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Octopamine and tyramine, both biogenic amines, are bioactive chemicals important in

diverse physiological processes in invertebrates. In insects, octopamine and tyramine

operate analogously to epinephrine and norepinephrine in the vertebrates. Octopamine

and tyramine bind to G-protein coupled receptors (GPCRs) leading to changes in

second messenger levels and thereby modifying the function in target tissues and insect

behavior. In this paper, we report the cDNA sequences of two GPCRs, RhoprOctβ2-R,

and RhoprTyr1-R, have been cloned and functionally characterized from Rhodnius

prolixus. Octopamine and tyramine each activate RhoprOctβ2-R and RhoprTyr1-R in

a dose-dependent manner. Octopamine is one order of magnitude more potent than

tyramine in activating RhoprOctβ2-R. Tyramine is two orders of magnitude more potent

than octopamine in activating RhoprTyr1-R. Phentolamine and gramine significantly

antagonize RhoprOctβ2-R, whereas yohimbine and phenoxybenzamine are effective

blockers of RhoprTyr1-R. The transcripts of both receptors are enriched in the central

nervous system (CNS) and are expressed throughout the adult female reproductive

system. It has been shown in other insects that Octβ2-R is essential for processes

such as ovulation and fertilization. We previously reported that octopamine and tyramine

modulate oviducts and bursa contractions inR. prolixus. Our data confirm the importance

of octopamine and tyramine signaling in the reproductive system of R. prolixus.

Keywords: octopamine, tyramine, G-protein-coupled receptor, antagonists, insect

INTRODUCTION

Biogenic amines are a class of organic neuroactive chemicals, derived from amino acids,
characterized by having lowmolecular weights and an aminemoiety and are an integral component
of neuronal communication and signaling in animals. Biogenic amines are utilized by neurons
to send quick, private and short-term signals to specific targets leading to transient physiological
changes. Octopamine, a biogenic amine, is not only known to be a neurotransmitter, but also to
act as a neuromodulator and a neurohormone in insects (Orchard, 1982; Roeder, 1999; Farooqui,
2012). Octopamine’s precursor, tyramine, is also known to be an independent neuroactive chemical
signaling through tyramine specific receptors (Kononenko et al., 2009; Lange, 2009). In insects,
the octopaminergic system functions in a similar manner to the adrenergic system in vertebrates
(Roeder, 1999, 2005). Octopamine and tyramine play a variety of physiological roles in insects,
thereby modulating feeding (Cohen et al., 2002; Ishida and Ozaki, 2011), learning and memory
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(Hammer and Menzel, 1998; Schroll et al., 2006), aggression
(Zhou et al., 2008; Szczuka et al., 2013), locomotion (Saraswati
et al., 2004) and metabolism (Orchard et al., 1993; Scheiner et al.,
2002).

Octopamine and tyramine utilize G-protein coupled receptors
(GPCRs) on post-synaptic or target tissue membranes to induce
physiological effects. The first receptor cloned and characterized
was a D. melanogaster tyramine receptor shown to negatively
couple to adenylate cyclase (Arakawa et al., 1990). Fast forward
27 years later, many octopamine and tyramine receptors have
been cloned and characterized from different insect orders, most
notably in Diptera, Lepidoptera and Hymenoptera (Ohta and
Ozoe, 2014; Wu et al., 2015; Reim et al., 2017). The activation
of a specific receptor leads to a unique change(s) in cAMP
and/or Ca2+ as depicted in Figure 1. Insect octopamine and
tyramine receptors are now classified into Octα1-R, Octα2-R,
Octβ-Rs (Octβ1-R, Octβ2-R, Octβ3-R), Tyr1-R, Tyr2-R, and
Tyr3-R (Evans and Maqueira, 2005; Farooqui, 2012; Wu et al.,
2014; Figure 1). The signaling pathways, and classification of
these receptors has been defined using a variety of bioassays
and second messenger analysis along with studies using specific
agonists and antagonists (Evans and Maqueira, 2005; Farooqui,
2012; Wu et al., 2014).

