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Purpose:Mental fatigue has been shown to impair subsequent physical performance in

continuous and discontinuous exercise. However, its influence on subsequent fine-motor

performance in an applied setting (e.g., marksmanship for trained soldiers) is relatively

unknown. The purpose of this study was to investigate whether prior mental fatigue

influences subsequent marksmanship performance as measured by shooting accuracy

and judgment of soldiers in a live-fire scenario.

Methods: Twenty trained infantry soldiers engaged targets after completing either a

mental fatigue or control intervention in a repeated measure design. Heart rate variability

and the NASA-TLX were used to gauge physiological and subjective effects of the

interventions. Target hit proportion, projectile group accuracy, and precision were used to

measure marksmanship accuracy. Marksmanship accuracy was assessed by measuring

bullet group accuracy (i.e., how close a group of shots are relative to center of mass) and

bullet group precision (i.e., how close are each individual shot to each other). Additionally,

marksmanship decision accuracy (correctly shooting vs. correctly withholding shot) when

engaging targets was used to examine marksmanship performance.

Results: Soldiers rated the mentally fatiguing task (59.88 ± 23.7) as having greater

mental workload relative to the control intervention [31.29 ± 12.3, t(19) = 1.72,

p < 0.001]. Additionally, soldiers completing the mental fatigue intervention (96.04 ±

= 37.1) also had lower time-domain (standard deviation of normal to normal R-R

intervals) heart rate variability relative to the control [134.39 ± 47.4, t(18) = 3.59,

p < 0.001]. Projectile group accuracy and group precision failed to show differences

between interventions [t(19) = 0.98, p = 0.34, t(19) = 0.18, p = 0.87, respectively].

Marksmanship decision errors significantly increased after soldiers completed the mental

fatigue intervention (48% ± 22.4) relative to the control intervention [M = 32% ± 79.9,

t(19) = 4.39, p < 0.001]. There was a significant negative correlation between shooting

response time and errors of commission (r = −0.61; p = 0.004) when preceded by the

mental fatigue intervention, but not the control (r = −0.31; p = 0.17).

Conclusion: The mental fatigue intervention was successful in eliciting fatigue which

was supported subjectively and objectively. Marksmanship judgment performance is

significantly reduced when soldiers are mentally fatigued, although shot accuracy is not.

Keywords: fine-motor performance, marksmanship decision accuracy, live-fire, response inhibition intervention,

HRV, soldiers
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INTRODUCTION

Mental fatigue is the psychophysiological response experienced
by an individual who is exposed to a mentally demanding task
which results in the subjective feeling of “tiredness” and “lack
of energy” (Boksem and Tops, 2008; Marcora et al., 2009).
For example, individuals engaging in executive function tasks
such as vigilance (e.g., sustained attention task) or response
inhibition task (e.g., Sustained Attention to Response Task and
Stoop Task; SART) often self-report mental fatigue which can
subsequently influence physical performance (Pageaux et al.,
2014). Mental fatigue has been shown to impair performance in
civilian occupations such as commercial airline pilots, baggage
inspection, power plant operators, and medical occupations
(Warm et al., 2008).

Mental fatigue has been shown to have measurable influence
on subsequent gross-motor performance. Completing a mental
fatiguing task (e.g., response inhibition and vigilance task) prior
to physical exercise affects physical performance. For example,
participants completing a cycling task reach exhaustion sooner
or complete less distance in a given time when mentally fatigued
prior to the cycling task than when not mentally fatigued
(Marcora et al., 2009; Pageaux et al., 2014). Indeed, a recent
investigation in our laboratory has further corroborated that this
phenomena is not task specific to isolated stationary tasks such
cycle ergometers or treadmills, but also tasks involving full-body
resistance exercise (Head et al., 2016).

