animal
kingdom (Douglas et al., 2005). Among the few exceptions is the
deep-sea cirrate octopod Cirrothauma murrayi, whose eye lacks
lenses and the optic lobes are simply organized (Aldred et al.,
1983), however, it is probably able to detect bioluminescence
(Warrant and Locket, 2004). Most cephalopods studied have a
single type of rhodopsin as a visual pigment, suggesting they are
blind to color (Messenger et al., 1973; Marshall and Messenger,
1996; Mithger et al., 2006). They can achieve spectral and color
discrimination by exploiting chromatic aberration and pupil
shape (Stubbs and Stubbs, 2016), but this system could work for
only a narrow range of visual tasks (Gagnon et al., 2016). The
giant (Architeuthis) and the colossal (Mesonychoteuthis) squids
have the largest eyes in the animal kingdom, however their
characteristics suggest they are mainly used for detecting and
identifying bioluminescent waves generated by sperm whales
during their dive into the deep, thus protecting them from
potential predation, rather than detecting prey at long distances
(Nilsson et al., 2012). The importance of the visual system to
locate prey is also reflected in the ability for aerial capture, such
as, when Sepia officinalis is able to attack and capture prey shown
above the water surface by an experimenter (Boletzky, 1972). The
complexity of the visual system of cephalopods is also achieved
through extra-ocular light perception capabilities, providing an
intricate network of sensory devices on their skin (see also
Kingston et al., 2015; Ramirez and Oakley, 2015; Kelley and
Davies, 2016). In addition, cephalopods are sensitive to polarized
light and polarization vision serves to enhance the detection
and recognition of prey. Squid hatchlings attack planktonic prey
under polarized illumination at a 70% greater distance than
under depolarized illumination (Shashar et al.,, 1998) and the
polarization vision helps cuttlefish to see further into turbid water
and to better detect prey (Cartron et al., 2013).

Sensory capabilities are not limited to vision. Cephalopods
have sensory receptors that form the lateral line system, which
detects gentle water currents and vibrations. Ciliated primary
sensory hair cells, sensitive to local water movements, are
arranged in epidermal lines located on the arms, head, anterior
part of dorsal mantle and funnel (e.g., Sundermann, 1983;
Budelmann and Bleckmann, 1988; Budelmann, 1994; Lenz et al.,
1995) and are known to provide sensory capabilities in detecting
prey (Komak et al.,, 2005). In fact, cuttlefish are able to catch
small shrimp in the darkness and behavioral experiments showed
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TABLE 1 | Biological and behavioral adaptations utilized by cephalopods for the sake of their predatory behavior.

Predatory adaptations

Activities

Senses

Eyes and vision; Epidermal hair cells; Equilibrium receptor organs for linear and angular

Searching for prey

accelerations; Epidermal tactile receptors; Contact and distance chemoreceptors; Vibration

receptors and hearing

Respiratory, circulatory and

nervous systems Giant fiber system
Physical features
Cognitive capabilities Learning and memory abilities

Hunting strategies?

Efficient branchial ventilation; Closed circulatory system; Central nervous system;

Arms and tentacle; Suckers; Beaks; Jet propulsion; Skin color change

Ambushing, Luring, Pursuit, Stalking, Speculative and Cooperative Hunting

Catching prey

Catching and handling prey
Searching, recognition and catching prey
Catching prey

Morphological, physiological, sensory, neural and behavioral adaptations and corresponding behavioral outcomes (Activities) are listed here as deduced from several reviews (Packard,
1972; Young, 1977; Hanlon, 1988; Hanlon and Messenger, 1996; Borrelli et al., 2006; Borrelli and Fiorito, 2008).

aSee also Table 2.

they use the epidermal lines to detect prey (Budelmann et al.,
1991).