Octopamine and tyramine signaling pathways have been
shown to be essential in modulating the reproductive system of
various insects. For example, lack of tyramine and octopamine
in Drosophila melanogaster (tyrosine decarboxylase 2 mutated
flies) resulted in reproductive sterility due to egg retention
(Cole et al., 2005). Insects that specifically lack octopamine
(tyramine β-hydroxylase mutants) accumulated eggs in their
ovaries due to abolished ovulation (Monastirioti et al., 1996;
Monastirioti, 2003). A tyramine 1 (Tyr1) receptor in Locusta
migratoria, the octopamine receptor in the mushroom bodies
(OAMB) and octopamine beta 2 (Octβ2) receptor in D.
melanogaster, have also been linked to reproductive physiology
in both insects (Lee et al., 2003, 2009; Donini and Lange,
2004; Molaei et al., 2005; Lim et al., 2014; Li et al., 2015).
A recent study demonstrated Octβ2-R knockdown hindered
ovulation in Nilaparvata lugens (Wu et al., 2017). Octopamine
and tyramine may exert some of their effects by influencing the
contractions of the reproductive musculature. Thus, octopamine
reduces the amplitude, frequency and basal tonus of lateral
oviduct contractions in D. melanogaster (Middleton et al.,
2006; Rodriguez-Valentin et al., 2006), L. migratoria (Lange and
Orchard, 1986), and Stomoxys calcitrans (Cook and Wagner,
1992).

Rhodnius prolixus is a blood-feeding hemipteran and the
vector of Chagas disease in Central and South America. It has
previously been shown that octopamine reduces the amplitude of
spontaneous and RhoprFIRFamide (AKDNFIRFamide)-induced
oviduct contractions in a dose-dependent manner (Hana and
Lange, 2017). Tyramine did not reduce spontaneous oviduct
contractions, but did decrease RhoprFIRFamide-induced oviduct
contractions suggesting that the action of tyramine is via
modulation of induced contractions (Hana and Lange, 2017). At
the bursa, a large muscular sac responsible for oviposition in
R. prolixus, octopamine and tyramine reduce the frequency of

contractions at ≤10−7 M and abolish contractions at ≥10−6 M
(Hana and Lange, 2017). Thus, octopamine/tyramine signaling
may be important in the reproductive system of this medically-
important insect.

The present study aimed to confirm this by identifying and
functionally characterizing two receptors, RhoprOctβ2-R and
RhoprTyr1-R, in R. prolixus. RhoprOctβ2-R and RhoprTyr1-
R are shown to be dose-dependently activated by their
corresponding ligand. Both receptors are widely distributed
throughout the adult female reproductive system suggesting
vital roles in modulating reproductive processes. This study,
not only supports octopamine’s role in reproduction, but also
suggests that tyramine can be involved in the fine-tuning of
reproductive processes in R. prolixus. The newly discovered
R. prolixus octopamine and tyramine receptors could potentially
be used to develop lead compounds to be used as vector control.

MATERIALS AND METHODS

Animals
Adult R. prolixus were maintained with a 12 h light/dark cycle
reared at ∼50% humidity and 28◦C and fed defibrinated rabbit’s
blood (Hemostat Laboratories, Dixon, CA, USA; supplied by
Cedarlane Laboratories Inc., Burlington, ON, Canada) once in
every instar.

Chemicals
All biogenic amines (D, L-octopamine hydrochloride, tyramine
hydrochloride, serotonin hydrochloride and dopamine
hydrochloride) were made as 10−2 M stocks dissolved in double
distilled water. All biogenic amine antagonists (phentolamine
hydrochloride, gramine, metoclopramide hydrochloride,
mianserin hydrochloride, cyproheptadine hydrochloride, pheno-
xybenzamine hydrochloride, yohimbine hydrochloride, and
chlorpromazine hydrochloride) were prepared in molecular
grade ethanol or dimethyl sulfoxide to 10−2 M stocks. The final
percentage of solvent in the experimental treatments was ≤0.1%.
All chemicals were obtained from Sigma Aldrich (Oakville,
Canada).