The influence of prior mental fatigue on physical performance
may also influence performance on tasks that are relatively
more fine-motor by nature. For example, Rozand et al. (2016)
have shown that prior mental fatigue influences performance
on an Arm-pointing task. The Arm-pointing task requires
participants to use a stylus instrument (i.e., similar to a
pen) with their dominate hand and make contact within two
separated predesignated squares. The Arm-pointing task requires
participants to internally balance between speed and accuracy.
Rozand et al. found measurable performance impairments in the
form of slower response speed as a function of mental fatigue.
Although this findingmay lack applicability to real-world tasks, it
does suggest mental fatiguemay influence relatively more applied
fine-motor tasks such as marksmanship.

Small arms marksmanship is a fine-motor task that is relevant
to both sport and military occupations. Marksmanship is a
complex task in which performance can be modified by both
physiological and psychological factors (Helin et al., 1987;
Konttinen et al., 1998; McDermott et al., 2001; Lakie, 2010).
Indeed, sports like Olympic biathlons require athletes to precisely
engage targets while physically fatigued; however, participants
may also experience cognitive influences such as anxiety and
stress (Vickers and Williams, 2007). Marksmanship performance
inmilitary and law enforcement settings can also be influenced by
cognitive factors, but in these cases have the additional factor of
grave consequences (e.g., deadly force judgment) (Johnson et al.,
2014).

Marksmanship accuracy is influenced by a myriad of factors
including but not limited to environment (hot vs. cold) (Lakie
and Campbell, 1995), stress (Solberg et al., 1996), and physical

fatigue (Tenan et al., 2017). Prior research conducted at U.
S. Army Research Institute of Environmental Medicine has
provided evidence that marksmanship performance is influenced
by mental fatigue (Johnson and Merullo, 1999). In Johnson
and Merullo’s investigation, participants completed a mentally
fatiguing simulated sentry marksmanship task for 3 h whereby
they made friend-foe discriminations. Through a double-blind
design, participants received either a placebo or stimulant
(caffeine). As predicted, participants receiving the stimulant had
significantly decreased friend-foe decision errors as a function
of time-on-task. This improved performance in the sentry task
was attributed to the caffeine mitigating the mental fatigue
experienced by the participants.

Interestingly, recent investigations have shown a potential
relationship between mental fatigue and friend-foe decision
accuracy as indexed by fine-motor control (Wilson et al.,
2015). Specifically, the authors found that participants shooting
in a target rich environment (high-shoot/low no-shoot) had
significant increases in errors of commission (i.e., incorrectly
shooting instead of withholding shot) and speeded responses
resulting in speed accuracy trade-offs (SATO). The authors argue
that these errors of commission are a result of participants
developing a feed-forwardmotor ballistic routine which becomes
difficult to readily inhibit. Thus, participants are often fully
aware of seeing the no-shoot stimuli but accidently respond due
to the motor ballistic routine (Head and Helton, 2012, 2013).
This failure in fine-motor control has been attributed to the
supervisory attentional system being overloaded (Helton, 2009).
In other words, mental fatigue appears to modulate fine-motor
control and influence how participants respond to targets.

The likelihood of soldiers developing mental fatigue in the
field has only increased with the advent of head-up displays
and changing battlefield scenarios [e.g., constant scanning
for improvised explosive devices (IEDs)]. For example, prior
investigations have shown that monitoring stimuli over time can
increase mental fatigue which consequently decreases sensitivity
to identify targets (e.g., threats) in an environment (Mackworth,
1948). Moreover, previous investigations have established that
lapses in target identification in a military and civilian context
can have dire consequences (Wilson et al., 2015). Given the
unpredictability of war, a soldier may be required to engage in
a firefight at a moment’s notice after monitoring and processing
information for long periods of time resulting in mental fatigue.

In the current investigation, we seek to better understand
whether mental fatigue influences marksmanship performance
in a live-fire scenario. As noted, there is a lack of ecological
validity and applicability of laboratory findings with concern
to mental fatigue on subsequent physical performance see
Duncan et al. (2015). Indeed, only recently have investigations
begun to address the influence of mental fatigue on real
world task performance (e.g., soccer performance, cycling,
and running) (Marcora et al., 2009; Pageaux et al., 2014;
Smith et al., 2016). Thus, in the current investigation we
utilize an open air acoustic location-of-miss-and-hit live fire
range to evaluate how mental fatigue impairs marksmanship
performance in an experimentally controlled live-fire scenario.
It was hypothesized that inducing mental fatigue in soldiers
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will impair marksmanship performance (shooting accuracy and
marksmanship decision accuracy).

