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Atherogenesis, the formation of atherosclerotic plaques, is a complex process that

involves several mechanisms, including endothelial dysfunction, neovascularization,

vascular proliferation, apoptosis, matrix degradation, inflammation, and thrombosis. The

pathogenesis and progression of atherosclerosis are explained differently by different

scholars. One of the most common theories is the destruction of well-balanced

homeostatic mechanisms, which incurs the oxidative stress. And oxidative stress is

widely regarded as the redox status realized when an imbalance exists between

antioxidant capability and activity species including reactive oxygen (ROS), nitrogen

(RNS) and halogen species, non-radical as well as free radical species. This occurrence

results in cell injury due to direct oxidation of cellular protein, lipid, and DNA or via

cell death signaling pathways responsible for accelerating atherogenesis. This paper

discusses inflammation, mitochondria, autophagy, apoptosis, and epigenetics as they

induce oxidative stress in atherosclerosis, as well as various treatments for antioxidative

stress that may prevent atherosclerosis.

Keywords: oxidative stress, atherosclerosis, inflammation, apoptosis, mitochondria, autophagy, epigenetics,

therapies

INTRODUCTION

Atherosclerosis, the formation of atherosclerotic plaques, remains a major reason of the morbidity
andmortality in both developed and developing nations (Townsend et al., 2015). TheWorldHealth
Organization redounds an estimated 16.7 million deaths to the atherosclerotic cardiovascular
disease (Association, 2007; Leopold and Loscalzo, 2008). Atherosclerotic plaque rupture is a usual
reason of the cardiovascular diseases, as stroke and myocardial infarction (Grootaert et al., 2015).
Atherogenesis is a complicated course that concerns some mechanisms including endothelial
dysfunction, neovascularization, vascular proliferation, apoptosis, matrix degradation, oxidative
stress, inflammation, and thrombosis (Hansson, 2005). The pathophysiological mechanisms of
atherosclerosis have yet to be illuminated, though most hypotheses about its pathogenesis and
progression concern the disruption of normal homeostatic mechanisms incurring oxidative stress.

Studies have shown that oxidative stress is a pivotal feature of the atherogenesis (Witztum and
Berliner, 1998). It is widely defined as the redox status realized when an imbalance exists between
antioxidant capability and activity species including reactive oxygen (ROS), nitrogen (RNS) and
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halogen species, non-radical as well as free radical species
(Leopold and Loscalzo, 2009). These conditions cause cell injury
by directly oxidizing cellular protein, lipid, and DNA or via cell
death signaling pathways (Leopold and Loscalzo, 2009; Sinha
et al., 2013). In the cell, ambient levels of certain ROS are
used as signaling molecules to sustain fundamental cellulate
functions. In comparison, reactivity oxidants and free radicals
are produced in absence of the physiological stimulus, and then
small molecule antioxidants are depleted or antioxidase systems
are being overwhelmed (Leopold and Loscalzo, 2009). It triggers
a net increase in the oxidative stress and biologically activated
ROS. It not only plays a important part in pathology of the
cardiovascular diseases, but also has physiological functions that
may adjust cardiomyocytes (Santos et al., 2011). Atherosclerosis
is considered as a complex process featured by the positive
involvement of immune systems (Galkina and Ley, 2007; Weber
et al., 2008; Libby et al., 2013). This study focuses on the method
by which inflammation, mitochondria, autophagy, apoptosis, and
epigenetics induce oxidative stress to accelerate atherosclerotic
lesion formation. Several drug-based treatments for antioxidative
stress are also discussed below.

REACTIVE OXYGEN SPECIES
(ROS)–PRODUCING SYSTEMS IN
ATHEROSCLEROSIS

ROS at medium concentrations play important signaling
roles under various physiological conditions (Li et al., 2014;
Förstermann et al., 2017). Excessive ROS production outpacing
the usable antioxidant systems results in oxidant stress (Li
et al., 2014). Several primary ROS-producing systems are
present in blood vessel wall embracing xanthine oxidase (XO),
uncoupled endothelial nitric oxide synthase (eNOS), enzymes
of the mitochondrial respiratory chain, and nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (NOXs)
(Brandes and Kreuzer, 2004; Förstermann, 2008, 2010; Li
et al., 2014; Xia et al., 2017). These oxidases, composing
of two membrane-combined subunits and several cytoplasmic
modulatory subunits, are multisubunit enzyme compoundes
which produce superoxide from themolecular oxygen employing
NADPH served as electron donor (Bedard and Krause, 2007;
Cave, 2009; Drummond et al., 2011). Be contrary to Nox1
and Nox2, Nox4 only needs p22phox and liberates hydrogen
peroxide rather than superoxide (Schröder et al., 2012). Three
Nox isotypes are expressed in the blood vessel wall of mice with
in the vascular smooth muscle cells (VSMC); and Nox2 (Görlach
et al., 2000) and Nox4 (Ago et al., 2004; Xu et al., 2008) are
primarily expressed in endotheliocytes.

Recent a study had indicated that Nox enzymes play different
roles in atherogenesis (Fulton and Barman, 2016). XO produces
hydrogen peroxide and superoxide by employing molecular
oxygen as an electron acceptor (Nishino et al., 2008; Nomura
et al., 2014). The expression of endothelial XO are increased
through proatherosclerotic stimuli like angiotensin II (Ang
II) treatment (Landmesser et al., 2007) as well as oscillatory
shear stress (McNally et al., 2003). Usually, mitochondrial
oxidative phosphorylation generates physiological levels of

superoxide which translates into hydrogen peroxide by the
manganese-dependent superoxide dismutase (SOD2), as well as
subsequently by the glutathione peroxidase 1 (GPx1) to water
(Wang et al., 2014a; Phaniendra et al., 2015). Atherosclerosis
in humans has been associated with mitochondrial oxidative
stress (Corral-Debrinski et al., 1992). eNOS generates NO
under certain physiological conditions and thus represents a
crucial vasoprotective element for the endothelium (Li and
Förstermann, 2000, 2009; Förstermann and Sessa, 2012; Li et al.,
2014). Under pathological conditions linked to oxidative stress,
however, eNOS may become dysfunctional (Förstermann, 2008;
Li and Förstermann, 2013; Li et al., 2013; Figure 1).

MACROPHAGES INDUCE OXIDATIVE
STRESS IN ATHEROSCLEROSIS

Macrophages are diverse, bactericidal, and scavenging tissue-
resident cells responsible for an array of crucial immune
functions (Maiuri et al., 2013). Macrophages are the most
numerous immune cell genre in the pathological changes
of atherosclerotic, they are concerned from lesion initiation
to plaque rupture, and play a requisite role through all
stage of the disease (Cochain and Zernecke, 2017). These
immune cells mainly consume poisonous blood fat, such as
oxidized low-density lipoprotein (ox-LDL) as portion of their
normal scavenging function. The lipid-laden macrophages are
deposited underneath the endothelium of arteries, eventually
forming obstructive atherosclerotic plaques. Recent studies have
confirmed that macrophage cellular oxidation, 7-hydroperoxide
(7-OOH), autophagy protein 5 (ATG5), and thiol oxidative stress
enhances macrophage cellular oxidative stress and accelerates
atherosclerotic plaque progression.