Distant chemoreceptor organs such as, olfactory organs and
rhinophores, further provide additional sensory capabilities.
Olfactory organs are paired, oval shaped organs situated on
either side of the head, ventrally behind the eye and near the
mantle edge. Their possible role in prey detection is poorly
understood. Water containing food odor (shrimp) is detected by
S. officinalis (Boal and Golden, 1999) and embryos exposed to
the odors of prey later influences prey choice in the same species
(Guibé et al., 2010). Increased ventilation rates in response
to prey chemicals was described for Eledone cirrhosa (Boyle,
1986); and positive chemotaxis for Octopus maya during Y-maze
experiments, with amino acids (alanine, proline), nucleotids
(ATP), and crab extract functioned as excitants, while betaine
and taurine functioned as arrestants (Lee, 1992). The rhinophores
of Nautilus are paired organs located below each eye and
open to the exterior by a narrow pore. They are similar to
the olfactory organs but are significantly larger (Basil et al,
2005).

In addition, cephalopods have contact receptors in the
tentacles, sucker rims, and lips; known to allow sensing of a
broad spectrum of chemical and mechanical signals. Sucker
receptors are more elaborated in octopus. There are about
10,000 chemoreceptor cells in a single sucker of an octopod,
but only about 100 are present in the sucker of a cuttlefish
(Budelmann, 1996). The food searching habit of benthic octopods
(see below Speculative pounce), that make extensive use of
the arms and suckers exploring rocks and crevices, may justify
this marked difference. In contrast, cuttlefish use their arms
mostly for manipulating their prey (Chichery and Chichery,
1988). Contact receptors located in lips of octopus and cuttlefish
are more advanced in structure and organization than those
of squid. As cuttlefish and octopus are more sedentary and
benthic than pelagic squid, they may rely more on tactile
and chemical stimuli (Emery, 1975). Chemical receptors in
cephalopods help them to locate prey and also to avoid unwanted
prey. Cuttlefish were able to learn that a prey is not acceptable
food, to recognize and to avoid it and, as a result, to choose a
usually non-preferred prey when necessary (Darmaillacq et al.,
2004).

ONTOGENY OF PREDATION: THE YOUNG
AND THE SENESCENT

Hatchling cephalopods are of relatively large size, ranging from
0.6 (Argonauta hians) to 28 (Graneledone boreopacifica) mm
mantle length (Villanueva et al, 2016), allowing the animal
to start an active mode of food searching marked by the
coexistence of two nutritive systems: (a) an embryonic energy
in the form of yolk, and (b) a post-hatching energy provided by
captured food (Boletzky, 2003). Preference for prey at hatchling
when previously exposed during the latest embryonic stages
(Darmaillacq et al., 2006) and visual imprinting during a short
sensitive period during the first day of life (Darmaillacq et al.,
2008) showed some of the available tools employed by the
young cuttlefish, S. officinalis, to successfully capture prey and
survive during the first days of life as a predator. In this
species, the development of learning and predatory behavior is
observed during late embryonic and early juvenile development.
This occurs simultaneously with the maturation of the vertical-
subvertical lobe tracts of the brain, allowing the animals to
maintain a prey in the frontal field during predatory pursuit
(Dickel et al.,, 1997). Then, during the first 3 months of life,
feeding hierarchy has been reported for the same species (Mather,
1986; Warnke, 1994). A comprehensive review on this behavioral
development is provided by O’Brien et al. (2016). On the other
hand, in the juvenile holobenthic octopuses O. maya, preference
to attack a prey is not obtained through previous life experience.
Juvenile octopuses selected crabs as prey when individuals had
previously been fed shrimp earlier in life. This could be the result
of innate biological processes (Portela et al., 2014).

In squids, brain developmental differences can be found when
observing the relatively large Loliginid Sepioteuthis lessoniana
hatchlings, with a subvertical lobe of especially complicated
domain structure, which may reflect an active predatory behavior
(Shigeno and Yamamoto, 2005). In comparison, the minor
development of higher motor centers of the small ommastrephid
Todarodes pacificus hatchlings, suggests these animals are not
active predators at this time but perhaps suspension feeders after
hatching (Shigeno et al.,, 2001a,b). The first food and feeding
strategy of the ommastrephid paralarvae before they start to
actively feed on zooplankton is an unresolved question that
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merits further research (O’Dor et al., 1985; Vidal and Haimovici,
1998).

