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Bicuspid aortic valve (BAV) is a common (0.5–2.0% of general population) congenital

heart defect with increased prevalence of aortic dilatation and dissection. BAV has

an autosomal dominant inheritance with reduced penetrance and variable expressivity.

BAV has been described as an isolated trait or associated with syndromic conditions

[e.g., Marfan Marfan syndrome or Loeys-Dietz syndrome (MFS, LDS)]. Identification of

a syndromic condition in a BAV patient is clinically relevant to personalize aortic surgery

indication. A 4-fold increase in BAV prevalence in a large cohort of unrelatedMFS patients

with respect to general population was reported, as well as in LDS patients (8-fold). It

is also known that BAV is more frequent in patients with thoracic aortic aneurysm (TAA)

related to mutations in ACTA2, FBN1, and TGFBR2 genes. Moreover, in 8 patients with

BAV and thoracic aortic dilation, not fulfilling the clinical criteria for MFS, FBN1mutations

in 2/8 patients were identified suggesting that FBN1 or other genes involved in syndromic

conditions correlated to aortopathy could be involved in BAV. Beyond loci associated

to syndromic disorders, studies in humans and animal models evidenced/suggested

the role of further genes in non-syndromic BAV. The transcriptional regulator NOTCH1

has been associated with the development and acceleration of calcium deposition.

Genome wide marker-based linkage analysis demonstrated a linkage of BAV to loci on

chromosomes 18, 5, and 13q. Recently, a role forGATA4/5 in aortic valvemorphogenesis

and endocardial cell differentiation has been reported. BAV has also been associated with

a reduced UFD1L gene expression or involvement of a locus containing AXIN1/PDIA2.

Much remains to be understood about the genetics of BAV. In the last years,

high-throughput sequencing technologies, allowing the analysis of large number of genes

or entire exomes or genomes, progressively became available. The latter issue together

with the development of “BigData” analysis methods improving their interpretation and

integration with clinical data represents a promising opportunity to increase the disease
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knowledge and diagnosis in monogenic and multifactorial complex traits. This review

summarized the main knowledge on the BAV genetic bases, the role of genetic diagnosis

in BAV patient managements and the crucial challenges for the comprehension of

genetics of BAV in research and diagnosis.

Keywords: bicuspid aortic valve, genetics, high-throughput sequencing, next generation sequencing, gene,

modifier gene, mendelian inheritance, multifactorial inheritance

INTRODUCTION

Bicuspid aortic valve (BAV) represents a common congenital
heart defect (0.5–2.0% of the adult general population) (Prakash
et al., 2014). Complications of BAV are: aortic regurgitation
(13–30%), aortic stenosis (12–37%), infective endocarditis (2–
5%), and dilatation of the thoracic ascending aorta (20–50%)
(Cecconi et al., 2006; Della Corte et al., 2013; Masri et al.,
2017); an increased risk of aortic dissection has been also
documented in BAV population (De Cario et al., 2014; Verma
and Siu, 2014; Masri et al., 2017). This is especially relevant as a
large part of BAV patients encounter a valve damage requiring
aortic surgery (the cumulative 25-years risk including 25% of
aortic surgery and 53% of receiving valve replacement) and the
high incidence of associated thoracic aortic aneurysm (TAA)
formation (Michelena et al., 2011). Such BAV complications,
if not early identified and appropriately managed, may indeed
represent long-term health risks. The surveillance approach to
the disease and the prophylactic surgical management of patients
resulted in a survival rate similar to that of the comparable
general population (Masri et al., 2017). A male preponderance
(M:F = 3:1) has been noted among BAVs. The latter issue is
of interest in relation also to the fact that BAV is frequent in
the XO Turner syndrome where it may be the most common
cardiac defect:>30% of patients with Turner syndrome had BAV
(Miller et al., 1983; De Cario et al., 2014; Masri et al., 2017).
Beyond the well-known hemodynamic bases of BAV, whereby
an altered blood flow through the valve during its formation
determines an abnormal cups formation, a role for genetics in
contributing to the development of the disease has also been
recognized (Longobardo et al., 2016). Although BAV usually
represents an isolated feature, its association with other clinical
manifestations suggestive of a syndromic disorder, has also been
described (Prakash et al., 2014). Moreover, both mathematical
algorithms and familial studies support the hypothesis that
BAV could be heritable (Cripe et al., 2004; Loscalzo et al.,
2007; Laforest and Nemer, 2012; Longobardo et al., 2016),
even though the genetic bases of BAV largely remain to be
elucidated. Actually, different molecular signaling pathways—
involved in the formation of the outflow tract (OFT) and in
the endocardial-mesenchymal transition (Laforest et al., 2011;
Laforest and Nemer, 2012), migration of neural crest cells (Jain
et al., 2011), or extracellular matrix (ECM) remodeling (Fedak
et al., 2003)—have been demonstrated to be involved in aortic
valve embryogenesis. Therefore, this issue supports the possible
contribution of different loci in influencing the development
of an abnormal valve formation and of other non-valvular
complications associated with the disease. The present reviewwill

focus on up to date information concerning the genetic loci found
to be associated with BAV (both syndromic and non-syndromic
cases), and on the progressive advancements in massive parallel
sequencing approaches able to generate a large volume of
genetic data, thus representing a substantial challenge in
contributing to faster elucidate the molecular bases of the disease,
and to allow differential diagnosis for a better BAV patients
management.