Macrophage Cellular Oxidation and
Oxidative Stress
A recent study (Abu-Saleh et al., 2016) demonstrated that
the components of atherosclerotic plaque enhance macrophage
cellular oxidation. Macrophages from atherosclerotic normo-
or hyper-glycemic apoE−/− mice were cultured with mouse
aorta aqueous or lipid extract dated from these mice, while
J774A.1-incubated macrophages were cultured with enhancing
concentrations of extracts prepared from the human carotid
atherosclerotic lesion: hydrophobous injury lipid extract, human
body injury aqueous extract, or the conjunction of two.
Macrophage oxidative status, triglyceride, and cholesterol
metabolism were analyzed over the course of the experiment
to find that aqueous and lipid extracts markedly enhanced
the oxidative stress of macrophages (Lowry et al., 1951; Meir
and Leitersdorf, 2004; Abu-Saleh et al., 2016). Compensatory
enhances in the cellular antioxidant reagent paraoxonase 2
(PON2) activity and the macrophage glutathione was viewed
after cultivation with all extracts (Lowry et al., 1951; Gaidukov
and Tawfik, 2005). And macrophage triglyceride biosynthesis
rate and mass enhanced dramatically with treatment in the lipid
extracts and the upregulation of diacylglycerol acyltransferase
(Abu-Saleh et al., 2016). These extracts resulted in a decrease
in the cholesterol biosynthesis rate by the downregulation
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FIGURE 1 | Reactive oxygen species–producing systems in atherosclerosis. MIT oxidative, Mitochondrial oxidative; eNOS, endothelial nitric oxide synthase;

O •−

2 , superoxide; OX, xanthine oxidase; NO•, nitric oxide; HOCl, hypochlorite; H2O2, hydrogen peroxide; ONOO−, peroxynitrite; •OH, hydroxyl radicals; SOD,

enzyme superoxide dismutase; GSH, glutathione; Trx, thioredoxin. O•−

2 can be generated in the blood vessel wall by NOXs, uncoupled eNOS, OX, and mitochondrial

respiration chains. H2O2 can traverse spontaneous transformation to •OH by Fe reaction, SOD. H2O2 can be detoxified through GSH peroxidase, Trx peroxidase,

and catalase to H2O and O2. Meanwhile, the myeloperoxidase enzyme can employ H2O2 to oxygenize chloride to the strong oxidizer HOCl. The uncoupling eNOS

decreases endothelial NO production, which is further aggravated by reduced eNOS expression and activity.

of HMG-CoA reducase and the limiting velocity enzymes in
the cholesterol biosynthesis (Thomas et al., 2008). This above
findings demonstrated that the interreaction among kinds of
lesion extracts and macrophages can help in the atherosclerosis
development by enhancing macrophage oxidation and lipid
cumulation, bringing about the formation of foam cells.

7-Hydroperoxide (7-OOH) and Oxidative
Stress
Oxidative stress related to cardiovascular system disease is
able to generate all kinds of oxidized lipids embracing
cholesterol oxidations as 7-OOH, 7-ketone (7=O), and 7-
hydroxide (7-OH) (Brown et al., 1997; Brown and Jessup,
2009). The stimulation of human monocyte-originated THP-1
macrophages with dibutyryl-cAMP basically upregulates StarD1
and ABCA1 (Hakamata et al., 1998). In previous study, SiRNA-
induced StarD1 knockdown preceding to stimulation did not
influence StarD4 but brought down ABCA1 upregulation, and
the latter is related with StarD1 function (Hakamata et al.,
1998; Borthwick et al., 2009). Compared with non-stimulated
controls, mitochondrion with the stimulated StarD1-kd cells
innerized 7-OOH more slowly and went through less 7-OOH-
induced membrane depolarization and lipid peroxidation, like
determined by C11-BODIPY and JC-1 probes (Ma et al.,
2007). The primary functional outcomes of 7-OOH exposed
are: (1) reduced 27-hydroxycholesterol (27-OH) output, (2)
forfeit of mitochondrial 27-OH by the activity of 27-hydroxylase
(CYP27A1), and (3) reduction of the cholesterol-exporting
ATP-binding cassette and ABCA1 subfamily G member 1

(Korytowski et al., 2013). Similarly, compared with non-
challengedmacrophage controls, challengedmacrophages export
fewer cholesterol to apolipoprotein A-I or HDL (Hakamata et al.,
1998; Brown and Jessup, 2009). Previous researchers (Korytowski
et al., 2015) identified themechanism throughwhichmacrophage
cholesterol efflux can be lost ability under oxidative stress-related
disease like atherogenesis. Their findings also revealed the effect
of macrophage redox disorders in the atherogenesis.

ATG5 and Oxidative Stress
Macrophage apoptosis and the deficient phagocytic clearance
of the apoptotic cells together expedite plaque necrosis, which
leads to atherothrombotic cardiovascular affairs (Tabas, 2010).
Macrophage apoptosis and the deficient phagocytic clearance
of apoptotic cells together expedite plaque necrosis, which
leads to atherothrombotic cardiovascular affairs (Tabas, 2010).
Oxidative stress and endoplasmic reticulum (ER) stress are
mainly responsible for advanced macrophage apoptosis. Recent
research has shown that pro-apoptotic oxidative stress and ER
stress inducers give rise to autophagy, another stress response
in the macrophages (Liao et al., 2012). The suppression of
autophagy via silencing ATG5 and others autophagy mediators
augments apoptosis and NOXs-mediated oxidative stress, and
giving apoptotic cells fewer well-recognized by efferocytes (Li
et al., 2010). Macrophage ATG5 deficiency in the Ldlr−/−

mice enhances oxidative stress in advanced macrophages lesion,
accelerates plaque necrosis (Tabas, 2010). These results altogether
uncover a mechanism in macrophages related with plaque
necrosis.
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Thiol Oxidative Stress and Oxidative Stress
Thiol oxidative stress results in macrophage functional disorder,
cellular damage, as well as progressed development of
atherosclerotic lesions (Wang et al., 2006). Marrow cells
infected with retroviral vectors were transplanted into low-
density lipoprotein receptor-deficient mice (Hawley et al.,
1994). After bone marrow transplantation, the animals were
kept the western diet for 10 weeks. But no discrepancies
in either the serum triglyceride and cholesterol levels or
the macrophage contents were viewed (Qiao et al., 2007).
Mouse that were reestablished with mitochondrial glutathione
reducase (GRmito-EGFP) and EGFP-fusion protein of cytosolic
glutathione reducase (GRcyto-EGFP)-expressing bone marrow
had lesional acreage 32% fewer than those mouse who accepted
EGFP-expressing, however (Qiao et al., 2007). In incubated
cells, the adenovirus overexpression of GRmito and GRcyto-
EGFP can preserve cellulas from the hyperpolarization of
mitochondrion abduced through ox-LDL (Hawley et al.,
1994). Another previous study (Qiao et al., 2007) showed
that glutathione-dependent antioxidant acts a crucial effect
in the atherogenesis, as well as thiol oxidative stress-abduced
mitochondrial functional disorders is related with macrophage
damaged in the atherosclerotic lesions.