METHODS

Participants
Twenty healthy male soldiers participated in all phases of
experimentation. Soldiers provided written informed consent in
accordance with the Helsinki Accord and ethics permission was
obtained from the U.S. Army Research Laboratory Institutional
Research Board. All soldiers were either 11B (infantry) or 11C
(indirect fire infantry) which have extensive training in rifle
marksmanship. Each soldier was required to have qualified with
a rifle in the Army basic marksmanship training course within
the past year. The Army basic marksmanship course involves
soldiers engaging pop-up targets at varying distances (5–300 m).
Marksman qualifications are a function of number of targets
hit out of 40 shots (e.g., Marksman 23–29, Sharpshooter 30–35,
and Expert 36–40). Given the emphasis on marksmanship for
infantry, the qualification scores were relatively skewed with 68%
of soldiers reporting Expert qualification, 28% Sharpshooter, and
4% Marksman.

Procedure
Soldiers were recruited from various duty stations within
the continental United States. All soldiers completed a
control (passive video watching) and a mentally fatiguing
(response inhibition task) intervention prior to performing
a marksmanship task, in a randomized and counterbalanced
design. Soldiers completed three visits which took place
in a single week (once a day) at the same time of day for
each participant in an isolated room and shooting lane
at the Aberdeen Proving Ground shooting range. Soldiers
were given specific instructions to sleep for at least 7 h and
were also instructed to be consistent with their stimulant
and depressant intake each day (i.e., caffeine, nicotine, and
alcohol). Substance use was recorded each day prior to starting
the experimental tasks. Post-hoc analysis did not reveal any
relationship between performance metrics/heart rate variability
and substance use.

Upon arrival on day one, soldiers first completed an informed
consent, demographics survey, and practiced the computer and
shooting task to be completed on subsequent days. For day
two and three, soldiers were equipped with a wireless five-
lead electrocardiogram (ECG; Shimmer, Dublin, Ireland). To
enhance external validity and safety, soldiers were required to
wear an Improved Outer Tactile Vest, Advanced Combat Helmet
and seeing/hearing protection. Soldiers were only required to
wear the seeing/hearing protection during the shooting portion
of the study. Once outfitted with the protective equipment
and ECG unit, soldiers completed the experimental or control
intervention (i.e., mental fatigue or video watching, respectively).
After the experimental or control intervention, participants
completed the National Aeronautical and Space Administration
Task Load Index [NASA-TLX; Hart and Staveland (1988)]. Lastly,
soldiers rated the perceived workload of each shooting scenario

repeatedly with the NASA-TLX. See Figure 1 for outline of
study.

Mental Fatigue Intervention
Prior investigations on this topic have utilized response
inhibition tasks to elicit mental fatigue prior to a physical
task (Pageaux et al., 2014). Thus, in the current investigation
soldiers completed the Sustained Attention to Response Task.
The SART has been used frequently to measure response
inhibition and is fatiguing (Head and Helton, 2012). The mental
fatigue intervention took place in an isolated room. Soldiers
were seated 50 cm in front of a video display terminal (53.4
× 33 cm, 60 Hz refresh rate) which was mounted at eye level.
Soldiers’ head movements were not restrained. Time-keeping
devices such as watches and cell phones were surrendered at
the start of the task. Soldiers completed a SART (high go/ low
No-go) monitoring for numeric stimuli (1–9). Soldiers were
instructed to respond as fast and accurately as possible to the
target number 1–9, except for 3. Prior to the start of the task,
soldiers completed a practice trial where they received feedback
on their performance. Soldiers completed this practice on day
one and also again before they completed the task on day 2 and
3. The SART was 49 min in duration and was comprised of 4
periods of watch, 12.25 min in length. Numeric digits were all
the same font (Courier); however, font size varied between 48,
72, 94, 100, and 120, with height varying between 12 and 29
mm. Each trial consisted of a single digit presented centrally
on the screen for 250 ms followed immediately by a 900 ms
mask. Soldiers were instructed to respond with their index
finger on their dominant hand using a response box. Errors
of commission (inappropriately responding to No-go stimuli),
errors of omission (inappropriately withholding response to go
stimuli), and response time to correct go stimuli were calculated
for each Soldier per period of watch.