GENETICS OF BAV

What We Know So Far
The initial insight of a strong genetic component participating in
the pathogenesis of this cardiac malformation has been provided
by several studies revealing a high incidence of familial clustering.
Early studies showed the aortic valve disease, probably resulting
from BAV, to have a prevalence of 24% in families with more
than one family member carrying the valve malformation (Glick
and Roberts, 1994; Clementi et al., 1996). Shortly thereafter, a
9.1% prevalence of BAV was observed among 190 first-degree
relatives in families screened by echocardiography (Huntington
et al., 1997). More recent studies, that made use of a variance
component methodology and a mathematical model, established
the heritability of BAV up to 89% indicating the disease as
almost entirely genetically determined (Cripe et al., 2004; Lewin
et al., 2004; Freeze et al., 2016). Family data were consistent
with an autosomal dominant pattern of inheritance with reduced
penetrance and variable expressivity (Laforest and Nemer, 2012;
De Cario et al., 2014).

Despite the well-established notion of a heritability associated
with BAV, no single gene model exists that could explain the
inheritance of this cardiac malformation. In fact, a role of many
discrete genes with divergent inheritance pattern which might
also act in combination as polygenic trait may be derived by the
analysis of literature data (Laforest and Nemer, 2012; De Cario
et al., 2014). Hence, during the last decades, a number of studies
on animal models, together with various genetic and biochemical
approaches, have been performed allowing the identification
of a large number of genes suggested to be implied in BAV
pathogenesis in its sporadic or syndromic presentation (Table 1).
The products of these genes are represented by transcription
factors, components of the ECM, and proteins involved in several
signaling pathways regulating various cellular processes, such as
proliferation or apoptosis, in cardiac tissues (Laforest andNemer,
2012; De Cario et al., 2014; Freeze et al., 2016). Furthermore, over
recent years, the wide heterogeneity in BAV has been suggested
to be the result of a combination between genetic, functional
and hemodynamic factors acting as modulators of the phenotype
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TABLE 1 | Genetic loci associated with BAV in humans and animal models.

HUMANS

NON-SYNDROMIC

BAV

SYNDROMIC BAV

NOTCH1 FBN1 (Marfan syndrome)

GATA5 TGFBR1/2 (Loeys-Dietz syndrome)

GATA4

ACTA2

Linkage loci on:

Chr 15q

Chr18q

Chr 5q

UFD1L

AXIN1/PDIA2

ENG

EGFR

SMAD6

ACTA2 (Thoracic aortic aneurysm and dissection

syndrome)

KCNJ2 (Andersen syndrome)

45 × 0 karyotype (Turner syndrome)

Deletion of 1.5-1.8Mb region (7q11.3) including

CLIP2, ELN, GTF2I, GTF2IRD1, and LIMK1 (William

Beuren syndrome)

HOXA1 (Bosley-Salih-Alorainy syndrome,

Athabaskan brainstem dysgenesis syndrome)

COL3A1 (Vascular Ehlers Danlos syndrome)

ANIMAL MODELS

Notch1

Gata5

Nos3

Nkx2.5

expression (Nistri et al., 2008, 2016; Conti et al., 2010; Della Corte
et al., 2012; De Cario et al., 2014;Michelena et al., 2015; Fedak and
Barker, 2016; Fedak et al., 2016; Longobardo et al., 2016; Masri
et al., 2017). In most cases, BAV presents itself as an isolated
trait but its association with other genetic syndromes, such as
Andersen syndrome, Turner syndrome, William Beuren, Bosley-
Salih-Alorainy, Athabascan Brainstem Dysgenesis syndromes is
well established. In particular, it may occur as component of
connective tissue disorders, such as familial TAA and dissection
(FTAA/D), Marfan syndrome (MFS), Loeys-Dietz syndrome
(LDS) and vascular Ehlers-Danlos syndrome (vEDS) (Duran
et al., 1995). In fact, the identification of a syndromic condition
in a BAV patient is relevant as it can affect the rate of progression
to clinically evident disease and has led, for example, to the
definition of distinct guidelines, with respect to aortic diameter
thresholds, for elective surgery in MFS and BAV patients (Erbel
et al., 2014; Nishimura et al., 2014). A recent study, carried out on
a cohort of 257 MFS patients, allowed the unequivocal diagnosis
of BAV in 12 patients (4.7%) revealing a prevalence of the
cardiac valve malformation exceeding four times that observed
in the general population screened by echocardiography (0.5%)
(Basso et al., 2004; Nistri et al., 2005, 2012). In patients with
LDS, BAV has been also noted as a clinical finding more
prevalent (8%) than in the general population (Patel et al., 2017).
These results suggest how aortic valve morphology in MFS
patients should be better pursued during clinical examination.
On the other hand, due to the wide range variability and
severity of clinical manifestations in inherited connective tissue
disorders patients often leading to a late definite diagnosis of
syndromic phenotypes, such as MFS or LDS, the evaluation of
the coexistence of a syndromic condition in BAV patients by
an expert clinician/geneticist should be encouraged in order to
better decide the follow-up and surgical timing. Genetic testing
could therefore provide a valuable tool in order to detect not only

genetic variants causative of BAV, furthering knowledge of the
mechanisms underlying its pathogenesis, but also to predict and
prevent the aforementioned BAV-associated complications and
to identify at-risk asymptomatic family members.