INFLAMMATION INDUCES OXIDATIVE
STRESS IN ATHEROSCLEROSIS

Inflammation is a crucial element in progression of
atherosclerotic plaque, plaque rupture, and atherothrombosis
(Cannizzo et al., 2014). The process is also important in
relapsed thrombosis, where oxidative stress is given to play
an important function (Freedman, 2008). Oxidative stress
and inflammation are interrelated; they form a vicious feed-
forward cycle during atherogenetic plaque progress (Lozhkin
et al., 2017). Inflammation caused by oxidative stress seriously
threatens human health (Martinon, 2010). Typical health
problems include dyslipidemia (Hopps et al., 2009), metabolic
syndrome (Iyer et al., 2010), and thrombosis (Leopold and
Loscalzo, 2009; Xu et al., 2010). Oxidative stress activates
transcription factors that alter inflammatory cytokines, soluble
mediators, and chemokines. Cytokines and chemokines secreted
by inflammatory cells gather inflammatory cells to the sites
of inflammation, leading to increased ROS product thus
exacerbating this adverse cycle (Martinon, 2010; Reuter et al.,
2010). In short, oxidative stress and inflammation which are
markers of atherosclerosis, promote to the progression of
atherosclerosis.

NADPH-Oxidase 4 (NOX-4) and Oxidative
Stress
Inflammation and oxidative stress are regarded as main factors
accelerating angiogenesis in the early stage of atherosclerosis
(Lozhkin et al., 2017). NOXs include an important and widely
expressed enzyme family with ROS generation as its primary
function. NOX-4 is a universally expressed in the VSMCs
that are primary components of vascular wall, the functions

of which are crucial determinants of vascular homeostasis
and disease (Lassègue et al., 2001; Lu et al., 2013). NOX-
4 mediates cardiovascular disease in hyperlipidemic mice and
expression of NOX-4 in wall of the human artery is related
with atherosclerotic severity (Vendrov et al., 2015). NOX-4
expression and activity during the aging process enhances cellular
and mitochondrial oxidative stress, vascular inflammation,
dysfunction, and atherosclerosis. Lozhkin et al. (2017) observed
the enhanced expression and activation of NOX-4 in Apoe−/−

mice, which they ascribed to the pro-inflammatory phenotype
in the VSMCs that was abduced by an age-related increase in
transforming growth factor β1 thus enhancing atherosclerosis.

Oxidized HDL (ox-HDL) and Oxidative
Stress
HDL forfeits its cardioprotective capability due to oxidative
modification through ROS in advanced atherogenesis (Xiao
et al., 2015). Monocytes play a pivotal role in the atherogenesis;
threfore, the effects of both native and ox-HDL in monocyte–
macrophage functions related with atherogenesis are major
research subjects (Soumyarani and Jayakumari, 2012; Wang
et al., 2014b). Human blood monocytes were cultured under
normal circumstances in the previous study (Callegari et al.,
2006) to evaluate cells dealed with native HDL and ox-
HDL at the diverse concentrations for different time intervals.
The production of ROS was evaluated founded on the ROS-
mediated dichlorodihydrofluorescein diacetate fluorescence of
cells (Zhang et al., 2010). Simultaneously, the liberation of
matrix metalloproteinases (MMPs) as well as tumor necrosis
factors-a (TNF-a) was quantitated with an ELISA kit and gelatin
zymography, respectively (Radhika et al., 2007). The HDL
treatment enhanced the generation of ROS in the concentration-
dependent fashion, while natural HDL cannot this action (Zhang
et al., 2010; Vendrov et al., 2015). The expression of inflammatory
factors was also discovered to be higher in cultured cells with
ox-HDL than natural HDL (Vendrov et al., 2015). In effect, the
oxidative modification of HDL abduces pro-inflammatory effects
and oxidative stress in the monocyte-derived macrophagocytes
during atherogenesis.

NLRP3 Inflammasome and Oxidative
Stress
NLRP3 inflammasome takes part in the chronic inflammation
under atherogenesis in the vascular walls (Duewell et al.,
2010). Duewell et al. (Piedrahita et al., 1992; Duewell et al.,
2010) reestablished deadly irradiated LDL receptor-deficient
mice with bone marrow from mice who were then kept
the high-cholesterol diet for 8 weeks. In the radiation bone
marrow chimerisms, the LDL receptor-deficient radio-resistant
parenchyma gave animals to be hypercholesterolemic when given
the high-lipid diet. Further, these macrophagocytes and others
leukocytes lacked of NLRP3-inflammasome and interleukin-1
(IL-1) pathway compositions required to cholesterol crystals of
reaction (Martinon et al., 2009). The findings showed that the
NLRP3 inflammasome activated through macrophages of bone
marrow devotes primarily to diet-abduced atherosclerosis.
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AUTOPHAGY INDUCES OXIDATIVE
STRESS IN ATHEROSCLEROSIS

Autophagy, as coined by the Belgian biochemist Christian de
Duve in 1966 (De Duve and Wattiaux, 1966), is the lysosome-
dependent degradation of cytoplasm and damaged cell organelles
like mitochondrion, ER, and peroxisomes, along with the
clearing away of intracellular pathogens (Mei et al., 2015).
Autophagy is an evolutionarily preserved process through which
cell organelles and intracellular proteins are sealed with double-
membrane vesicles and then diverted to lysosomes and degraded
(Mizushima and Komatsu, 2011). Autophagy is considered a
survival mechanism (Martinet and De Meyer, 2009). Excessive
autophagic activity can destruct important components, such
as the organelles and cytosol, but most obviously the ER and
mitochondria, ultimately resulting in the complete collapse of
cellular actions and autophagic death (Levine and Yuan, 2005).
Autophagy is related to CVD because it is triggered by hypoxia,
inflammation, ER stress, oxidized lipoprotein, and oxidative
stress which are all involved to some extent in atherogenesis
(Margariti et al., 2013; Ouimet, 2013).