Control Intervention
The computer screen from the SART was used to present a
49 min video train documentary. The documentary was “The
American Orient Express” (Pegasus-Eagle Rock Entertainment,
2004) which consisted of footage about trains and travel. This
type of stimuli has been used in similar studies due to the neutral
content maintaining stable mood and heart rate (Dennis et al.,
2015; Head et al., 2016).

Marksmanship Task
Soldiers were armed with a Heckler & Koch automatic 416
subcompact carbine (HK-416 A5). Target sighting was achieved
using a holographic optic with a collimated red dot reticle
(EOTech EXPS3, 1X power). The shooting task took place at the
U.S. Army Research Laboratory Shooter Performance Research
Facility (M-Range) at Aberdeen Proving Ground, Maryland.
Soldiers were stationed in a fire trench (i.e., foxhole) with a range
safety personnel.

During the marksmanship task, soldiers were instructed to
be in a high-ready shooting position with their rifle resting on
sandbags in the foxhole. Soldiers were instructed that they would
be monitoring a single shooting lane and shooting predefined
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FIGURE 1 | Overview of study excluding practice day.

E-silhouette targets. An E-silhouette is a dark green target
(49.5 × 101.6 cm) that is commonly used by the U.S. military
for marksmanship training (see Figure 2). The shooting lane
contained three E-silhouette targets positioned 25, 50, and 100m
behind a grass berm in front of the participant. E-silhouettes were
affixed on mechanical arm that permitted the E-silhouette targets
to rapidly be raised or lowered above the grass berm according
to a predefined shooting scenario. Each E-silhouette target was
outfitted with a horizontal (6 × 26 cm) and vertical (5 × 32
cm) white line. The horizontal white line was fixed; however, the
vertical white line was a moving appendage that was affixed to
a servo motor which permitted it to move between 135, 0, and
45◦ (see Figures 2A–C). Prior to the shooting scenario beginning,
soldiers were instructed to load their rifle with a 30 round
magazine and chamber a round. Soldiers were instructed to shoot
E-silhouette targets with a single shot when the appendage was
in the 90◦ position whereby the white lines made a “T” shape
(see Figure 2B). Conversely, soldiers were instructed to withhold
their response when the vertical horizontal white line was either
in the 135◦ or 45◦ position (see Figures 2A,B). To control for
target presentation, participants completed shooting scenarios
whereby the target location was predictable vs. unpredictable.
Order of shooting scenarios was counterbalanced across soldiers.
In the predictable scenario, E-silhouette targets would raise
up in a predictable sequence (25, 50, and 100m) repeatedly;
however, whether the E-silhouette was a target to shoot or not
shoot was random. In the unpredictable shooting scenario, E-
silhouette targets would randomly occur in one of the target
distances; however, probability of occurrence was equal for each
distance.

The marksmanship task is based on the SART and has been
used in previous simulated marksmanship task (Wilson et al.,
2013). The marksmanship task is a high-shoot, low no-shoot
target detection task which requires active response inhibition.
Soldiers were exposed to eight shoot targets and two no-shoot
targets per each target distance which resulted in a no-shoot
target probability of 20% and a shoot probability of 80%. In total,

soldiers completed four trials of each shooting condition. Soldiers
were instructed by the safety personnel to reload their weapon
and chamber a new round between each trial performance on
all shooting conditions (predictable vs. unpredictable). Target
silhouettes exposure was 600 ms followed by a 2,500 ms inter-
stimulus interval. Thus, each trial was ∼1.6 min in duration.
Shots taken during no-shoot target exposure and inter-stimulus
interval were recorded as errors of commission. Soldiers were
instructed to shoot as fast and accurately as possible. Conversely,
shoot targets not responded to within the same timeframe were
recorded as errors of omission. Soldiers only received feedback
on marksmanship decision accuracy (shoot vs. no-shoot errors)
during the practice session.