In 2012, in 2 out of 3 BAV/MFS patients undergoingmutation-
screening analysis, genetic variants in FBN1 gene were found
(Nistri et al., 2012). Moreover, our group next identified for
the first time pathogenetic FBN1 gene (fibrillin 1, 15q21.1,
OMIM∗134797) mutations in patients with BAV and aortic
dilation/aneurysm in whom MFS and other more severe type
1 fibrillinopathies were clinically excluded (Pepe et al., 2014).
FBN1 encodes a glycoprotein component of the ECM involved
in the maintenance of elastic fibers and in the anchorage of
epithelial cells to the interstitial matrix and a decreased FBN1
mRNA or protein content has been demonstrated in a subgroup
of BAV patients, suggesting this gene to be one of those possibly
associated with BAV. In addition, it has been demonstrated
that targeted deletion of Fbn1 in mice recapitulates the vascular
defects observed in MFS suggesting valve malformation to be
the result of FBN1 mutations (Pereira et al., 1997; Ng et al.,
2004). An up-regulated transforming growth factor beta (TGF-
ß) signaling was observed in these mice who showed mitral valve
prolapse and died shortly after birth for aortic dissection as a
consequence of aortic wall weakening (Ng et al., 2004). TGF-
ß represents the key regulator of vascular matrix remodeling
and vascular smooth muscle cells (VSMCs) activity, and a wide
number of studies provided evidences of the association between
the dysregulation of its signaling and aneurysm formation,
including-BAV associated TAA (Kurtovic et al., 2011). Mutations
in the TGF-β receptors, TGFBR1 (transforming growth factor
beta receptor, type 1, 9q22.33, OMIM∗190181) and TGFBR2
(transforming growth factor beta receptor, type 2, 3p24.1,
OMIM∗190182) have been described in MFS-like conditions and
have been consistently associated with LDS (Loeys et al., 2005;
Mátyás et al., 2006; Attias et al., 2009;Wei et al., 2016). Amissense
mutation inTGFBR2 has been shown to segregate in a family with
non-syndromic associated BAV and proximal aortic aneurysm
which was identical to the one found in MFS patients who tested
negative for mutation in FBN1 (Girdauskas et al., 2011). More
recent sequencing experiments on familial and isolated BAV
cases failed to identify mutations in the two receptors suggesting
their contribution to be probably very low in the overall BAV
population (Arrington et al., 2008; Foffa et al., 2013; Bonachea
et al., 2014b).

Mutations in ACTA2 gene, encoding smooth muscle α-actin
and known to be associated with familial TAA, have been also
detected in patients with BAV (Jondeau and Boileau, 2012;
Martín et al., 2017).

Moreover, further data from genetics studies (candidate
gene as well as genome wide analyses) allowed to deepen
the knowledge concerning the genetic bases of the disease,
thus evidencing a role for other candidate loci not previously
associated with syndromic BAV. NOTCH1 (Notch, Drosophila,
homolog of, 1, chr 9q34.3, OMIM∗190198) mutations have
been firstly associated with aortic valve abnormalities, such
as aortic valve calcium deposition, suggesting their potential
role in cardiac disease in humans. These studies suggested
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that mutations in this gene, identified in a small number of
families, may represent the genetic basis for hypoplastic left
heart syndrome in some patients (Garg et al., 2005). Further
evidences of a NOTCH1 haploinsufficiency as possible cause of
aortic valve disease were provided by shortly subsequent studies
in which targeted mutational analyses were performed, allowing
the identification of not previously described missense mutations
in patients with BAV and/or aortic aneurysms (Mohamed et al.,
2006; McKellar et al., 2007; Foffa et al., 2013). These studies also
unraveled the role of NOTCH1 mutations in familial BAV as
well as in approximately 4% of sporadic cases. Recently, genetic
screening of 428 probands with left-sided congenital heart disease
(LS-CHD) allowed the identification of 14 NOTCH1 mutations
(11 in familial and 3 in isolated cases), 10 out of 11 families and
1 out of 3 isolated cases showed BAV (Kerstjens-Frederikse et al.,
2016). Interestingly, this datum suggests a higher prevalence of
NOTCH1 mutations among familial cases [11/148 (7%)] than
among sporadic forms [3/280 (1%)] of LS-CHD. The Notch
signaling pathway is highly conserved across species. NOTCH1
encodes a large protein containing an extracellular domain with
36 tandem epidermal growth factor (EGF)-like repeats and three
cysteine-rich Notch/LIN-12 repeats, an intracellular domain with
six ankyrin repeats, and a transactivation domain (Artavanis-
Tsakonas et al., 1999). Since the discovery of NOTCH1 as a
potential candidate gene underlying BAV formation, a number
of studies carried out analysis of aortic valves in genetically
engineered mice in an attempt to unravel the molecular
mechanisms associated with valve development. Murine model
studies indicate that targeted inactivation of Notch impairs
endocardial epithelial-to mesenchyme transition in vivo and in
explant assays. Notably, Notch1 null mice developed serious
cardiac alterations which led them to an early death; one of these
defects results in imperfect epithelial-to-mesenchymal transition
(EMT). EMT, occurring in the developing cardiac valves,
represents an important process determining the transition from
primordial to mature valves (von Gise and Pu, 2012). In addition,
mutations involving components of the Notch pathway affect
the expression of some TGF-ß signaling members, indicating
that Notch activity is needed for the normal functioning of
several elements acting in these key intracellular processes
(Timmerman et al., 2004). This is of particular importance
since a large number of evidences support the key role of a
dysregulated TGF-ß signaling in vascular matrix remodeling.
BAV patients with dilated ascending aorta showed indeed a
distinctive TGF-β pathway gene expression pattern with respect
to dilated subjects with normal three leaflet valve, resulting, in
turn, tomodulate phenotypic heterogeneity of thoracic aneurysm
in BAV. This is likely to represent one of the most frequent
events implicated in aneurysm formation, which can occur in
association with BAV in a more severe clinical phenotype. These
findings provided initial insights on developmentally regulated
EMT processes, including the occurrence of congenital cardiac
valve abnormalities. Subsequently, Notch1 signaling has also
been described as affecting molecular processes involved in
aortic valve calcification. Engineered Notch1+/− mice have in
fact been shown to endure a >5-fold aortic valve calcification
level with respect to their wild-type counterparts comparable