Isolation and Cloning of cDNA Sequences
Encoding R. prolixus Octβ2 and Tyr1
Receptors
The scaffold, transcripts and proteins of R. prolixus were
uploaded into Geneious 8.1 (Auckland, New Zealand) from
vectorbase.org. Using D. melanogaster Octβ2-R-PA (Q4LBB9)
and D. melanogaster Tyr1-R (Q9VEG1) as templates, a tblastn
search against R. prolixus transcripts and proteins as performed.
The partial cDNA sequences of the closest results to the
query sequence obtained for Octβ2-R (RPRC011545) and Tyr1-
R (RPRC008712) were amplified by specific primers for each
receptor (Table S1). OneTaq R© DNA Polymerase (NEB, Whitby,
ON, Canada) was used for all PCRs. The cycling profiles for the
PCRs using Bio-Rad’s s100 thermocycler (Bio-Rad Laboratories,
Mississauga, ON, Canada) were: initial denaturation at 94◦C for 5
min, followed by 29 cycles at 94◦C for 30 sec, 55–63◦C annealing
for 1 min, 68◦C for 1 min and a final extension at 68◦C for 5
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FIGURE 1 | Classification of octopamine and tyramine receptors in insects. The recently discovered octopamine α2-adrenergic-like receptors and tyramine 3 receptor

in D. melanogaster. OA, octopamine; TA, tyramine; Ca2+, calcium; cAMP, cyclic adenosine monophosphate. Figure based on Wu et al. (2014).

min. Products from the reactions were gel extracted using EZ-
10 Spin Column DNA Gel Extraction Kit (Bio Basic, Markham,
ON, Canada) and cloned using pGEM-T Easy Vector (Promega,
Madison,WI, USA).White colonies containing the inserts, tested
using PCR, were inoculated and left overnight to grow. The
inserts were extracted using EZ-10 Spin Column Plasmid DNA
MiniPreps Kit (Bio Basic, Markham, ON, Canada) and sent for
Sanger sequencing at the Centre of Applied Genomics at the
Hospital for Sick Children (Toronto, ON, Canada) or Eurofins
Genomics (Toronto, ON, Canada).

Gene specific forward primers (Table S2) were used along
with pDNR-LIB−25 Revs plasmid primer to amplify the cDNA
regions at the 3′ end of the receptors (3′ Modified RACE).
The product of the first reaction was nested with another
gene specific primer (Table S2). This process was repeated
until one characteristic band for each receptor was observed.
The bands were gel purified, cloned and sequenced. Many
gene specific forward primers (see Table S3) were designed
for the amplification of the 5′ cDNA ends of both receptors
(5′ Modified RACE). Essentially, a series of nested PCRs were
utilized to distinguish the correct bands. The products of the first
reaction were purified and used as a template for the subsequent
reaction. Selected fragments were gel extracted, cloned and
sequenced. The cDNA sequences for RhoprOctβ2-R (MF377526)
and RhoprTyr1-R (MF377527) have been deposited in
GenBank.

Sequence Analysis
The seven transmembrane domains for both receptors were
predicted by TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/
services/TMHMM/). BLAST was used to predict exon-intron
boundaries for both receptors, this was confirmed by a fruit
fly splice site prediction tool (http://www.fruitfly.org/seq_tools/
splice.html). The intracellular and N-glycosylation sites were
predicted using NeyGlyc 1.0 Server (http://www.cbs.dtu.dk/
services/NetNGlyc/) and the intracellular phosphorylation sites
were predicted using NetPhos 3.1 Server (http://www.cbs.dtu.
dk/services/NetPhos/). Palmitoylation of cysteine residues were
predicted by GPS.Lipid. An Integrated Resource for Lipid

Modifications predictor (http://lipid.biocuckoo.org/webserver.
php).