Diet of planktonic cephalopods in the wild is poorly
understood (Passarella and Hopkins, 1991; Roura et al,
2012, 2016; Olmos-Pérez et al., 2017). Roura et al. (2016)
found that Octopus vulgaris hatchlings targeted low abundance
prey like decapod crustacean larvae independently of the
zooplankton community they inhabit, thus showing a selective
behavior in these patchy environments. Stable isotope ratios
allowed discrimination of specific feeding strategies during
ontogenesis and accumulations of metals as cadmium and
mercury also reflected the ontogenetic stage in five species
of cephalopods (Chouvelon et al, 2011). Externally, strong
morphological changes during early life are recognized in
some cephalopod groups, particularly in oegopsid squids and
merobenthic octopods, associated with different habitats and
feeding modes during early life. Ontogeny of prey capture
develops progressively, from a simple type after hatching to an
adult-like capture behavior involving structures such as, tentacles
and hooks, which are absent or poorly developed in larval forms
(Sweeney et al., 1992). In young ommastrephid squids, the fused
tentacles forms the proboscis and its functionality, supposedly
related to food capture, remain an open question that again needs
future research (Uchikawa et al., 2009).

In loliginid squids, ontogeny of prey capture develops
progressively, from a simple type after hatching to an adult-
like capture behavior involving tentacles after 1 month of age in
Doryteuthis opalescens raised with copepods (Chen et al., 1996).
In merobenthic octopods, a positive allometric arm growth takes
place during planktonic life, probably helping the animal to
capture benthic prey after settlement. At the same time animals
lose the oral denticles of the beaks, of which the trophic function
remains unclear (Villanueva and Norman, 2008). However,
observations on the external digestion and initial ingestion
process in the pymy squid Idiosepius paradoxus, suggest that oral
denticles may be used to detach the semidigested flesh from the
exoskeleton of the crustacean prey (Kasugai et al., 2004). The
early development of the muscular, protein-rich arm crown in
merobenthic octopods is related to the decrease in lipid content
of the animal, due to the relative decrease of the visceral mass,
where lipids are abundant. During planktonic life, the octopus
feeding behavior is that of a visual predator. The presence of prey
increases the turning rate and reduces the swimming speed in O.
vulgaris paralarvae, possibly improving the exploitation of patchy
food environments in the wild (Villanueva et al., 1997).

At the other end of early life is senescence, a period coincident
with the end of the single reproductive period characteristic
of this group of semelparous molluscs. Chichery and Chichery
(1992) found in aging S. officinalis signs of degeneration of
the anterior basal lobe, a structure that plays an important
role in the control of the predatory behavior, as indicated by
previous studies by the same authors (Chichery and Chichery,
1987). In addition, they suggested that visual capacities were
also affected during the aging process by reducing the attention
mechanisms and also the maintenance of the predator’s visual
tracking behavior, concluding that the low interest in the prey
shown by senescent cuttlefish may be related to the deterioration

of the basal lobe and the decreasing visual input. The progressive
loss of appetite in both senescent male and female octopuses is
fairly well documented (see review by Anderson et al., 2002). In
the brooding O. vulgaris, female food intake decreases about 90%
and the method of predation and handling over the scarce prey
changes and becomes irregular (Wodinsky, 1978). Interestingly,
in the brooding female Octopus filosus, Wodinsky (1977) found
that removal of optic glands made them cease brooding, start
feeding again, and live longer than normal. This surprising
behavior after removal of these glands has not been studied in
other cephalopod species.