Light Chain 3 (LC3) and Oxidative Stress
In the human monocyctic THP-1 cells, autophagy-like
ultrastructural characteristics through transmission electron
microscopy as well as the expression of autophagy hallmarker
LC3-phosphatidylethanolamine conjugate (LC3-II) through
Western blot analysis (ATCC) displayed that the autophagy
is a mainly component in the development of atherosclerosis
(Mei et al., 2015; Yuan et al., 2016). 7-Oxysterols are major
toxic components in ox-LDL and human atheromatous lesions
which lead to lysosomal membrane permeabilization (LMP)
and cell death (Li et al., 2001). Exposed to 7-oxysterols abduces
autophagic vacuole synthesis in shape of enhanced autophagy
hallmarker microtubule-related protein. In addition, autophagy
induction minimizes in the cell lipid cumulation abduced by
7-oxysterols (Larsson et al., 2006). The discovery emphasize
significance of autophagy in countering LMP and cell death in
the atherosclerosis.

Lectin-Like ox-LDL Receptor-1 (LOX-1)
and Oxidative Stress
The ox-LDL-dependent activation of the LOX-1 causes apoptosis
in cells as well as probably participates in atherosclerosis.
Autophagy may effectively substitute for apoptosis in endothelial
cells (Nowicki et al., 2007). Nowicki et al. (Claise et al., 1999;
Nowicki et al., 2007) analyzed expression of LOX-1 and the
ox-LDL-dependent action in the EA.hy926 cells amid serum
starvation to discover which the serum starvation upregulates
LOX-1, while other ox-LDL treatment downregulates the
acceptor and enhances autophagy through increasing oxidative
stress. Other researchers (Ding et al., 2013) observed intense
autophagy, inflammatory signals (CD45 and CD68), as well as
toll-like receptor 9 (TLR-9) expression in LDL receptor (LDLR)
knockout mice raised with hyper-cholesterol diet. LDLR/LOX-
1 double knockout mice decreased autophagy, CD45 and CD68,
and TLR9 expression. A damaged mtDNA, which tends to be

very obvious in the LDLR knockout mouse, can be reduced by
LOX-1 deletion (Ding et al., 2013). To this effect, oxidative stress
damaged mtDNA which escapes autophagy abduces a strong
inflammatory response in the atherosclerosis.

Autophagy-Related 7 (ATG7) and Oxidative
Stress
Autophagy is triggered in the VSMCs of diseased arterial vessels
(Grootaert et al., 2015). The autophagy gene Atg7 in the
Atg7−/− VSMCs enhances the accumulation of SQSTM1/p62
and accelerates stress-abduced premature senescence, such as cell
and nuclear hypertrophy, senescence-associated GLB1 activity,
and CDKN2A-RB-mediated G1 hyperplastic block (Komatsu
et al., 2005). The transfection of SQSTM1-coding plasmid DNA
in the Atg7C/C VSMCs abduced semblable characteristics in
another study, indicating that the cumulation of SQSTM1
promotes VSMC senility (Newby, 2006). However, compared
with various controls, the Atg7−/− VSMCs are accelerate
to oxidative stress-abduced cell death (Komatsu et al., 2005;
Newby, 2006). The function may be ascribable to the nuclear
translocation of transcription factor (NFE2L2) bringing about
the upregulation of some antioxidative enzymes (Sasaki et al.,
2012). These studies have suggested that the defective autophagy
in the VSMCs expedites the progression of oxidative stress-
anduced premature senility as well as enhances the formation of
atherogenesis.

APOPTOSIS INDUCES OXIDATIVE STRESS
IN ATHEROSCLEROSIS

Apoptosis is a form of cell death featured as cell contraction,
chromatin condensation, and membrane blebbing (Kerr et al.,
1972). Membrane-enclosed apoptotic cell debris is engulfed
either via the surrounding cells or by phagocytes within its
vicinity. Within the cardiovascular system, augmented apoptosis
occurs in advanced human atherosclerotic plaques (Kockx
et al., 1998; Littlewood and Bennett, 2003). Apoptosis is
a crucial component in the progression of atherosclerosis.
All cell genres existing in atherosclerotic plaques undergo
apoptosis, embracing SMCs, lymphocytes, endotheliocytes,
and macrophages (Schrijvers et al., 2005). Several known
mechanisms of the oxidative stress-mediate and apoptosis in the
atherosclerosis are described below.

Granulocyte–Macrophage Colony
Stimulating Factor (GM–CSF) and
Oxidative Stress
GM–CSF is a cell growth factor involved in the pathogenesis
mechanism of atherosclerosis and others inflammatory diseases
(Stanley et al., 1994). A recent study (Subramanian et al., 2015)
used mice raised with a western diet for 12 weeks to quantize
the parameters of plaque progression in aorta. GM–CSF-deficient
mice demonstrated the substantial reduce in the two crux
hallmarks of the advanced atherosclerosis; this suggests that the
GM–CSF boosts plaque progression (Subramanian et al., 2013).
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The study revealed that the mechanism involves in the GM–
CSF-mediated generation of the IL-23, where adds apoptosis
sensitivity to macrophages through increasing the proteasomal
degradation of the cell-survival protein B-cell lymphoma-2 (Bcl-
2) along with oxidative stress in the LDL-driven atherosclerosis
(Tausend et al., 2014).

Protein Kinase Cβ (PKCβ) and Oxidative
Stress
Protein kinase Cβ (PKCβ), a membership of PKC family of
the serine-threonine protein kinases, is given to be a crucial
pro-apoptotic signal in numerous cell genres (Larroque-Cardoso
et al., 2013). In atherogenesis, exorbitant LDL accumulate
in subendothelial space which they play sorts of oxidized
modifications (Reyland, 2007). The ox-LDL influence the
vulnerable balance between survival and death in cells, resulting
in plaque instability leading to atherothrombotic events (Salvayre
et al., 2002). PKCβ is pro-apoptotic in numerous cell genres;
a recent study (Larroque-Cardoso et al., 2013) was conducted
to survey its latent action in regulation of VSMC apoptosis
abduced by ox-LDL. Human VSMC silenced for PKCβ was
effectually protected against ox-LDL-induced apoptosis, and
PKCβ activation hinged on the ROS produced by ox-LDL
(Salvayre et al., 2002; Reyland, 2007). The same study also
indicated that PKCβ takes part in the ox-LDL-abduced apoptotic
signaling primarily via IRE1a/JNK pathway.