Marksmanship performance for military personnel is
multifaceted which includes target accuracy and marksmanship
decision accuracy (i.e., shoot vs. no-shoot) (Johnson et al.,
2014; Wilson et al., 2015). To assess target accuracy; target hit
proportion, distance of the center of the shot group (DCSG)
relative to target center, correct shot response time, and shot
group precision (SGP) was calculated for each soldier (Grubbs,
1964). DCSG is used to index how close a group of shots
are relative to the center aiming point of a target (i.e., shot
group accuracy). SGP indexes how close (i.e., proximity of
each individual shot) a group of shots are to each other. In the
current investigation, a high-go/low no-go shooting paradigm
was utilized (Wilson et al., 2015). This paradigm permits the
measurement of marksmanship accuracy and marksmanship
decision accuracy. Failures in marksmanship decision accuracy
have been attributed to fine-motor response failures that is
typified by a negative correlation between response time and
errors of commission (SATO) (Wilson et al., 2015).

Psychological Scales
The NASA-TLX is a workload measure composed of 6-items
(Hart and Staveland, 1988). The questionnaire contains three
items that measure external demand (mental, temporal, and
physical) and an additional three items (effort, performance,
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FIGURE 2 | E-silhouette targets [45◦ (A), 0◦ (B), and 135◦ (C)] positions left to right.

and frustration) that measure internal responses to the external
demands. The six items were aggregated together for a composite
global workload score. The NASA-TLX was given after each
intervention and shooting scenario in the marksmanship
task.

Electrocardiogram Instrumentation and
Analysis
A 5-lead ECG (Shimmer3, Shimmer, Ireland, UK) was
instrumented on the soldier to record ECG waveforms during
mental tasks. Electrode placement was confirmed by visually
inspecting the ECG waveform in real time on a wireless tablet
(Samsung Galaxy 10, Suwon, SK) prior to continuation. The
ECG signal was sampled at 1,024 Hz and recorded for off-line
analysis. The R-R intervals of the ECG waveform were later
determined algorithmically (Goldberger et al., 2000) and visually
confirmed by at least one researcher to ensure accurate interval
identification. Specifically, only the last 5 min of the mental
and control intervention were recorded and analyzed using the
RHRV package, version 4.2.2 (Rodríguez-Liñares et al., 2008) to
calculate the standard deviation of the R-R intervals standard
deviation NN interval (SDNN). The SDNN calculation was used
to gauge HRV as a function of the intervention type. The HRV
was used as a manipulation check to verify whether participants
had an autonomic stress response to the mentally fatiguing task
(Luque-Casado et al., 2016).

Statistical Analysis
Mean and standard deviation of the mean are reported unless
otherwise stated. Pearson r correlations were conducted for
SATO measures (errors of commission and response time) for
the marksmanship task. All omnibus analyses were performed
via mixed-effects models (unstructured variance/covariance
structure) to account for the repeated measure design. Soldiers
were treated as random effects using restricted maximum
likelihood for each analysis. Residuals were inspected for
normality and the assumption of constant variance was verified

by plotting the residuals against the fitted data. Cook’s d influence
diagnostics revealed one subject as a potential outlier. However,
removal of the subject did not substantially alter model estimates
and did not alter variable significance. Therefore, the soldier
was retained for further analysis. All statistical analysis were
performed in R-3.2.3 (R Development Core Team, 2015) using
lmerTest (Trottmann et al., 2016).