Mammalian Expression Vectors and
Transfection of the Receptors
The open reading frames (ORF) of both RhoprOctβ2-R and
RhoprTyr1-R were amplified using Q5 R© High-Fidelity DNA
Polymerase (New England Biolabs, Massachusetts, United States)
and the Kozak translation initiation sequence (GCCACC) was
inserted at the 5′ end of each receptor (Table S4; Kozak,
1987). The products were cloned into a pGEM-T Easy vector
(Promega, Madison, WI, USA) and sequenced. The receptors
were reamplified with Bgl II restriction site introduced at the 5′

end and Bam HI site introduced at the 3′ end of each receptor
(Table S4). RhoprOctβ2-R was subcloned into pIRES2-ZsGreen1
(Clontech, Mountain View, CA, USA) and RhoprTyr1-R was
subcloned into pIRES2 DsRed-Express2 (Clontech, Mountain
View, CA, USA).

A HEK293/CNG cell line that stably expresses a modified
cyclic nucleotide-gated channel (CNG) (previously available
from BD Biosciences, Mississauga, ON, Canada) were raised in
Dulbecco’s Modified Eagle Medium Nutrient Mixture F12-Ham
(DMEM/F-12) (Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% heat-inactivated fetal bovine serum, 1%
penicillin and streptomycin, and 100µg/mLG418. The cells were
incubated at 37◦C in 5% CO2. The cells were grown in T75 flasks
to 90–95% confluency and were transiently co-transfected with
either expression vector containing the receptor and aequorin at
a 2:1 ratio (transfection reagent to expression vectors) using X-
tremeGENE R© HP DNA Transfection Reagent (Roche Applied
Science, Penzberg, Germany). The cells were incubated for 72 h
and used for the functional cell assay.

Functional Cell Assay
HEK293/CNG cells were harvested with PBS-EDTA solution
and placed in working bovine serum albumen (BSA) medium
(DMEM/F-12 with 1% BSA and 1% penicillin and streptomycin).
The cells were incubated in coelenterazine h (Promega, Madison,
WI, USA) to a final concentration of 5 µM with stirring in the
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dark for at least 3 h. Before running the bioluminescence assay,
the cells were diluted by 5-fold using the BSA medium. For
the dose-response curves, stock solutions of D, L-octopamine
hydrochloride and tyramine hydrochloride were diluted in BSA
medium and tested in triplicate in flat bottom CELLSTAR 96
well-plates (Greiner Bio-One, Kremsmunster, Austria). Using an
automated injector, 50 µL of cells were loaded into each well and
luminescence was measured over three intervals for 15 s using a
Wallac Victor2 plate reader (Perkin Elmer, San Diego, CA, USA).
The agonists, serotonin and dopamine, were tested in a similar
manner as above. For the antagonists assay, octopamine or
tyramine were loaded into the wells along with each antagonist,
all dissolved in BSA medium. The plate was then vortexed for 2
min before running the assay.

Spatial Expression of RhoprOctβ2-R and
RhoprTyr1-R in the Adult Female
Reproductive System
The expression of both receptors was examined in 1 week old,
unfed female, 4 weeks post-feeding as fifth instars. The central
nervous system (CNS), ovary (OVA), lateral oviducts (LOV),
common oviduct and spermatheca (COS), bursa (BUR), cement
(CEM) were dissected and placed in nuclease-free phosphate-
buffered saline (PBS) (Sigma Aldrich, Oakville, ON, Canada).
Total RNA extraction was followed using EZ-10 Spin Column
Total RNA Minipreps Super kit (Bio Basic, Markham, ON,
Canada) and cDNA was synthesized using High-Capacity cDNA
Reverse TranscriptionKit (Applied Biosystems,Mississauga, ON,
Canada). The total cDNA produced was diluted by 10-fold
and used for the quantitative PCR reactions. The RhoprOctβ2-
R, RhoprTyr1-R and the reference genes (α-tubulin, β-actin,
ribosomal protein 49) were amplified by Mx35005 Quantitative
PCR System (Stratagene, Mississauga, ON, Canada) using the
primers provided (Table S5) and SsoFAST EvaGreen Supermix
with low Rox (Bio-Rad, Mississauga, ON, Canada). The reaction
conditions for both receptors started with an initial denaturation
at 95◦C for 30 sec followed by 40 cycles of denaturation at
95◦C for 5 s, annealing and extension at 60◦C for 33 s. Two
technical replicates were performed per tissue along with a
non-template control for each biological replicate. Analysis of
relative expression levels was determined using the 1Ct method.
Normalized expression was obtained by first averaging the CT