Haptoglobin 2-2 (Hp2-2) Plaques and
Oxidative Stress
Intraplaque hemorrhage liberates free hemoglobin (Hb) (Levy
et al., 2007). Damaged Hb clearance causes the oxidative stress
resulting in the plaque formation (Asleh et al., 2005). Combining
of Hp to Hb decreases iron-abduced oxidative responses (Asleh
et al., 2005; Levy et al., 2007). A total of 26 populations
aortic plaques were Hp-genotyped in the previous study to
compare Hp2-2 plaques with the control plaques (Hp1-1/2-1)
according to their respective iron levels measured through Perl’s
staining (Purushothaman et al., 2012); and immunostaining was
employed to test oxidation-specific epitopes (OSEs) mirroring
malondialdehyde (MDA) epitopes and oxidized phospholipids.
In the study, the active caspase-3 and DNA fragmentation
were surveyed, respectively (Purushothaman et al., 2012). These
outcomes have provided notable insight into the genetic lean to
oxidative stress and the correlation both macrophage apoptosis
and OSEs related with advanced atherosclerosis in the human
Hp2-2 plaques.

B-Cell Lymphoma-2 (Bcl-2) and Oxidative
Stress
The Bcl-2 gene maybe significant in regards to the formation
of atherosclerotic plaques (Zurgil et al., 2007). Apoptosis in
pathophysiology of atherosclerosis had indicated by powerful
relevance between Bcl-2 protein and apoptosis in the progression
of atherosclerotic, as well as the suppression of ox-LDL-abduced
apoptosis through the Bcl-2 protein (Wang et al., 2001) and
Bax expression within human fatty streaks (Hata et al., 2001). A

clinical study (Zurgil et al., 2007) on lymphocytes acutely isolated
from 25 angina sufferers and 27 healthy donors were tested
to assess in apoptotic affairs educed by lysophosphatidylcholine
(LPC) in the static and phytohemagglutinin (PHA)-activated
lymphocytes, as well as to gauge the expression of the Bax
and Bcl-2 and levels of intracellular ROS (Wang et al., 2001).
LPC was found to abduce apoptosis with augmenting levels
of the intracellular ROS. The exposure of the PHA-activated
PBL to LPC was correlated to a markedly lower expression of
Bax/Bcl-2 ratio (Wang et al., 2001; Zurgil et al., 2007). Oxidative
stress concerned to apoptosis-associated protein expression led
to undue or altered cell and immune responses in diverse stages
of atherogenesis.

Superoxide Dismutase (SOD) and Oxidative
Stress
The increased sensitivity of monocytes to ox-LDL-induced
oxidative stress may be attributed to the concomitant
overexpression of SOD in monocytes undergoing apoptosis.
Zurgil et al. (2004) used the mechanism of cell death in 2-model
systems, T lymphocytes and monocytic cell line exposed to
ox-LDL. Apoptotic cell death was analyzed by evaluating cell
size, nucleic DNA content, and plasma membrane asymmetry.
The radical scavenger SOD declined the apoptotic effects of
the ox-LDL in the time-dependent and dose-dependent styles
(Kinscherf et al., 1998; Zurgil et al., 2004). Ox-LDL binding
also activates the macrophages and monocytes and irritates
SOD expression, which enhances concentrations of hydrogen
peroxide through interfered ROS levels (Kinscherf et al., 1997,
1998). The process is correlated to a great deal of macrophage
apoptosis bringing about atherosclerotic lesion (Reid et al.,
1993).

MITOCHONDRIA INDUCE OXIDATIVE
STRESS IN ATHEROSCLEROSIS

Mitochondria are dynamic organelles in eukaryotic cells with
heterogeneous morphology that is dominated by the equilibrium
created by alternating fission and fusion (Chang et al., 2010).
The dynamic nature of mitochondria includes the domination
of its architecture (distribution and morphology), its movement
across the cytoskeleton, and the connectivity mediated by
restraining and fusion/fission events (Liesa et al., 2009).
Mitochondrion and nonphagocytic NOXs are main sources
of chronic ROS generation beneath physiological conditions
(Luft and Landau, 1995; Sorescu and Griendling, 2002). And
enhancedmitochondrial ROS generation and functional disorder
are correlated to CVD and numerous other diseases (Gropen
et al., 1994; Anan et al., 1995; Wallace, 1999). Furthermore,
mitochondrial dysfunction is conducive to the development
of atherosclerosis as-evidenced by animal and human models
of oxidative stress (Madamanchi and Runge, 2007, 2013).
Mitochondrial dysfunction can also boost these pro-atherogenic
processes; mitochondrial damage participates in atherogenesis by
mtDNA damage (Ballinger et al., 2002). Some substances actively
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participate in the mitochondrial oxidative damage and accelerate
atherosclerosis progression described as follows.

Retinol-Binding Protein 4 (RBP4) and
Oxidative Stress
RBP4 is the sole carrier of retinols, and is hence takes charge
of the transport of retinol from liver storages to peripheral
tissues (Blaner, 1989; Newcomer and Ong, 2000). Serum RBP4
increasing has been connected to cardiovascular system disease.
Researchers (Wang et al., 2015) found a mechanism by which
RBP4 causes the oxidative stress of blood vessels and promotes
the pathogenesis of atherosclerosis. In another study, RBP4
therapy enhanced superoxide production in the dose-dependent
way in the human aortic endothelial cells (HAECs) (Blaner, 1989;
Newcomer and Ong, 2000; Wang et al., 2015). Exposed to RBP4
also expedited mitochondrial function disorder, as-ascertained
by lessened mitochondrial contents and completeness as well as
membrane potential (Wang et al., 2014a). The RBP4 stimulation
restrained protein kinase B signaling in the HAECs (Wang
et al., 2015). The RBP4-Tg mice also showed serious vascular
oxidative injure as well as mitochondrial function disorder in
aorta, compared with widespread-type C57BL/6J mice (Blaner,
1989; Newcomer and Ong, 2000; Wang et al., 2015).

Macrophage Mitochondrial Oxidative
Stress (mitoOS)
A previous study investigated the significance of macrophage-
mitoOS using mitochondrial catalase (mCAT) transgenic mice
and Ldlr−/− mice in which the oxidative stress suppressor
catalase was expressed in mCAT in macrophages (Wang
et al., 2014a). MitoOS in lesional macrophages was markedly
suppressed in these mice, bringing about a notable reduction in
aortic damaged zone (Moore and Tabas, 2011). mCAT lesions
had fewer monocytes, lower levels of the monocyte chemotactic
protein-1 (MCP-1), as well as less Ly6chi monocyte infiltration
into the lesions (Wang et al., 2014a). Reduction in damaged
MCP-1 was attributed to the inhibition of others inflammation
markers as well as reduced nuclear factor-k-gene binding (NF-
κB), suggesting reduced activity of the inflammatory NF-κB
pathway (Moore and Tabas, 2011; Wang et al., 2014a). In
incubated macrophages employing models of mitoOS, the results
found that the mCAT inhibited the expression of MCP-1
through reducing the activity of Iκ-kinase-RelA NF-κB pathway
(Schriner et al., 2005). These results suggest that the mitoOS in
injury macrophages enhances the progression of atherosclerotic
through accelerating the NF-κB-mediated access of monocytes
and others processes of inflammatory (Schriner et al., 2005;
Moore and Tabas, 2011; Wang et al., 2014a).