for age and sex. These studies provided evidence of the
repression mechanism, generally played by Notch1 in murine
aortic valves in vivo and in aortic valve cells in vitro, on BMP2
gene (bone morphogenic protein, 220p12.3, OMIM∗112261),
which partly stall the progression of aortic valve calcification
(Nigam and Srivastava, 2009). In a more recent aortic valve
calcification in vitro model, addition of Sox9 was found to
prevent Notch signaling, implying Notch1 to act as a regulator
of aortic valve calcification through a Sox-9-dependent pathway
(Acharya et al., 2011). All together, these results strengthen the
hypothesis according to whichNOTCH1 haploinsufficiency plays
a fundamental part during the embryonic development of cardiac
valves and also in maintaining their regular function in the
mature heart. Its dysregulation may therefore predispose to BAV
as well as other congenital cardiac malformations affecting both
the left and right-sided cardiac OFTs in humans (Koenig et al.,
2017).

Besides Notch, which appears to be critical for normal
tricuspid formation, Nos3 pathway has been implicated as a
regulator of BAV formation in animal models. Nos3 is expressed
in endocardial cells of the heart and is shear-stress-dependent.
Nos3−/−mice were reported to carry CHD in early studies (Lee
et al., 2000). The relevance of NOS3 (Nitric oxide synthase 3,
7q36.1, OMIM∗163729) as possible regulator in BAV formation
was also supported by other studies showing a significant
reduction of its expression in patients with BAV (Aicher et al.,
2007). NOS3 activation is mediated by members of the GATA
family of transcription factors (German et al., 2000), such as
GATA5, encoded by GATA5 gene (Gata-binding protein 5,
20q13.33, OMIM∗611496).

Alongside NOTCH1, GATA5 has been linked to BAV in
humans as a number of studies reported several rare sequence
variants of this gene in BAV and its associated aortopathy
(Padang et al., 2012; Bonachea et al., 2014a; Shi et al., 2014),
accounting for up to 4% of sporadic cases. GATA5 has an
essential role in cardiogenesis and aortic valve development as
a mediator of cellular mechanisms participating in endocardial
cell differentiation, some of these processes being regulated by
Bmp4, Tbx20 as well asNOS3 andNOTCH1 (Padang et al., 2012).
A recent Gata5 null mouse model showed partial penetrance of
BAV with a prevalence of 26%; a decrease in Nos3 expression was
also observed in the endocardial cushions of the OFT together
with a significant downregulation of Notch1 pathway (Laforest
et al., 2011). In addition to that, a deleterious mutation inNKX2.5
gene (Nk2 Homeobox 5; 5q35.1, OMIM∗600584) that completely
abolished its interaction with GATA5 was found to segregate
with disease in a family with BAV and a small proportion (11%)
of mice carrying cardiac homeobox Nkx2-5 haploinsufficiency
(Groenendijk et al., 2004) have been associated with a higher
incidence of the disease. Homeobox protein Nkx-2.5 activity is
critically required during cardiac morphogenesis and it’s also
involved inmodulation of the ECMof the aorta due to its role as a
regulator of the collagen type I availability (Ponticos et al., 2004).
All together, these findings seem to support the notion of Notch1
and Nos3 pathways, mediated by GATA5, as possible relevant
elements in BAV pathogenesis. Other genes encoding GATA
family cardiac factors, such as GATA4 (GATA-binding protein,
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4; 8p23.1; OMIM∗6005769) and GATA6 (GATA-binding protein,
6; 18q11.2; OMIM∗601656) were observed in human congenital
heart defects (Garg et al., 2003; Lepore et al., 2006; Rajagopal
et al., 2007; Hamanoue et al., 2009; Maitra et al., 2010). Recently,
a low frequency noncoding variant 151 kb from GATA4, together
with a missense mutation involving the same gene, showed
an association with the BAV phenotype that reached genome
wide significance. The case-control genome wide association
study was carried out on 466 BAV patients and 4,660 controls,
replicated in up to 1,326 cases and 8,103 controls. These identified
variants are thought to affect cardiac valves development and
increase the risk of cardiac malformations as they seem to disrupt
some regulatory elements involved in GATA4 expression during
cardiac embryogenesis (Yang et al., 2017). Several other genes
have been implicated in isolated BAV or in BAV-TAA (Laforest
and Nemer, 2012; De Cario et al., 2014; Freeze et al., 2016). One
of these isUFD1L (ubiquitin fusion degradation 1-like, 22q11.21,
OMIM∗601754), whose expression has been demonstrated to be
down-regulated in BAV patients. Its product is a component of a
multi-enzyme complex involved in the degradation of ubiquitin
fusion proteins during embryogenesis, with an important role
in the development of ectoderm-derived structures; it has been
observed to be diminished in BAV patients (Mohamed et al.,
2005).