values of the reference genes β-actin, α-tubulin and rp49; and
second comparing these values to the CT values of the gene of
interest in all tissues.

Statistical Analysis
GraphPad Prism version 5.03 (www.graphpad.com) was used to
create and statistically analyze all graphs in this paper.

RESULTS

Structure of RhoprOctβ2 and RhoprTyr1
Receptors
Various potential biogenic amine receptors were analyzed in silico
using D. melanogaster receptors as templates. Two targets were

selected for 5′ and 3′ amplification by PCR. The full sequences of
RhoprOctβ2-R and RhoprTyr1-R were obtained by a modified
method of Rapid Amplification of cDNA Ends (RACE). The
total length of the RhoprOctβ2-R (MF377526) cDNA sequence
amplified was 1,799 bp yielding 447 amino acids with a molecular
weight of 50,431 kDa (Figure 2A). Regions within the arrows
indicate the predicted cDNA regions available on VectorBase
(Figure 2A). The ORF of RhoprOctβ2-R spanned four exons
with lengths of 455, 286, 353, and 599 bp separated by three
intronic regions (Figure 2B). The length of the RhoprTyr1-R
(MF377527) cDNA sequence amplified was 1,496 bp resulting
in 455 amino acids with a molecular weight of 51,925 kDa
(Figure 3A). The cDNA region within the first arrow and
the second arrow + the third and the fourth arrow indicate
predicted sequences obtained from VectorBase (Figure 3A). The
RhoprTyr1-R ORF spanned a single exon with a length of
1,526 bp (Figure 3B). Furthermore, both receptors belong to
the rhodopsin-like (Class A) GPCR superfamily characterized
by seven transmembrane hydrophobic domains (TM), a DRY
residue in the TM3 and an NPxxY motif in TM7 (Rovati
et al., 2007; Rosenbaum et al., 2009). The amino terminal of
RhoprOctβ2-R consisted of 65 amino acids compared to 49
amino acids for the RhoprTyr1-R (Figures 2, 3). The carboxyl
terminal of RhoprOctβ2-R consisted of 66 amino acids vs. only
18 amino acids for RhoprTyr1-R. Characteristic to all Tyr1-Rs,
the third intracellular loop of RhoprTyr1-R (151 amino acids) is
elongated when compared to RhoprOctβ2-R’s (70 amino acids)
third intracellular loop (Figures 2A, 3A). In conclusion, the
cloned cDNA sequences encode amino acid sequences predicted
to form two GPCRs, RhoprOctβ2-R and RhoprTyr1-R. These
newly found GPCRs contain all the structural features predicted
to be required for function.