Mitochondrial Genome (mtDNA) and
Oxidative Stress
In the pathology, some illnesses are related to mutations
in mtDNA (Sobenin et al., 2013). Mitochondrial function
disorder creates favorable qualifications for the pathogenesis
of atherosclerosis (Madamanchi and Runge, 2007, 2013).
Researchers (Sazonova et al., 2009; Sobenin et al., 2013) have

studied that relation of mitochondrial gene mutation with
the severity of atherosclerosis in 190 sufferers from Russia
in particularly high coronary heart disease (CHD) prevalence.
The cIMT was detedted by mtDNA heteroplasmy and B-mode
ultrasonography through pyrosequencing technique (Sazonova
et al., 2009). The results manifested that mitochondrial gene
mutation play a part in the development of atherosclerosis.

Homocysteine (Hcy) and Oxidative Stress
Hcy was found to induce endothelial function disorder and
atherosclerosis through ROS production (Austin et al., 1998).
Meanwhile, Hcy-abduced ROS in the endotheliocytes can result
in enhanced mitochondrial dysfunction (Kanani et al., 1999).
The previous study (Perez-de-Arce et al., 2005) showed that
Hcy-abduced ROS results in the NF-κB activity as well as
enhances the formation of 3-nitrotyrosine (3-NT). In addition,
the levels of nuclear respiratory factor-1(NRF-1), mitochondrial
biogenesis factor, as well as mitochondrial transcription factors
A (Tfam) expression were notably enhanced in the Hcy-
handled cells (Perez-de-Arce et al., 2005). And these variations
were accompanied with an augmentation in the mitochondrial
quality and the mRNA contents, and enhance in levels of
protein expression of cytochrome c oxidase subunit III (Kanani
et al., 1999; Perez-de-Arce et al., 2005). These influences were
effectively protected from pretreatment with antioxidants as well
as catechin. In short, the ROS is a significant mediator of the
mitochondrial dyfunction ebduced by Hcy.

ANGIOTENSIN II (ANG II) AND OXIDATIVE
STRESS

Ang II induced oxidative stress participates in the development
of atherosclerosis (Mehta and Griendling, 2007). At the same
time, this signaling pathway CD40/CD40L plays a significant
part in the progression of atherosclerotic plaque formation
and rupture (Law et al., 1990). Previous researchers (Souza
et al., 2009) tested the hypothesis that Ang II enhances the
CD40/CD40L activated in the angiocellulars, as well as that ROS
is a portion of the signaling cascade which regulates expression
of CD40/CD40L. In incubated human coronary artery smooth
muscle cells, exposed of TNF-α or IL-1 beta exhibit enhanced
superoxide production and increased expression of CD40 which
can be confirmed by immunoblotting and electron paramagnetic
resonance analyses (Law et al., 1990; Souza et al., 2009). The
Ang II stimulus of angiocellulars results in an ROS-dependent
enhancement in the activity of CD40/CD40L signaling pathway
during atherosclerosis.

EPIGENETIC, DNA METHYLATION, AND
HISTONE MODIFICATION INDUCE
OXIDATIVE STRESS IN
ATHEROSCLEROSIS

Epigenetics refers to sorts of dynamic characteristics that
modify genomic function under exogenous impact and offer
a molecular substrate that permits the steady reproduction
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of the gene expression statuses from one generation cells to
the next (Feinberg, 2008). Epigenetic modifications, such as
histone modifications and DNA methylation, appear to play an
importantly effect in the processes underlying atherosclerosis
(Borghini et al., 2013). Atherosclerosis begins a focal disease
resulting from complicated gene-surroundings interplays (Lusis,
2012). Epigenetics describes phenomena connected to the
expression of heritable information independent of changes in
DNA sequence. DNA methylation reflects altered functions of
cell types participating in immune or inflammatory reactions
during atherosclerosis (Zaina et al., 2005). Following previsional
early validations of the flow actions upon chromatin remodeling
(Illi et al., 2003) and histone encoding (Fish et al., 2005), others
several mechanisms like the DNA methyltransferases (Dunn
et al., 2014; Jiang et al., 2014; Zhou et al., 2014) and the
microRNAs (Fang et al., 2010; Zhou et al., 2011; Fang and Davies,
2012; Kumar et al., 2014) are known to adjust the flow-sensitive
endothelial phenotype.

Ox-LDL and Oxidative Stress
Ox-LDL exposure induces various functions in the
endotheliocytes, such as the liberation of cytokines, chemotactic
factors, and growth factors, as well as the expression of the
surface molecules which adjust hemostatic properties and
endothelial permeability; it is also associated with variations in
the cell proliferaton, division, and apoptosis (Navab et al., 2004;
Lahoute et al., 2011). A recent study (Yang et al., 2014) suggested
that in HCAECs treated with ox-LDL alone, cell viability, DNA
synthesis, as well as the expression of promoted survival fibrocyte
growth factor 2 (FGF2) markedly decrease. The suppression
impacts of ox-LDL were observably decreased in the HCAECs
co-treated with the anti-malondialdehyde (anti-MDA) (Yang
et al., 2014). The study assessed the influences of a group of the
regulators on the signal transduction pathways of the MDA in
ox-LDL-dealed HCAECs to discover that MDA-abduced cell
toxicity is mediated partly via the Akt pathway (Yang et al.,
2014). These outcomes of genome DNA sequencing suggested
that treated with ox-LDL in the HCAECs, GC promoter of FGF2
was methylated at the cytosine residues and that co-treatment
with anti-MDA significantly decreased ox-LDL-abduced FGF2
promoter methylation (Valko et al., 2006; Yang et al., 2014).
These results suggest that ox-LDL destroys the growth process
of the HCAECs via the MDA-dependent pathway about the
suppression of the FGF2 transcription as well as the methylation
of FGF2 promoter (Navab et al., 2004; Valko et al., 2006; Lahoute
et al., 2011; Yang et al., 2014). The recently realized pathogenesis
of epigenetics may underlie atherosclerosis in the subjects with
cardiovascular system disease.