CEPHALOPOD FEEDING REQUIREMENTS
AND PREY PREFERENCES

Crustaceans are present in nearly all the cephalopod diets studied
to date. Teleost fish and molluscs complement their energetic
needs in different proportions, depending on the species, habitat,
and ontogenetic stage (see reviews of Nixon, 1987; Rodhouse and
Nigmatullin, 1996). Why crustaceans seem to be an indispensable
prey in the diet to sustain suitable growth for cephalopods under
culture conditions, and particularly for their young stages, is
a subject of current debate (Iglesias et al., 2014). Large protein
and amino acid content in the diet are required to maintain
positive growth, at least in shallow water cephalopod species
characterized by vigorous protein metabolism and showing a
relatively low quantity of lipids in their body composition.
However, phospholipids,  cholesterol, and long-chain
polyunsaturated fatty acids (PUFA), all of them abundant in
marine crustaceans, seem to play an important role. Particularly,
the n-3 PUFA, due to their high demand for cell membrane
synthesis where they are incorporated, due to the inability of
cephalopods to synthesize them (Monroig et al., 2013; Reis
et al,, 2014), These findings suggest that PUFA, play an essential
role in cephalopod nutrition, at least for shallow water, fast
growing cephalopod species (Navarro et al., 2014). In addition,
the elemental composition of natural food strongly suggests that
cephalopod paralarvae and juveniles must require a food rich in
copper (Villanueva and Bustamante, 2006). This fact is probably
related to the haemocyanin requirements for oxygen transport,
as copper is the dioxygen carrier of haemocyanin typical of
crustaceans and molluscs. Again, marine crustaceans seem to
play a pivotal role in the diet of cephalopods, also considering that
diet of a species can change from different locations depending
on the prey availability and abundance (Leite et al., 2016). The
general tendency of cephalopods to prey mainly on crustaceans,
fish, molluscs, and other invertebrates, such as, polychaetes,
echinoderms, hydroids (Olmos-Pérez et al., 2017), and also on
gelatinous fauna (Hoving and Haddock, 2017) is not followed
by the deep-sea species, Vampyroteuthis infernalis. This species
is able to fuel its low metabolism mainly on detritus (Hoving and
Robison, 2012). On the other hand, as an extreme comparative
example, the Giant Pacific octopus (Enteroctopus dofleini) and
Octopus cf insularis occasionally feeds on large marine birds
(Anderson and Shimek, 2014), and attacks and bite damage to the
skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus
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albacares) inside purse seine nets have also been described for
the jumbo squid Dosidicus gigas (Olson et al., 2006). These
species are extreme examples showing the adaptive capacity of
cephalopod species to obtain energy from the different marine
habitats in which they live. In addition, when resources are scarce
or when the density of congeners is high, cephalopods can choose
cannibalism as a feeding behavior. Cannibalistic behavior has
been reported from video recordings in the wild for both squids
(Hoving and Robison, 2016) and octopods (Hernandez-Urcera
et al,, 2014) independently of fishing operations, which may
induce unnatural feeding behaviors. Cannibalism is common
in most cephalopod species whose diet has been studied, an
uncommon characteristic in the animal kingdom which may
be related to their high metabolic demands. Factors influencing
this unusual feeding behavior are environmental variations,
population density, food availability, body size, and sexual
dimorphism (Ibanez and Keyl, 2010). In addition to visual
stomach content analysis, recent tools are being used as trophic
indicators and tracers in food chain pathways including stable
isotope (Lorrain et al., 2011; Ohkouchi et al., 2013; Guerreiro
et al.,, 2015), heavy metal (Bustamante et al., 1998), and fatty acid
signature analysis (Pethybridge et al., 2013; Rosa et al., 2013), as
well as molecular techniques (Deagle et al., 2005; Braley et al,,
2010; Roura et al., 2012; Olmos-Pérez et al., 2017) and food web
models (Hunsicker et al., 2010; Coll et al., 2013).

PREDATORY BEHAVIORAL STRATEGIES
AND PREY CAPTURE

Until food satiation is obtained, cephalopods explore their
environment looking for food. Known modes of hunting in
cephalopods include ambushing, luring, stalking and pursuit,
speculative hunting and hunting in disguise, among others
(Table 2), described in detail by Hanlon and Messenger (1996).
Behavioral observations on foraging cephalopods in their natural
habitat usually come from shallow-water environments, mostly
on cuttlefishes and octopuses using scuba diving. A variety of
behaviors have been recorded and mimicry has been observed
during octopus foraging (Forsythe and Hanlon, 1997; Hanlon
et al., 2008; Krajewski et al., 2009; Caldwell et al., 2015). The
sequences of foraging behavior in shallow water octopuses
usually showed characteristics of a tactile saltatory searching
predator, as well as a visual opportunist (Leite et al., 2009). Using
acoustic techniques, coordinated school behavior during foraging
was recorded at night in shallow water for jumbo squid D. gigas.
They were observed using ascending, spiral-like swimming paths
to emerge from extremely dense aggregations (Benoit-Bird and
Gilly, 2012).