Phylogenetic and Sequence Analysis
In order to determine the correct designation of the two receptors
cloned, phylogenetic analysis was conducted with various insect
octopamine and tyramine receptors. Different receptor types
form separate monophyletic groups (Figure 4). Octβ-Rs form
a large monophyletic group with each subtype of Octβ-Rs
forming a separate monophyletic group. The Octα-Rs and
the Tyr1-Rs form the other major monophyletic group. The
single D. melanogaster Tyr3-R is part of Tyr2-R monophyletic
group (Figure 4). RhoprOctβ2-R shared 78% identity and 87%
similarity with N. lugens’s Octβ2-R (ASA47149.1). RhoprTyr1-
R shared 56% identity and 64% similarity with Tyr1-R of
D. melanogaster (NP_001163494.1). Now that the correct
designations have been established for both receptors, it
is essential to consider the predicted biochemical features
of these GPCRs. Post-translational modifications such as
phosphorylation, N-glycosylation and cysteine palmitoylation
of the receptors are essential for the structural integrity and
functionality of the receptors (Kristiansen, 2004). RhoprOctβ2-R
is predicted to be N-glycosylated at two sites at Asn40 and Asn43

(Figure 2A). Multiple serine and threonine residues are predicted
to be phosphorylated by kinases in the third intracellular loop and
the C-terminus (Figure 2A). For RhoprTyr1-R, N-glycosylation
is noted at two sites, Asn14 and Asn17, at the N-terminus

Frontiers in Physiology | www.frontiersin.org 4 September 2017 | Volume 8 | Article 744

www.graphpad.com
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Hana and Lange Octopamine and Tyramine GPCRs in Rhodnius prolixus

FIGURE 2 | RhoprOctβ2-R cDNA sequence and the corresponding predicted amino acid sequence. (A) Amino acid numbers are bolded and indicated on the right of

the sequences below the nucleotide numbers. The predicted transmembrane domains are highlighted in gray. The predicted N-glycosylation sites are underlined and

bolded, while the potential phosphorylation sites are highlighted in yellow. The boxed cysteine residue is a site of potential palmitoylation. The region within the arrows

indicate the predicted cDNA sequences from VectorBase. (B) RhoprOctβ2-R’s open reading frame is indicated in solid black formed by four exons. The numbers

above the exon map indicate exon length while the numbers below the exon map indicate intron lengths. The red bar below the exon map indicates the predicted

regions obtained from VectorBase.
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FIGURE 3 | RhoprTyr1-R cDNA sequence and the corresponding predicted amino acid sequence. (A) The nucleotide numbers are indicated on the right above the

bolded amino acid numbers. The predicted hydrophobic transmembrane domains are highlighted in gray. The predicted N-glycosylation residues are bolded and

underlined. Residues highlighted in yellow indicate potential phosphorylation sites. The region within the first and second arrow + third and fourth arrow indicate

predicted cDNA sequences from VectorBase. (B) The open reading frame of RhoprTyr1-R gene spans a single exon as indicated in black. The red bar below the exon

map indicates the predicted regions obtained from VectorBase.
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FIGURE 4 | Phylogenetic tree of insect octopamine and tyramine receptors analyzed by Maximum Likelihood method using the JTT matrix-based model. Short form

and GenBank accession numbers are indicated for each species. The percent bootstrap (1,000 replicates) support for the associated taxa that clustered together is

shown next to the branches. Note that the cloned R. prolixus (Rpro) Octβ2-R and Tyr1-R are boxed. Taxonomic units (Dmel OctA2S-R and Dmel OctA2L-R) marked

with asterisks indicate predicted sequences. The outgroup is D. melanogaster metabotropic glutamate receptor (Dmel mGlutR). Dmel, Drosophila melanogaster;

Bmor, Bombyx mori; Pame, Periplaneta americana; Sgre, Schistocerca gregaria; Amel, Apis mellifera; Csup, Chilo suppressalis; Lmag, Locusta migratoria; Lcup,

Lucilia cuprina; Tcas, Tribolium castaneum; Nves, Nicrophorus vespilloides; Nlug, Nilaparvata lugens.
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(Figure 3A). Multiple phosphorylation sites are highlighted
in the long third intracellular loop between TM5 and TM6
(Figure 3A). Multiple sequence alignment of octopamine and
tyramine receptors yielded key amino acids common in all
insect octopamine and tyramine receptors (Figures 5, 6). In
short, RhoprOctβ2-R and RhoprTyr1-R contain the predicted
biochemical sites suggesting that these receptors are functionally
viable and are closely related to other insect Octβ2 and Tyr1
receptors.