Its important function in aortic leaflets formation indicates
a possible role of UFD1L in BAV pathogenesis even if no
causal relationship, but only an association, between mutations
involving this gene and the cardiac malformation has been
established so far. A missense mutation in the MH2 domain
of the SMAD6 protein (p.Cys484Phe) in a man with BAV,
aortic valve stenosis, and coarctation and calcification of the
aorta was identified (Tan et al., 2012). Resequencing of the
MH2 domain of SMAD6 gene (homolog of mothers against
decapentaplegic, drosophila, 6 chr 15q22.31, OMIM ∗602931) in
a replication cohort consisting of 346 additional probands with a
broad range of cardiovascular malformation phenotypes revealed
another missense mutation (p.Pro415Leu) in an infant with BAV
and moderate aortic stenosis. Gene network analysis identified
haplotypes for ENG (endoglin, 9q34.11, OMIM∗13195), a gene
known to be important in heart valve formation, and for
AXIN1 (axis inhibitor 1; 16p13.3, OMIM∗603816) and PDIA2
(Protein Disulfide Isomerase Family A Member 2; 16p13.3,
OMIM∗608012) to be associated with BAV in a cohort of 68
probands (Wooten et al., 2010). AXIN1 is member of the Wnt
pathway, which mediates TGF-β signaling and acts as a crucial
regulator of both heart valve formation and cardiac neural crest
development (Armstrong and Bischoff, 2004). The role of PDIA2
in heart valve formation is not yet unveiled.

Recently, next generation sequencing (NGS) approaches on
nine genes previously associated with BAV (NOTCH1, AXIN1,
EGFR, ENG, GATA5, NKX2-5, NOS3, PDIA2, and TGFBR2) has
been performed on 48 BAV patients (Dargis et al., 2016), allowing
the identification of previously known potentially pathogenic
variants in AXIN1, EGFR, ENG, GATA5, NOTCH1, and PDIA2.
The most promising variants were subsequently evaluated in
a case-control study showing men and women to carry some
distinct genetic variants associated with BAV. These findings led

to the hypothesis of the involvement of some gender-specific
variants in BAV onset and advancement. Mutations in ACTA2
(Actin, alpha 2, smooth muscle, aorta;10q23.3, OMIM∗102620)
were identified in 7 family members with aortic aneurysms
and dissection, of whom 3 had BAVs, their aortic tissue
displaying increased proteoglycans accumulation, fragmentation,
loss of elastic fibers, and decreased numbers of smooth muscle
cells, consistent with aortic wall degeneration. These findings
could lead to the hypothesis of a unique pathogenetic basis
for BAV-TAA patients (as BAV has been observed to occur
more frequently in patients with TAA who have mutations
in his gene) (Guo et al., 2007; Jondeau and Boileau, 2012)
even if, at present, whether ACTA2 mutations may cause BAV
remains uncertain. Targeted NGS approach identified 31 rare
non-synonymous, exonic variants classified as putative disease-
causing changes by in-silico analysis in the 97 candidate genes.
These study evidenced variants in 25 genes (APC, AXIN2, FLT1,
GATA4, GLI1, JAG1, MCTP2, MSX1, NFATC1, NOS1, NOTCH2,
NOTCH3, PAX6, PIGF, PPP3CA, PTCH1, PTCH2, SLC35B2,
SNAI3, SOX9, TBX5, VEGFB, VEGFC, WNT4, and ZNF236) not
previously associated with human BAV (Bonachea et al., 2014b).
Finding these genetic variants in index cases did not imply a
definitive association of these genes with the BAV phenotype,
thus requiring further functional analyses and segregation data in
families. Ultimately, BAV seems to display a substantial genetic
heterogeneity, suggesting the role of many discrete genes in
its pathogenesis, which is challenging for researchers whose
aim is to discover genetic variants causative of BAV as well
as patients at risk to develop the most feared BAV-associated
complications (Figure 1). The aforementioned animal studies
provided evidences of a combination between multiple genetic
variants acting as a burden and epigenetic plus environmental
factors. This complex array of genetic and non-genetic factors
may be responsible for the extremely variable phenotypic
expression of BAV. This is especially relevant considering those
conditions that often accompany BAV as TAA/D.

Due to the evidence that BAV and TAAD frequently occur
together, we might hypothesize that BAV genetic profile may be
determined by an additive contribution of many different genetic
variants increasing both the risk for BAV occurrence and for its
complications (Prakash et al., 2014). Therefore, successful gene
discovery may help in situations in which the identification of
the leading factor, hemodynamic or genetic, playing a relevant
role in the disease development, determines different surgical
decisions (Padang et al., 2012). In fact, wherever a genetic
alteration is identified as the dominant factor, this may lead to a
more aggressive disease phenotype and earlier aortic intervention
(Erbel et al., 2014; Nishimura et al., 2014). To that purpose,
large families with inherited predisposition to BAV currently
represent the most promising opportunities for the consolidation
of suspected and novel discovery of gene association even
considering (1) the known difficulties in recruiting well clinically
evaluated relatives, together with (2) the reduced penetrance
and variable expressivity associated with the BAV phenotype.
Even and above all, in the era of high-throughput technologies,
segregation analyses represent the gold standard approach
to identify causative mutations in genes of distantly related
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FIGURE 1 | Genetic loci associated with syndromic BAV (A) and

non-syndromic BAV (B) [effect of major genes or contribution of multiple minor

loci (polygenic form of the disease)].