Behavioral studies of predation in the laboratory are more
detailed and abundant. The predatory strategy is part of a series of
body and locomotory patterns. The visual attack is executed with
great accuracy leading to a final strike, a sequence described in
cuttlefishes (Messenger, 1968) and identified in different species
(Lolliguncula brevis, Jastrebsky et al., 2017) revealing similar
behavioral performances. During the attack, raised arms and
dynamic skin patterns are part of these sophisticated behavioral

sequences utilized presumably to deceive the potential prey and
facilitate capture. Raised arms are expressed during predation
when the cuttlefish has located its prey and is approaching it
to reach a position suitable for attack. Arms I appear extended
vertically upwards (Messenger, 1968, p. 345) and often separated
in a 'V, each forming an S-shaped curve (review in Borrelli et al.,
2006). In some cases, arms II may also be similarly raised. Raised
arms are generally dark and may sway to and fro. Messenger
(1968) suggests that this peculiar posture and swaying movement
of the arms may act as lures, directing the prey’s attention
away from the tentacles. Chromatic pulses and rhythmic passing
waves as been described as dynamic skin chromatic patterns
of cephalopods during hunting displays. Chromatic pulses are
known in cuttlefishes and also in squids and octopuses and
consist of a single band of color contrast sweeping across part
of the predator in a particular direction. Rhythmic passing waves
are known in cuttlefishes and octopuses, involving the movement
of rhythmic bands across the predator in a constant direction (see
How et al., 2017 for review).

The most accurate description of full attack response of
octopuses (e.g., O. vulgaris) is provided by Andrew Packard:
“In full attack... an octopus launches itself directly toward the
crab... swimming by the propulsion of water from its funnel
(siphon) and without touching the bottom” (Packard, 1963, p.
39). The chromatic, postural, and locomotor components (i.e.,
body patterning), making up the behavior, include: (i) head
and eyes raised, with the latter “wide open”; (ii) the body is
or darkens to “a deep reddish-brown hue” (Packard, 1963, p.
39); (iii) the arms are outstretched or loose “with the suckers
facing downwards” (Packard, 1963, p. 39); (iv) the octopus orients
the siphon posteriorly, away from its target. In O. vulgaris, as
in squid and cuttlefish, the full attack response is elicited by
the initial visual recognition of an edible “object” followed by
the final outcome of the attack (i.e., obtainment of food; for
review see also Borrelli et al., 2006). The full attack is only one
example of the variety of predatory behaviors. A full gradient
of locomotor patterns appear to be exhibited. As reviewed by
Borrelli et al. (2006) during crawling an octopus moves relatively
slowly in contact with the ground, and may also be aided
by brief swimming sequences. The animal moves along the
substrate aided by the suckers of the central half of the arm,
while the arms push or pull, depending on their position, to
facilitate the direction of movement; this crawling may imply
several arms (Finn et al., 2009) or just the posterior pair as in
bipedal locomotion, also referred as walking or tiptoeing (see also
Huftard et al., 2005; Borrelli et al., 2006). Crawling is adopted by
octopuses to explore their surroundings and approach sites that
they eventually explore for prey capture.

On the other hand, speculative hunting (or speculative
pounce) is characteristic of several octopus species (see for e.g.,
Borrelli et al., 2006; Leite et al., 2009). While searching for
prey, “the octopus moves across the bottom in a combination
of swimming and crawling actions. Every 1-2m it makes a
speculative pounce, covering a rock, a clump of algae, or a small
area of the bottom with its web. Pausing for a few seconds to
feel under the web the octopus continues its trip” (Yarnall, 1969,
p. 749).
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TABLE 2 | Comparison between different hunting strategies adopted by some species of cephalopods and vertebrates (not an exhaustive list).

Hunting strategies

CEPHALOPODS Ambushing Luring Pursuit Stalking Pouncing Cooperative Scavenger
Sepia officinalis . . °

Euprymna scolopes .

Loligo vulgaris .