RESULTS

Interventions
Soldiers had significantly longer correct responses to stimuli
as a function of time during the mental fatigue intervention
[F(3, 63) = 3.88, p = 0.01], see Table 1. Additionally, soldiers had
significantly more errors of omission (incorrectly withholding to
distractor) as a function of time [F(3, 63) = 11.57, p < 0.001].
However, errors of commission (inappropriately responding to
go target) did not change as a function of time [F(3, 63) = 1.52,
p = 0.21, see Table 1]. Soldiers completing the mental fatigue
intervention (96.04± 37.1) had significantly lower HRV (SDNN)
relative to the control intervention [134.39 ± 47.4, t(18) = 3.59,
p < 0.001]. For the subjective workload measure, soldiers rated
the fatigue intervention (59.88 ± 15.2) as having greater mental
workload relative to the control intervention [31.29 ± 15.6, t(19)
= 7.71, p < 0.001].

Marksmanship Performance
All omnibus significance tests and descriptive statistics related
to the marksmanship task are displayed in Table 2. Soldiers did
not show a significant difference for response time as a function
of intervention. Additionally, soldiers did not show a significant
difference in marksmanship accuracy for hit proportion, DCSG,
and SGP. Visual inspection of two-dimensional kernel density
plots further supports that the intervention did not influence
shot accuracy or precision (see Figure 3). Soldiers exhibited
a significant negative correlation between response time and
errors of commission after the mental fatigue (r = −0.62, p =
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TABLE 1 | Descriptive statistics (M; SD) for the mental fatigue intervention.

Time period 1 2 3 4

Errors of

commission (%)

3.00 (9.06) 4.08 (9.00) 5.05 (9.00) 6.00 (9.00)

Errors of

omission (%)

10.00 (13.02) 13.00 (9.02) 16.00 (9.02) 19.00 (9.02)

Response time

(msec)

886 (93.06) 847 (60.45) 849 (60.43) 872 (60.43)

Performance on the mental fatigue intervention as a function of time.

TABLE 2 | Descriptive statistics (M; SD) and significance test for marksmanship

task and workload measure.

Fatigue Control Significance test

Hit proportion (%) 76.44 (8.98) 78.45 (8.50) t(19) = 0.58, p =.57

DCSG (cm) 37.72 (3.81) 38.56 (4.63) t(19) = 0.98, p = 0.34

SGP (cm) 13.18 (1.32) 13.13 (1.31) t(19) = 0.18, p = 0.86

Errors of commission (%) 48.05 (22.42) 32 (17.94) t(19) = 4.39, p = 0.001

Errors of omission (%) 7.25 (7.65) 6.26 (6.74) t(19) = 0.67, p = 0.51

Response time (ms) 791.87 (65.52) 794.50 (47.48) t(19) = 0.25, p = 0.81

Workload score 89.35 (23.71) 94.04 (12.35) t(19) =1.72, p = 0.10

Performance and workload score on the marksmanship task as a function of intervention

type. DCSG, Distance of the center of the shot group; SGP, Shot group precision.

0.004) intervention, but not the control (r = −0.31, p = 0.17).
Soldiers completing the mental fatigue intervention exhibited a
significant increase in marksmanship decision accuracy errors
(i.e., increased errors of commission) relative to the control
intervention (see Table 2). Response time and errors of omission
failed to reach significance. For the subjective workload measure
(NASA-TLX), soldiers did not rate marksmanship task with a
greater workload rating as a function of intervention type (fatigue
vs. control).

DISCUSSION

Prior investigations have provided evidence that mental fatigue
impairs both gross-motor (Head et al., 2016) and fine-
motor physical performance (Duncan et al., 2015) within a
laboratory setting. However, the current investigation provided
mixed results concerning the influence of mental fatigue on
subsequent marksmanship performance in a live-fire scenario.
The present study did not show a significant difference in
marksmanship accuracy (hit proportion, DCSG, and SGP) or
correct hit response time when preceded by the mental fatigue
or control intervention. However, there was a significant effect
of mental fatigue on marksmanship decision accuracy as indexed
cognitively as fine-motor control.

Mental Fatigue Task
Prior investigations on the topic of mental fatigue and its
influence on subsequent physical performance have utilized
various methods to elicit mental fatigue. These methods have
included tasks that involve selective and sustained attention (e.g.,

FIGURE 3 | Individual coordinates for each projectile which hit the e-silhouette

target during the marksmanship task preceded by mental fatigue and control

intervention are plotted with a two-dimensional kernel density plot where

higher densities are contained within lower densities.