subjects, also providing and optimizing the statistical power in
genotype-phenotype correlations (Michelena et al., 2014). As
thousands of cases are needed to identify substantial genetic
contributors, constant advances in NGS technologies provide an
unprecedented opportunity to unravel the genetic complexity
of BAV and its associated aortopathies (Andreassi and Della
Corte, 2016). Targeted NGS of a carefully selected part of the
genome (a specific set of genes relevant to a disease phenotype)
produces a more manageable data set compared with broader
approaches, making analysis easier and faster (Wooderchak-
Donahue et al., 2015). This kind of approach may lead to the
identification of novel genetic variants whose biological role in
BAV is yet to be determined; these variants could be tested for a
possible association with the disease also when assessed together
in intracellular signaling pathways (Michelena et al., 2014).
Nevertheless, it should be considered that the comprehension of
the pathogenesis of BAV could be further supported by different
mechanisms not addressed in this review. In fact, beyond the
presence of mutations in exons or splice site consensus regions
of protein-coding genes, mutations in introns and regulatory
5′ promoter and UTR regions, intergenic variants, as well as
epigenetic mechanisms involving miRNAs expression profiles
alterations or DNA methylation and histone modifications may
also have a role in BAV development.

High-Throughput Sequencing (HTS)
Technologies:
The achievement of information on the genetic bases of BAV has
been allowed by the progressive acquisition of novel technologies
able to produce a large volume of data. Actually, first studies were
based on the evaluation of the heritability of BAV, thus providing
information on the contribution of genetics to this phenotypic
trait. To that end, family-based approach has revealed useful in
identifying loci segregating with the disease. Afterwards, genome

wide association studies (GWAS) investigating a wide number
of genetic variants in genes supposed to be associated with the
disease added a further support in identifying novel candidate
loci (Wang et al., 2009; De Cario et al., 2014; Freeze et al., 2016).
Although a number of information on genetic contribution to
BAV disease have been obtained through these approaches, most
remains to be discovered and understood concerning genetics
of BAV. At this purpose a relevant contribution in deepening
the molecular bases of BAV may derive from high-throughput
sequencing (HTS) technologies also identified as next generation
sequencing (NGS), allowing the parallel analysis of large number
of genes or entire exomes or genomes. Advancements in DNA
sequencing technologies led to the progressive availability of
several platforms, each one exhibiting differences in detection
methods and throughput, in order to cover needs ranging from
target genes panel sequencing approach to exomes/genomes
analyses. The resulting availability of large volume of data
determined also the development of novel “BigData” analysis
methods, able to integrate genetic and clinical data, thus
representing a promising opportunity, at present and in the next
few years, to significantly increase the knowledge on the genetic
bases of BAV. Actually, since 2008, the diffusion of HTS allowed
reduction in costs per run and time of analysis, thus raising
interest in the use of HTS approach both as a research and clinical
tool (https://www.genome.gov/27541954/dna-sequencing-costs-
data/; Goodwin et al., 2016; Magi et al., 2017).

Each platform exhibits specific chemistry and detection
methods, thus differently contributing to the overall performance
of the sequencing approach and then differently adapting to the
needs and peculiarities of research and diagnostics.

The first HTS technology to be widespread is represented by
the Roche 454 (GS FLX) platform (Roche Diagnostics; Table 2),
released in 2005 (Margulies et al., 2005) and just discontinued
(Levy and Myers, 2016), a sequencing-by-synthesis (SBS)
approach based on single nucleotide addition (SNA) sequencing
principle. In this approach clonal template populations are
generated after sample DNA fragmentation followed by
ligation with an oligonucleotide adaptor, complementary to
an oligonucleotide fragment immobilized on the surface of
a capture bead, and emulsion PCR (emPCR), carried out in
aqueous droplets (Shendure et al., 2005). Consequently, multiple
copies of the same DNA sequence will cover each capture bead.
The beads are next arrayed in the wells of a fiber optic slide
(PicoTiterPlate) for the pyrosequencing reaction (Leamon et al.,
2004).

Among SBS approaches, Ion Torrent and Illumina platforms
are currently used (Table 2). Ion torrent technology also shares
with the Roche 454 system the SNA principle and the emulsion
PCR step to achieve the clonal amplification of the DNA
template, whereas Illumina technology foresees a solid-phase
bridge amplification and a cyclic reversible termination (CRT)
approach (Goodwin et al., 2016).

Ion Torrent platform, although representing a very similar
technology with respect to Roche 454, it does not rely on
the optical detection of incorporating nucleotide through
imaging technology, but it is based on a semiconductor
sequencing approach, as proton release detection during
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TABLE 2 | High-Throughput sequencing (HTS) platforms characteristics.