Sepioteuthis lessoniana . . ° .

Sepioteuthis sepioidea . . . . .

Dosidicus gigas . ° . °

Architeuthis dux . . .
Mesonychoteuthis hamiltoni . °

Vampyroteuthis infernalis ? . .
Octopus vulgaris . ° ° °

VERTEBRATES

Great white shark (Carcharodon carcharias) . ° ° ° °
Nile crocodile (Crocodylus niloticus) . ° ° . .
Eastern green mamba (Dendroaspis angusticeps) . . .

Golden eagle (Aquila chrysaetos) . ° . . .
Killer whale (Orcinus orca) . ° . . .
Bottlenose dolphin (Tursiops truncatus) . ° .

Leopard (Panthera pardus) . . . ° .

Hunting strategies are indicated following Curio (1976). Information included here is deduced from a series of sources including for cephalopods: Moynihan and Rodaniche (1982);
Hanlon and Messenger (1996); Robison et al. (2003); Cole and Adamo (2005); Kubodera and Mori (2005); Rosa and Seibel (2010); Sugimoto and lkeda (2013). Data from Vertebrates
are presented here to attempt a possible comparison and are not exhaustive (Guggisberg, 1972; Angilletta, 1994; Martin et al., 2005, Hayward et al., 2006, Watson, 2010; Ferguson

et al., 2012). “e”: hunting strategy recorded. “?”: hunting strategy probable, not recorded.

In addition, cephalopods use different tools to enhance
prey capture. For example, disguise strategies using ink during
predation, has been reported recently by Sato et al. (2016) for L.
paradoxus. These pygmy squid use ink during prey attacks in two
modes: releasing ink between themselves and the prey and then
attack through the ink cloud, and also releasing ink away from
the prey and attacking the prey from another position. Another
tool used in the darkness is the dinoflagelate bioluminescence,
employed by Euprymna scolopes and S. officinalis to locate non-
luminous crustaceans and fish prey (Fleisher and Case, 1995).
During foraging under culture conditions, it is remarkable that
cuttlefish (Sepia pharaonis) are able to identify the amount of
prey available, discriminate prey numbers, and the following prey
selection, all depending on their satiation state (Yang and Chiao,
2016). When cuttlefish detect a prey, they perform a well-known
three-stage visual attack sequence of attention, positioning, and
seizure (Hanlon and Messenger, 1996). Observing conspecifics
during prey capture, these events do not seem to improve their
predation techniques (Boal et al., 2000).

Venom is used by cuttlefishes and octopods to kill the prey
and for muscle relaxation. Octopuses bored holes in the carapace,
the eye or the arthrodial membrane of crustaceans (Grisley et al.,
1996; Pech-Puch et al., 2016). The selection of the preferred area
to inject the cephalotoxin in the crab seems to be a combination
of factors related to prey and octopus size. For example, large
octopuses use eye puncture less frequently than small individuals
(Grisley et al., 1999). Prey handling in octopus eating bivalves

showed different combinations of pulling and drilling feeding
behaviors. The injection of the cephalotoxin into the bivalve
and gastropod prey is associated with drilling. Drilling occurs
by the combined action of radula and salivary papilla (Nixon,
1980). A combination of drilling and pulling behaviors has been
reported for preying on bivalve and gastropod prey (Runham
et al., 1997; Fiorito and Gherardi, 1999; Steer and Semmens,
2003; Ebisawa et al., 2011). Octopuses hold the prey within the
proximal part of the arms so, they cannot use vision during most
prey handling period, probably choosing the most energetic,
cost effective feeding behavior based on previous experience
(Anderson and Mather, 2007). In the field, other factors may
influence the bivalve selection and feeding mode. McQuaid
(1994) showed that mussel size selected by small octopuses
(<500 g) was related to octopus weight, with small octopuses
eating on small mussels because they are unable to remove large
mussels attached with the byssus threads from the rocks. In
addition to pulling and drilling, shell crushing has been reported
as a feeding behavior for the deep-sea octopod Graneledone
preying on gastropods, a behavior that may be favored due to
their relatively larger beaks in comparison with those of shallow
water octopods (Voight, 2000). It is remarkable that the elevated
diversity of cephalopod hunting behaviors, almost matches the
strategies adopted by vertebrate predators (Table 2). Both taxa
are so diverse and remote in their phylogenetic traits, but clearly
there are cases of functional (and behavioral) convergence during
evolution.
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LOOKING FOR FOOD IN THE COLD
DARKNESS