Continuous Performance Task; CPT) and response inhibition
(i.e., Stroop task). The measurable physical performance
impairments caused by the CPT and Stroop task have been
attributed to these tasks influencing the anterior cingulate cortex
area of the brain which has been associated with processing
perceived effort (Critchley et al., 2000; Williamson et al., 2003).
Generally, these performance impairments have been noted to
range between 2.3 and 17.8% (see Head et al., 2016). In the
current investigation, soldiers’ error rate in the form of errors
of commission (incorrectly shooting instead of withholding) was
significantly greater in magnitude relative to prior investigations.
Specifically, soldiers had a 33% increase in error of commission
rate when cognitive fatigued relative to the control. Relative
to prior investigations, this pronounced increased error of
magnitude may be attributed to the fact that both the mentally
fatiguing task and the marksmanship task both required active
response inhibition. In other words, unlike prior investigations,
the mentally fatiguing task and the subsequent physical task
arguably shared the same cognitive resources (McCracken and
Aldrich, 1984; Wickens, 2002). Thus, after soldiers completed
the mentally fatiguing computer task, they completed a
physical task that required the same cognitive process (response
inhibition) which likely compounded the effects of fatigue on
performance.

Converging evidence is provided behaviorally, subjectively,
and physiologically that the mental fatigue task was fatiguing in
the current investigation. Generally, performance on the SART
is characterized by speeded responses and increased errors of
commission (Head and Helton, 2012, 2013). However, in the
current investigation soldiers exhibited slower response times
and increased errors of omission to go targets as a function of
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time-on-task during the SART. This result is likely due to the
nature and duration length of the SART selected for the current
investigation.

Due to the highly repetitive nature of the SART, participants
responding to frequent go targets often develop a feed-forward
motor ballistic routine which becomes difficult for the central
executive system to inhibit. This difficulty in inhibition has
been attributed to overloading the central executive system
(i.e., mental fatigue) (Helton et al., 2010). A proposed adaptive
response (i.e., replenish mental resources) to alleviate mental
fatigue during the SART is strategic forced rest breaks (errors
of omission) which is analogous to taking a mental breather
(Stevenson et al., 2011). Participants exhibited a greater amount
of errors of omission during the last period of the computer task
relative to the start. Given the fatiguing nature of the task and the
duration (49min) participants were likely taking increased forced
rest breaks in an attempt to mitigate the experienced mental
fatigue.

Both objective and subjective measures provided support that
the response inhibition task was successful in eliciting mental
fatigue. First, participants had lower HRV during the last 5
min of the mental fatigue intervention relative to the control
intervention. As discussed prior, lower HRV is associated with
a decreased parasympathetic response to stress (Kakutani et al.,
1991). Second, after completing the interventions, participants
subjectively rated the mental fatigue intervention as having a
greater global workload relative to the control intervention.
Collectively, the mental fatiguing task was stressful and perceived
as being fatiguing by the soldiers.

Effects of Mental Fatigue on
Marksmanship Performance
Mental fatigue did not significantly influence any of
marksmanship accuracy metrics commonly used to index
the marksmanship performance (Grubbs, 1964). Although
soldiers were shooting from a standing supported position,
visual inspection of individual shots coupled with the accuracy
and precision measures indicate that soldiers’ shots were widely
dispersed. This is likely due to the temporally demanding nature
of the shooting paradigm (Wilson et al., 2015). Soldiers had to
quickly scan their environment, acquire the target in their sights,
and execute a trigger pull. Given the temporal demand of the
shooting task, soldiers likely had difficulty hitting the center
of the target. Future investigations should consider examining
marksmanship tasks that require fine-motor control but are
slower in nature (e.g., long range precision target engagement).
The decreased temporal demand may alleviate the difficulty of
participants acquiring the target which would enable a more
clear understanding of the influence of prior mental fatigue on
marksmanship accuracy.