Platform Chemistry Read length (bp) Throughput Error rate (%) Primary error type

ROCHE 454*

GS FLX Titanium XLR70 Sequencing-by-synthesis Up to 600 450 Mb 1 indel

GS FLX Titanium XL+ Sequencing-by-synthesis Up to 1000 700 Mb 1 indel

ION TORRENT∧

Ion PGM 314 Sequencing-by-synthesis 200 30–50 Mb 1 indel

400 60–100 Mb

Ion PGM 316 Sequencing-by-synthesis 200 300–500 Mb 1 indel

400 600 Mb-1 Gb

Ion PGM 318 Sequencing-by-synthesis 200 600 Mb–1 Gb 1 indel

400 1–2 Gb

Ion Proton Sequencing-by-synthesis Up to 200 Up to 10 Gb 1 indel

Ion S5 520 Sequencing-by-synthesis 200 600 Mb–1 Gb 1 indel

400 1.2–2 Gb

Ion S5 530 Sequencing-by-synthesis 200 3–4 Gb 1 indel

400 6–8 Gb

Ion S5 540 sequencing-by-synthesis 200 10–15 Gb 1 indel

ILLUMINA∧

MiniSeq Sequencing-by-synthesis Up to 150 1.65–7.5 Gb <1 substitutions

MiSeq sequencing-by-synthesis Up to 300 540 Mb–15 Gb 0.1 substitution

NextSeq 500/550 Sequencing-by-synthesis Up to 150 16.25–120 Gb <1 substitution

HiSeq 2500 Sequencing-by-synthesis Up to 250 9–1000 Gb 0.1 substitution

HiSeq 3000/4000 Sequencing-by-synthesis Up to 150 105–1500 Gb 0.1 substitution

HiSeqX Sequencing-by-synthesis Up to 150 1600–1800 Gb 0.1 substitution

PACIFIC BIOSCIENCES*

RSII Single-molecule real-time

long-reads

∼20,000 500 Mb–1 Gb 13 (single-pass); ≤1%

circular consensus read*

indel

Sequel Single-molecule real-time

long-reads

8,000–12,000 3.5–7 Gb – –

OXFORD NANOPORE‡

Mk1 MinION Single-molecule real-time

long-reads

Up to 1 Mb* Up to 20 Gb∧ (1-D yield) – –

*Goodwin et al., 2016; ∧Goodwin et al., 2016 and manifacturers’s data (http://www.thermosisher.com/it/en/Home/brands/ion-torrent.html);
†
Goodwin et al. (2016) and manifacturers’s data manifacturers’s data (http://www.illumina.com);

‡Manifacturers’s data (http://www.nanoporetech.com).

nucleotide incorporation may be permitted by the use of ion
sensors. Therefore, this approach requires smaller instrument
size and may result in higher speed of sequencing analysis
and lower costs with respect to Roche 454 (Metzker, 2010; Liu
et al., 2012; van Dijk et al., 2014). Ion Torrent platform appears
particularly useful for targeted sequencing approached in which
a panel of specific genes is analyzed for diagnosis and research
purpose.

Differently from previously described sequencing
approaches, Illumina technology is based on the “bridge
amplification” principle, in which DNA fragments, ligated
to oligonucleotide adapters complementary to Illumina
flow-cell anchors, are amplified in-situ on the flow-cell
surface. This amplification step relies on arching of the
captured DNA strand and its subsequent hybridization to an
adjacent anchor oligonucleotide, thus contributing to generate
clonally amplified clusters, each one including thousands

of clonal molecules (Voelkerding et al., 2009). Afterwards,
sequencing is performed through CRT approach, based on
the use of fluorescent reversible dye terminators, in which
the presence of a chemical modification of the ribose at
the 3′-hydroxyl position of the nucleotide, allows a single-
base extension during each sequencing cycle. After image
acquisition, the reversible dye terminators are unblocked
and the next cycle may be performed (Voelkerding et al.,
2009). At present, Illumina platform, with its wide range of
instruments with different through-put and lower costs, is the
widespread HTS technology in research as well as diagnosis
laboratories.

Although advancements in generating longer reads are
currently being developed, the abovementioned platforms
achieved significant results in providing sequencing data, with
different strengths and weaknesses depending of each platform
characteristics.
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The Illumina technology (read length 35–300 bp) is shared by
a large number of instruments, ranging from lower throughput
benchtop units, such as MiniSeq (<7.5 Gb) or MiSeq v3
(<15Gb), to ultra-high-throughput instruments, such as HiSeq
× (800–900 Gb per flow cell) (Goodwin et al., 2016), useful for
providing whole genome sequencing data at a population level.
The different chemistry (CRT approach) of Illumina technology
contributes to make it less susceptible to homopolymers errors,
as observed in other platforms (Roche 454 and Ion Torrent).
Nevertheless, although an overall accuracy of >99.5% could be
recognized for this approach, under-representation in both AT-
and GC-rich regions and substitution error have been observed
(Bentley et al., 2008; Dohm et al., 2008; Harismendy et al., 2009;
Minoche et al., 2011; Nakamura et al., 2011). The availability
of different Illumina platforms contributes to render this
technology suitable for a large number of applications, ranging
from target gene panel/whole exome/whole genome sequencing
to epigenomics (Park, 2009) as well as transcriptomics (Wang
et al., 2009) applications.

If compared with Illumina technology, both Roche 454 and
Ion Torrent HTS sequencing platforms generate higher length
reads (up to 1,000 and 400 bp, respectively), thus offering a
better efficiency in providing information concerning complex
/repetitive DNA regions. Nevertheless, although their overall
error higher rate in non-homopolymeric DNA regions could be
considered comparable with that of other platforms, a higher
prevalence of false positives in insertion/deletion (indel) variants
detections is more commonly observed (Loman et al., 2012;
Forgetta et al., 2013).