Functional Characterization of the
Receptors
It was important to confirm the identity of RhoprOctβ2-R
and RhoprTyr1-R by testing the activation of the receptors to
their corresponding ligands. This was done by transfecting and
transiently expressing both receptors in HEK293/CNG cells.
The interaction of the ligand with the receptor was monitored
by measuring the bioluminescence released due to calcium
mobilization in the cytosol. Maximum activation of the receptors,
peak luminescence, was detected within 5–10 s. RhoprOctβ2-R
was activated in a dose-dependent manner by both octopamine
and tyramine (Figure 7A). Tyramine (EC50 = 3.85 × 10−6 M)
was ten times less potent than octopamine (EC50 = 3.67 ×

10−7 M) in activating RhoprOctβ2-R. Tyramine was a partial
ligand of RhoprOctβ2-R with a 69.00 ± 7.94% luminescence
response relative to 10−5 M octopamine (One-Way ANOVA
followed by Dunnett’s Multiple Comparison Test compared
to the octopamine group at 100%, ∗∗P < 0.01) (Figure 7B).
Other biogenic amines (serotonin and dopamine) were inactive
against RhoprOctβ2-R, confirming its selectivity for octopamine
and tyramine (Figure 7B). For the antagonists, phentolamine
and gramine significantly reduced the 10−5 M octopamine-
induced luminescence response, whereas partial inhibition was
noted with chlorpromazine, mianserin and metoclopramide
(One-Way ANOVA followed by Dunnett’s Multiple Comparison
Test compared to the octopamine group at 100%, ∗P <

0.05, ∗∗∗P < 0.001) (Figure 7C). Furthermore, tyramine and
octopamine each activated RhoprTyr1-R in a dose-dependent
manner with a threshold in the nanomolar range for tyramine
(Figure 8A). Tyramine (EC50 = 5.17 × 10−8 M) was ∼100
times more potent that octopamine (EC50 = 6.88 × 10−6 M).
Analysis of various biogenic amine agonists (serotonin and
dopamine) against RhoprTyr1-R revealed that RhoprTyr1-R is
selective for tyramine and octopamine (yields ∼50% of 10−5 M
tyramine luminescence response) (Figure 8B). Various biogenic
amine antagonists were effective in significantly reducing
tyramine’s luminescence response, most notably, yohimbine
(>50% reduction in luminescence) and phenoxybenzamine
(One-Way ANOVA followed by Dunnett’s Multiple Comparison
Test compared to the tyramine group at 100%, ∗P < 0.05, ∗∗P <

0.01, ∗∗∗P < 0.001) (Figure 8C). HEK293/CNG cells transfected
with empty vectors resulted in a luminescence response that
was identical to control wells. As predicted, RhoprOctβ2-R and
RhoprTyr1-R are functional GPCRs. Octopamine and tyramine
bind to RhoprOctβ2-R and RhoprTyr1-R causing modification
in second messengers.

RhoprOctβ2-R and RhoprTyr1-R Transcript
Expression
The expression of both receptors was analyzed in the CNS and
in the reproductive system of adult female R. prolixus using Real
Time Quantitative PCR. RhoprOctβ2-R transcript expression
was highly expressed in the CNS relative to the female adult
reproductive tissues (Figure 9A). RhoprOctβ2-R expression was
roughly similar in all reproductive tissues (Figure 9A). Slightly
low expression of RhoprOctβ2-R transcript was found in the
bursa compared to other reproductive tissues (Figure 9A).
Transcript distribution of RhoprTyr1-R was enriched in the CNS
relative to adult female reproductive tissues (Figure 8B). The
expression of RhoprTyr1-R in the ovary and common oviduct
+ spermetheca was similar (Figure 9B). Low RhoprTyr1-R
expression was noted in the lateral oviducts and the cement
gland (Figure 9B). Overall, the expression of RhoprOctβ2-R
and RhoprTyr1-R in the reproductive system suggests that
octopamine and tyramine could utilizing these receptors to cause
a modification in the rhythmic contractions of the reproductive
visceral muscle (Hana and Lange, 2017). In fact, tyramine’s lack of
direct action at the oviducts could be substantiated by the lower
expression of RhoprTyr1-R transcript relative to other tissues
(Hana and Lange, 2017).