In neritic and epipelagic cephalopods, vision is probably the main
sense utilized for prey detection and capture. As light intensity
decreases in deep-sea environments, low temperature reduces
the metabolic demands and predator-prey distance changes
(Seibel et al., 2000). In this environment, the mechanoreceptor
structures in the arms, tentacles, and filaments increase in
number and complexity. These metabolic and morphological
changes considered to be closely related with the prey selected
by deep-sea cephalopods result in feeding strategies that are
more diverse in the deep-sea that previously believed. The
cirrate octopods are characterized by the possession of paired
filamentous cirri along the arms, of diverse length according
to families, which are interspersed between a single row of
suckers, and are thought to have a sensory function involved
in prey detection and capture. Cirrates feed mainly on small-
sized organisms with low swimming speeds including amphipods
and polychaetes (Collins and Villanueva, 2006). In the cirrate
Stauroteuthis syrtensis, blue-green bioluminescence is emitted
by modified suckers without adhesive function; this has been
suggested to act as a light lure to attract prey and/or mates
(Johnsen et al., 1999). For S. syrtensis of 60g fresh weight, a
daily ration of only 1-30 calanoid copepods day~' has been
estimated (Jacoby et al., 2009), showing the low metabolic rate
of this group of deep-sea cephalopods. In a similar way, the
colossal squid (Mesonychoteuthis hamiltoni), the world largest
invertebrate, reaching 500kg of total weight, seems to be an
ambush or sit-and-float predator that uses the hooks on its arms
and tentacles to capture prey and reach a projected daily energy
consumption of 45 kcal day~?!, equivalent to only 30g of fish
day~! (Rosa and Seibel, 2010). The knowledge of the diet of deep-
sea squids needs further research. A comprehensive review of
the main prey found in stomachs of deep-sea squids has been
provided by Hoving et al. (2014).

As suggested by Young et al. (1998), the great variation
in squid tentacle morphologies may reflect variation in target
prey and the handling of captured food. The deep-sea squid
Grimalditeuthis bonplandi is an extreme example: its tentacles
have a very thin and fragile elastic stalk, whereas the clubs
bear no suckers, hooks, or photophores. It is unknown how
these tentacles are used to capture and handle their prey, as
they consist on cephalopods and crustaceans (Hoving et al.,
2013). Very long dorsolateral arms with photophores are
present in Lycoteuthis lorigera males (Villanueva and Sénchez,
1993) and extremely large and filamentous arms and tentacles
approximately equal in thickness and length are key characters
of the genus Magnapinna: these reach 15-20 times the mantle
length of the animal, reaching to 7 m in total length (Vecchione
et al,, 2001; Guerra et al., 2002). V. infernalis uses its two thin
and retractile filaments, which may be up to nine times the body
length for food capture, i.e., remains of gelatinous zooplankton,
discarded larvacean houses, crustacean remains, diatoms, and
fecal pellets (Hoving and Robison, 2012), thus indicating that
the use of luring as a mode of hunting is probably common
in deep-sea cephalopods. Also the mesopelagic Spirula spirula

feeds mainly on detritus and zooplankton (Ohkouchi et al,
2013).