Over the last years, further advancements in HTS technologies
have allowed to improve read length, thus possibly overcoming
limitations of short read sequencing, such as de-novo sequencing
and detection of structural features of the genome, by spanning
these regions with a single continuous read. Actually, a
wider resolution of genomic variations might be achieved in
the presence of a complete, reference-free, genome assembly.
The generation of longer reads could also be useful in the
transcriptomics field, in order to correctly discern gene isoforms
by spanning an entire mRNA transcript (Goodwin et al., 2016).
Moreover, the short reads (100–50 bp) generated by previously
mentioned platforms are not enough adequate to resolve complex
genomic structures, such as long repetitive elements, copy
number alterations and structural variations that could play a
crucial role in the pathogenesis of BAV as well as other diseases
in all the fields of medicine (Magi et al., 2017).

To date, long-read sequencing is primarily based on a single-
molecule real-time (SMRT) sequencing approach, in which the
generation of a clonally amplified DNA fragments population is
no longer required in the sequencing protocol. The most widely
adopted SMRT approach is that developed by Pacific Biosciences
(Table 2) (read length average >14 kb) (Eid et al., 2009; Reuter
et al., 2015; Levy and Myers, 2016), which foresees the use
of specialized flow cells including thousands of picolitre wells
(zero-mode waveguide, ZMW), at whose transparent bottom a
polymerase is fixed, thus allowing labeled dNTP incorporation
on each single molecule template. After the fluorescence signal is
recorded by the instrument imaging system, the enzyme removes

the fluorophore from the nucleotide and permits the next labeled
dNTP to be added. Of interest, the present approach uses a
unique circular DNA template, thus allowing to consecutively
sequence the same DNA molecule several times (Eid et al., 2009;
Loomis et al., 2013).

The use of nanopores in sequencing technologies was
widely discussed from 1996 (Kasianowicz et al., 1996; Branton
et al., 2008), thus providing new challenges in the sequencing
technology field.

In 2014 the Oxford Nanopore Technology (ONT) developed a
handheld sequencer based on nanopore sequencing technology,
the MinION system (Table 2), able to directly detect the DNA
base composition of a native single strand DNA molecule. It
is a disposable device containing a sensor chip, application
specific integrated circuits (ASIC) and nanopores that are needed
to perform single molecule DNA sequencing experiments. The
DNA sequencing with Nanopore instrument relies on the
conversion of electrical signal of nucleotides passing through
a nanopore in a membrane between two electrolytes. The
experimental protocol foresees the use of a leader-hairpin library
structure, with the reverse strand linked by a hairpin adaptor to
the forward strand, thus allowing, when DNA passes throughout
the pore, the consecutive sequencing of both strands (2D-reads)
(Goodwin et al., 2016). Data from literature showed that the
current MinION platform is able to generate approximately 100
Mb of data per 16-h run, with an average read length of about
6 kb (Ashton et al., 2015). Moreover, the ONT PromethION
platform, more recently released (Levy andMyers, 2016; Gigante,
2017), represent an ultra-high-throughput platform including 48
individual flow cells, each one including 3000 nanopores, thus
providing a large volume of data (about 2–4 Tb) in a 2-day
run.

A recent study showed a significant improvement in de novo
genomes’ assembly and in exploration of structural variants
by nanopore technology application (Magi et al., 2017). This
approach might represent a further challenge to improve the
comprehension of genetics of BAV.

CONCLUSIONS AND FUTURE
PERSPECTIVES

During the last decades, the hypothesis of an underlying genetic
contribution in the pathogenesis of BAV has been supported
by a growing number of evidences resulting from both human
and animal models, even though no precise association between
specific genes and the disease has been established in the majority
of cases.

As other vascular and cardiovascular diseases, beside
the mendelian inheritance observed in some families due
to mutations in some genes (e.g., NOTCH1) with a strong
pathogenetic effect, in the large part of BAV patients the
disease is likely to have a multifactorial nature. The latter
condition is the result of complex interactions among
genetic alterations (from common to rare genetic variants
and chromosomal abnormalities), hemodynamic shear stress
(produced by the abnormal leaflets), and other environmental
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and stochastic factors. To further complicate the pathogenic
complexity, BAV often accompanies syndromic disorders,
such as MFS or LDS thus being difficult to distinguish
whether the pathogenetic variants determining the syndromic
picture are also responsible for BAV or they represent two
different pathogenetic conditions due to genetic variants
in different genes (Figure 1). The availability of high-
throughput sequencing (HTS) technologies, enabling rapid
and relatively cheap analyses of panel of genes or whole
exome/genome, plays a fundamental role in achieving a
better comprehension of the genetic bases of isolated and
syndromic BAV. In this context, alongside the study of large
cohorts of probands, the definite contribution deriving from
functional analyses and segregation data in families should be
encouraged.

At present, from a diagnostic point of view, performing
differential genetic diagnosis through HTS techniques in order
to exclude syndromic traits in BAV patients with suggestive
manifestations should be considered.

Indeed, the greatest interest in obtaining more insights on
the genetic contributors of aortic valve malformations lies in
the opportunity to translate this knowledge in the clinical
practice, aimed to predict BAV most feared complications
(mainly aortic aneurysm and dissection), and make decisions
on the best options and timing for aortic surgery (based on
individualized genetic risk profiles) as well as on global patients
management.
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