DNA Methylation and Oxidative Stress
Atherosclerosis is an artery disease of heterogeneous distribution
in which endothelium acts a significant central effect (Lusis,
2012). A recent study (Jiang et al., 2015) showed methylome
blueprint for the spatio-temporal analysis of the lesion
susceptivity induced to endothelial functional disorder in
the complicated flow circumstances in the vivo. Exposed to
particulate air contamination had also been associated with

enhanced death, especially in cardiovascular system disease
(Jiang et al., 2015). And lower DNA methylation contents had
been observed in the process linked to cardiovascular events, as
oxidative stress and atherosclerosis (Baccarelli et al., 2009; Jiang
et al., 2015). Baccarelli et al. (2009) researched DNA methylation
in scattered nucleotide element-1 and Alu repeating elements
via the pyrosequencing of 1,097 specimens from 718 patients
in Boston. Other researchers employed covariate-regulated
mingled models to explain the within-patient relevance in the
duplicated measures; reduced duplicated-element methylation
was observed after exposed to traffic-related pollutant granules
(Baccarelli et al., 2009). This finding elucidated the role of DNA
damage and mending in the pathogenesis of atherosclerosis and
the connection to epigenetic modifications (Figure 2).

THERAPEUTIC EFFECT OF
ANTIOXIDANTS IN ATHEROSCLEROSIS

Antioxidant defense systems are the main material basis for
protection against free radicals. They can eliminate free radicals
before they attack target cells by preventing cellular damage
and monitoring the concentration of free radicals throughout
the body. As discussed above, oxidative stress is related with
the formation and development of the atherosclerotic plaques.
As a consequence, antioxidant therapy is an ordinary ways to
atherosclerosis treatment (Table 1). Clinical trials on antioxidant
therapy have been generally unsuccessful, though probucol, the
most powerful antioxidant, has been found to inhibit ox-LDL,
delay atherosclerosis progression, and reduce the occurrence
of vascular events. Angiotensin-converting enzyme inhibitors
(ACEI), vitamins, angiotensin receptor antagonists, calcium
antagonists, as well as statins can effectively supress NOX activity
and mitigate oxidative stress (Paravicini and Touyz, 2008).

Antioxidant Vitamins
Previous studies have obviously elucidated the function of
oxidative stress in the development of diseases. Numerous
proofs manifests that increased lipid oxidation expedites
atherogenesis (Salonen et al., 1992, 1997; Gaut and Heinecke,
2001; Witztum and Steinberg, 2001), as well as that the
employ of antioxidant supplements decreases atherosclerosis
(Azen et al., 1996; Gale et al., 2001). The study suggested
that vitamin E and vitamin C are the most significant dietary
antioxidation treatment (Frei et al., 1989; Diaz et al., 1997);
when vitamin E serves as an antioxidant, it is oxidized to
pernicious radicals and have to be decreased back to tocopherol
through secondary supplements, such as vitamin C (Packer
et al., 1979). Wang (2005) found that vitamins C and vitamins
E protected oxidative injure abduced by hydrogen peroxide in
the vascular endothelial cells. These two vitamins maintain cell
morphology, reduce lipid peroxidation, and improve anti-lipid
peroxidation.

Recent large-scale clinical tests (Salonen et al., 2003)
have yielded hopeful results (Table 2). Bleys et al. (2006)
conducted a meta-analysis indicating that vitamin supplement
therapy cannot prevent the atherosclerosis progression, however.
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FIGURE 2 | Inflammation, mitochondria, autophagy, apoptosis, and epigenetics-induced oxidative stress during atherosclerosis. ox-LDL, oxidized low-density

lipoprotein; ROS, reactive oxygen species; 7-OOH, 7-hydroperoxide; 7-OH, 7-hydroxide; 7=O, 7-ketone; ATG5, autophagy protein 5; PKCß, protein kinase Cß;

ox-HDL, oxidized high-density lipoprotein; ER stress, endoplasmic reticulum stress; TGF-β1, transforming growth factor β1; NOX-4, nicotinamide adenine dinucleotide

phosphate (NADPH)-oxidase 4; TNF-a, tumor necrosis factors-a; MMP-9, matrix metalloproteinase-9; NLRP3, Nod-like receptor pyrin domain-containing protein 3;

MMP-2, matrix metalloproteinase-2; LC3, light chain 3; TLR-9, Toll-like receptor 9; NFE2L2, nuclear translocation of the transcription factor; ATG7, autophagy-related

7; GM–CSF, granulocyte–macrophage colony stimulating factor; Hp2-2, haptoglobin 2-2; Bcl-2 and Bax, apoptotic regulatory proteins; LPC, lysophosphatidylcholine;

SOD, superoxide dismutase; Ang II, angiotensin II; ATlR, angiotensin-converting enzyme receptor 1; RBP4, retinol-binding protein 4; MCP-1, monocyte chemotactic

protein-1; Hcy, homocysteine; NF-kB, nuclear factor-k-gene binding; Txnip, thioredoxin-interacting protein; NRF-1, nuclear respiratory factor-1; PI3K/AKT,

phosphatidylinositol 3 kinase/protein kinase B; Tfam, mitochondrial transcription factor A; MIT dysfunction, mitochondrial dysfunction; mtDNA damage, mitochondrial

DNA damage; FGF2, fibroblast growth factor 2; MDA, malondialdehyde.

Further, both Lee et al. (2005) and Sesso et al. (2008) failed
to prove that vitamin consumption benefits cardiovascular
endpoints via randomized controlled trials including middle-
aged women and men. That being said, several small clinics
have reported that orally administered vitamins improve vascular
endothelial function by reducing the occurrence and progress
of atherosclerosis (He, 2009). Disparities in results across
these studies may be attributed to antioxidant limitations. The
extant antioxidant atherosclerosis research is overwhelmingly
negative; the use of drugs is usually inconclusive and relevant
guidelines do not include vitamin antioxidants as treatment for
CVD.

ACEI and ATLR Antagonists
ACEI is an angiotensin converting enzyme inhibition that
guards against the generation of Ang II, thus preventing vessel
contraction, stimulating aldosterone liberate, and enhancing
blood volume, blood pressure, and nitric oxide generation.
It can also protect vascular endothelial cells and improve
cardiomyocyte resistance to free radical damage. Finally, it
can effectively prevent atherosclerosis, reduce the incidence of

cardiovascular events, and treat atherosclerosis with a wide range
of applications.

ACEI and ATlR antagonists are commonly used to treat
coronary atherosclerotic heart disease. Ang II has been
demonstrated to activate NOXs and XO, enhancing O•−

2
production and promoting ROS (Raffaele and Peter, 2007).
ACEI and ATlR antagonists may block the effect of Ang
II, effectually blocking the origin of ROS generation, thereby
inhibiting endothelial cells as well as decreasing atherosclerotic
factor expression.

Statins
Statins can decrease the risk of relapsed cardiovascular affairs
by 30% (Akdim et al., 2007) as well as are the major source
of medications for atherosclerosis. They not only reduce the
lipid-lowering role of medications, but also participate in
the adjustment of cellular proliferation, intracellular signal
transduction, and others functions; they prevent inflammatory
response, improve endothelial function, block the formation
of foam cells, and inhibit anti-platelet aggregation (Chapman,
2007). Statins also inhibit certain coagulation factors and MMPs
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TABLE 1 | Main antioxidants and mechanisms.