FEEDING ON INERT PREY

As mentioned above, cephalopods do not necessarily predate
exclusively on live prey. Some cephalopod species are collected
in large numbers from the wild using baited traps such
as, Nautilus (Dunstan et al, 2011) and O. vulgaris (Guerra,
1997) showing that scavenger behavior exists in nature. Recent
development of the cephalopod culture techniques (review in
Iglesias et al., 2014) allowed the use of frozen prey and/or artificial
food in supporting growth during part of the life cycle in a
number of species including Nautilus, cuttlefish (S. officinalis,
S. pharaonis, Sepiella inermis, Sepiella japonica), squid (Loligo
vulgaris, S. lessoniana), and octopus (Amphioctopus aegina, O.
maya, Octopus mimus, Octopus minot, O. vulgaris). The first
feeding period usually requires live crustacean prey, particularly
for the delicate planktonic stages, although planktonic octopuses
are able to detect, capture and ingest inert particles from the
water surface (Marliave, 1981) or descending in the water column
(Villanueva et al., 2002; Iglesias et al., 2007). A successful semi-
humid squid paste-bound gelatine has been developed to feed
O. maya benthic hatchlings from first feeding, showing that this
species can live and reach normal growth with artificial food
during the whole life cycle under laboratory conditions (Rosas
et al., 2014). In other species, after a variable acclimation period,
inert food is readily accepted by advanced juvenile, subadult,
and/or adult stages of cephalopods under culture conditions
(Vidal et al., 2014).

The training phase from feeding on live prey to inert food
shows the behavioral adaptions and learning capacities of these
animals under laboratory conditions. As an example noted by
Nabhitabhata and Tkeda (2014), S. lessoniana aged 20 days can be
fed sliced fish meat of two or three times the mantle length of the
squid, that seize the food in the water column: when squid feed
on live prey, the prey is seized by the tentacles, when the squid are
fed dead feed, they change their prey capture behavior, using only
their arms to seize the food and do not perform the positioning
phase typical of the squid attack (Messenger, 1968). The same
behavioral adaptions and prey capture modes are observed in S.
pharaonis (Nabhitabhata, 2014a) and S. inermis (Nabhitabhata,
2014b) when changing from live to inert prey.

FUTURE CHALLENGES ON CEPHALOPOD
PREDATION

In this review, we surfed through a number of important topics
that require further research and possibly a dedicated effort.
Research on cephalopod predatory strategies is needed in a
variety of fields, from behavior to ecology. Studies of feeding
behavior, nutrition, and feeding requirements are critical in order
to develop the nascent cephalopod aquaculture of key species,
particularly from early young stages. Studies on nutritional
requirements are only at the beginning. The role of lipids on
the early growth and survival of shallow water species seems
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more important than previously supposed and research is also
needed in that field (Navarro et al., 2014). Hatchlings of 13% of
the cephalopod species described to date has been obtained under
laboratory conditions, most of them belonging to shallow water
octopods (Villanueva et al., 2016). As this number increases in
the future, new larval and juvenile predatory behavioral strategies
will mostly likely be described. Similarly, the future study of
deep-sea and oceanic cephalopod forms will provide further
instances of novel, undescribed receptors, organs, behaviors, and
modes of prey detection and capture in cephalopods (Hoving
etal., 2014). In addition, whether our knowledge on diet richness
of a given cephalopod species in the wild is affected or not
by research effort remains to be explored; data we presented
above may represent only a starting-point. The variability of
conformation of cephalopod beaks and their functional relation
with possible prey-items is another possible challenging avenue
of research (Franco-Santos and Vidal, 2014; Franco-Santos et al.,
2014). The use of modern techniques as genomics (Olmos-Pérez
et al., 2017) and proteomics technologies (Var¢ et al., 2017),
microbiota associated with different diets (Roura et al., 2017),
or venom structure (Whitelaw et al., 2016) may further extend
our knowledge on cephalopod diets. Some aspects, such as, the
hormonal control over feeding in cephalopods are practically
unknown (Wodinsky, 1977). Interactions with other species such
as, intraguild predation (when species compete simultaneously
for resources and interact as prey and predator), is another
aspect that may need further attention in cephalopod science.
The interaction between shallow water octopus and juvenile
lobster is potentially an example of intraguild predation involving
interference competition for refuge (Butler and Lear, 2009) but
cannibalism (see above) may also be seen under this framework.

Interaction with other species, as well as competition for
spatial and feeding resources will probably be modified with
global change. A representative example is the case of the
jumbo squid D. gigas. During the daytime, jumbo squids dive
to the depth, suppressing metabolism in the oxygen minimum
zone, an energy saving strategy in hours of prey limitation in
shallow waters (Rosa and Seibel, 2008). The expected climate
change expansion of deep-water hypoxia and the warming and
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