The current investigation utilized a high-go/low-no-go
shooting task previously used in a simulated marksmanship task
(Wilson et al., 2015). Overall, there was a relatively high error of
commission rate (40%) regardless of prior mental fatigue or not.
This pronounced error rate on this task has been attributed to
failures of inhibitory control due to the highly repetitive nature of

the task (i.e., numerous go responses) (Helton, 2009). Conversely,
the overall error of omission rate was relatively low (7%). Given
the short duration of each trial (1.6 min) it is likely that soldiers
did not require forced rest breaks as found in high-go/low no-go
tasks of longer durations (Stevenson et al., 2011).

As predicted, marksmanship decision accuracy was
significantly impaired (increased errors of commission) by
the mental fatigue intervention in a live-fire scenario as found
in simulations (Johnson and Merullo, 1999; Wilson et al., 2015).
Interestingly, unlike Rozand and colleagues findings, soldiers
exhibited speeded responses in the marksmanship task as
function of the mental fatigue intervention instead of slowing.
Importantly, there was a significant negative correlation between
response time and errors of commission (SATO) after soldiers
completed the mentally fatiguing intervention, but not the
control. As previously stated, the SATO in this marksmanship
task typifies failures in response inhibition (speeded responses
at the cost of accuracy) which have been attributed to central
executive system overloading (Helton et al., 2010).

Mental fatigue appears to have differential effects on
marksmanship performance. On the one hand mental fatigue
had no measurable effects on marksmanship accuracy (i.e.,
hit proportion, DCSG, SGP) and correct shot response time.
However, judgment accuracy (i.e., error of commissions) was
significantly impaired which resulted in increased friendly-
fire incidents. The discrepancy between these findings may be
attributed to the fact that individual shot location relative to
center aiming point was imperative to calculate the accuracy
measures. Conversely, the judgment accuracy calculation was
independent of whether the soldier hit the target or not (i.e., shots
taken during inter-stimulus interval).

Interestingly, soldiers collectively did not rate the
marksmanship tasks preceded by either of the interventions
(mental fatigue vs. control), differently with respect to the global
workload measure. Though speculative, there could be two
reasons why there was not a difference in perceived workload.
First, although the NASA-TLX is extensively used to measure
workload, it may lack the sensitivity to adequately measure
perceived workload of this task (Rubio et al., 2004). Alternatively,
the lack of significant difference may suggest that the mental
fatigue effect may be frontloaded at the start of the task and
have a relatively short half-life. Given the design of the current
study, we were not able to confidently extrapolate whether
this assumption was correct. Future investigations should be
designed to examine physical task performance as a function of
time-on-task, instead of aggregate performance as previously
done (e.g., Duncan et al., 2015; Head et al., 2016).

CONCLUSION

The current study examined the effects of prior mental
fatigue on subsequent marksmanship performance using a live-
fire scenario with trained soldiers. The fatigue intervention
was successful in eliciting mental fatigue. The results of the
current investigation provide further support that mental fatigue
modulates subsequent physical performance in a fine-motor task
as similarly found in a full-body exercise task.
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The findings of the current investigation may have practical
implications for soldiers. For example, soldiers often have to
perform vigilance type task that are mentally fatiguing such
as stationary surveillance (e.g., sentry or security operations)
or extended mobile patrols (e.g., monitoring environment in a
mounted convoy or on dismounted patrol). Without warning,
soldiers may need to engage multiple targets within an urban
environment that contains a civilian population. Thus, soldiers
need to not only be accurate and fast, but also judicious in
their execution of sound judgment prior to pressing trigger.
Anecdotally, soldiers have suggested that with modifications
the marksmanship task used in this study could serve as an
excellent training tool, both to decrease likelihood of errant
fire upon friendly positions, as well as to improve soldier skill
with respect to the speed of judicious target engagement. The
task may hold particular relevance for contexts that feature
commonality between adversarial and neutral/friendly visuo-
perception characteristics, or that feature very short duration
temporal constraints such as close-quarters (i.e., short distance-
to-target) threats with concealed adversarial intent.
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