Antioxidant Mechanism References

Vitamin Protecting against oxidative damage induced by hydrogen peroxide. Luft and Landau, 1995; Kinscherf et al.,

1997; Liesa et al., 2009; Chang et al.,

2010

ACEI Increasing plasma bradykinin to diastolic coronary vessels and peripheral blood vessels. Gropen et al., 1994

ATlR antagonists Blocking the action of Ang II; blocking ROS production from the source; inhibiting the expression of

vascular endothelial cells.

Anan et al., 1995

Statins Increasing NO bioactivity; upregulating NOS expression. Blaner, 1989; Ballinger et al., 2002;

Madamanchi and Runge, 2007

Probucol Reducing plasma oxygen free radical concentration; inhibiting LDL formation. Wang et al., 2014a, 2015

AGI-1067 Protecting the vascular system with antioxidant properties. Schriner et al., 2005; Sobenin et al., 2013

ACEI, angiotensin-converting enzyme inhibitors; ATlR antagonists, angiotensin-converting enzyme receptor 1 antagonists; AGI-1,067, succinobucol; NO, nitric oxide; NOS, nitric oxide

synthase; LDL, low-density lipoprotein.

TABLE 2 | Main clinical trials on antioxidant vitamin therapy.

Study Participants

(patients)

Intervention Follow-up

(year)

Outcomes

CHAOS 2,002 Vitamin E (800 mg/d) or (400 mg/d) 15 Reduces cardiovascular events, but cardiovascular mortality

is not obvious.

HPS 20,536 Vitamin E (600 mg/d), Vitamin C (250 mg/d), and

β-carotene (20 mg/d)

5 Slightly affects mortality and risk.

ASAP 946 Vitamin E (136 mg) plus Vitamin C (250 mg) twice daily 3 Slows down atherosclerotic progression in

hypercholesterolemic individuals.

PPP 4,784 Vitamin E (300 mg/day) 5 Vitamin E effect is not obvious.

CHAOS, Cambridge Heart Antioxidant Study; HPS, Heart Protection Study; ASAP, Antioxidant Supplementation in Atherosclerosis Prevention; PPP, Primary Prevention Project.

in the product of unstable plaques (Chapman, 2007). In fact,
high-strength statin treatment can effectively prenent plaque
progression.

Hypercholesterolemia can activate ROS, reducing nitric oxide
activity and inducing endothelial dysfunction. Statins can reduce
cholesterol and act on vascular cell NADPH oxidase to increase
the endothelial function. Statins also regulate lipid metabolism
and can inhibit NADPH oxidase-induced O•−

2 . Hao et al. (2005)
found that simvastatin could obviously enhance the activation
of antioxidative enzymes submited as increases in the SOD
and GPx and a reducing in MDA levels in a hyperlipidemia
rabbit model, thereby improving the antioxidant capability of
the body and postponing the progression of atherosclerosis.
The Familial Atherosclerosis Treatment Study demonstrated the
significant efficacy of lovastatin combined with colestipol for
atherosclerosis (Brown et al., 1990). In addition, the findings of
the University of California Special Centre of Research Trial and
Monitored Atherosclerosis Regression Study strongly supported
the beneficial effects of statin therapy (Blankenhorn et al., 1993).

Probucol and AGI-1067 (Succinobucol)
Probucol was first listed as a lipid-lowering drug in the
United States in 1977. It is currently recognized as the most
promising and effective first-line antioxidant in the treatment
of atherosclerosis. The drug exerts a strong antioxidant effect
originating mainly from oxygen ion capture and chain-breaking
properties (Tardif, 2003). Probucol molecules containing

phenolic hydroxyls are readily oxidized and break open,
capturing oxygen ions and combining to form a stable phenoxy
group which reduces plasma oxygen free radical concentration
and inhibits LDL formation. Russell et al. (1998) observed
that blood lipid levels in patients who received probucol were
not significantly reduced relative to those in a control group;
however, arterial and myocardial ischemic damage was markedly
reduced compared to the control, showing suggesting that
the protective function of probucol is indeed its antioxidant
effects. Said effects primarily happen at the blood vessel
endothelium level and are showed as significant suppression of
macrophages in the endothelial surface adhesion, which boosts
endotheliocyte as well as smooth muscle cell functionality. Yan
et al. (2003) also discovered that probucol markedly restrains
protein secretion and gelatin degradation activity in the MMP-9
abduced by ox-LDL in the THP-1 cellulas in the absence of the
cell activity. Probucol may increase the secretion and activity
of monocyte-macrophage MMP-9 in the plaque, reducing
collagen degradation in the plaque and stabilizing it to prevent
atherosclerosis.

AGI-1067 is a stable analog for probucol as a vascular
protective agent with equivalent antioxidant properties.
Kunsch et al. (2004) found that anti-inflammatory and anti-
atherosclerotic roles of the AGI-1067 are connected with their
selective suppression of redox-sensitive gene expression in
endotheliocytes and monocytes; probucol also inhibits in vitro
human endothelial cell basal active oxygen cluster levels, the
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level of young monocyte lines, and hydrogen peroxide-induced
ROS. Sundell et al. (2003) conducted animal experiments to find
that AGI-1067 in kiwi, L-deficient mice, and ApoE-deficient
mice suppresses the progression of atherosclerosis because of
lipid-lowering functions and anti-inflammatory functions. Phase
III trial of aggressive reduction of inflammation stops events
manifested that the AGI-1067 can decrease the morbidity of
stroke and myocardial infarction in sufferers in atherosclerosis
(Tardif et al., 2008).

CONCLUSION

Cardiovascular and cerebrovascular diseases caused by
atherosclerosis present a serious threat to human health
worldwide. Oxidative stress is the focus of most studies on
atherosclerosis. The extant literature clearly demonstrates that
elevated ROS levels resulting in angiooxidative stress act a crucial
mechanical effect in the devolepment of atherothrombotic
(Leopold and Loscalzo, 2009). For this reason, clearing the
body ROS or increasing antioxidant capacity are deemed key
points in the precaution and therapy of atherosclerosis; however,
the precise mechanisms have yet to be elucidated. In this
review, we discussed the effects of macrophages, inflammation,

mitochondria, autophagy, apoptosis, and signaling pathways
on oxidative stress in atherosclerosis. Recent studies have
revealed a number of potentially effective treatments for
atherosclerosis-related diseases. Contrary to some clinical
results on antioxidant treatments, probucol and AGI-1067 have
shown notable potential for application. The atherosclerosis
research community has developed a more comprehensive
understanding of oxidative stress, and antioxidant therapy is
likely to emerge as an effective approach to atherosclerosis
treatment.
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