DISCUSSION

Two receptors, Octβ2-R and Tyr1-R, have been cloned and
characterized in R. prolixus. These receptors were deorphaned
and their pharmacological profiles were analyzed. Previously,
we have shown that octopamine, acting via cAMP, decreases
the amplitude of spontaneous oviduct contractions, whereas
tyramine was ineffective (Hana and Lange, 2017). This previous
data complements the present data that reveals RhoprOctβ2-R
couples to a Gs protein leading to the activation of adenylate
cyclase and elevation of intracellular cAMP in HEK293/CNG
cells in the functional receptor assay. The increase in cAMP in
HEK293/CNG cells would have in-turn opened the CNG channel
resulting in an influx of Ca2+ from the extracellular medium.
Intracellular Ca2+ levels were detected by the reporter molecule
aequorin from the hydrozoan Aequorea victoria. RhoprTyr1-R
likely couples to a Gq protein leading to the release of Ca2+ from
intracellular stores through the IP3 pathway which would then
also have been detected with the reporter aequorin.

RhoprOctβ2-R and RhoprTyr1-R share key structural features
similar to other insect Octβ2-Rs and Tyr1-Rs. The third
intracellular loop of both receptors were elongated relative to
other loops, in terms of comparison, Tyr1-Rs are known to
have a lengthy third intracellular loop as seen with RhoprTyr1-
R. Interestingly, multiple phosphorylation sites (S and T) are
found in the third intracellular loops for all octopamine and
especially tyramine receptors. Phosphorylation of these residues
likely leads to receptor signaling and desensitization (Kristiansen,
2004). As shown from the sequence alignment, there are key
amino acids in all receptors that are important for ligand
binding and are widely conserved in vertebrate and invertebrate
receptors. For example, for RhoprOctβ2-R, the Asp142 residue
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FIGURE 5 | Multiple sequence alignment of insect Octβ2-Rs generated by MUSCLE alignment tool. Identical and similar amino acids across 60% of the sequences are

shaded in black and gray, respectively. RhoprOctβ2-R transmembrane domains are highlighted with blue bars. Amino acids noted with asterisks below the alignment

are signature residues conserved in adrenergic and adrenergic-like receptors. Dmel, Drosophila melanogaster (Q4LBB9); Bmor, Bombyx mori (NP_001280501.1);

Csup, Chilo suppressalis (AEO89318.1); Nlug, Nilaparvata lugens (ASA47149.1); Hsap, Homo sapiens, ADRβ2, adrenergic receptor beta-2 (P07550.3).
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FIGURE 6 | Multiple sequence alignment of insect Tyr1-Rs generated by MUSCLE alignment tool. Identical and similar amino acids across 60% of the sequences are

shaded in black and gray, respectively. The RhoprTyr1-R transmembrane domains are highlighted with blue bars. Amino acids noted with asterisks below the

alignment are signature residues conserved in adrenergic and adrenergic-like receptors. Bmor, Bombyx mori (BAD11157.1); Amel, Apis mellifera (NP_001011594.1);

Lmag, Locusta migratoria (Q25321.1); Clec, Cimex lectularius (XP_014240675.1); Hsap, Homo sapiens, ADRα2, adrenergic receptor alpha-2 (AAA51666.1).
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FIGURE 7 | Functional characterization of R. prolixus Octβ2 receptor in HEK293 cells. (A) Dose-response curve showing the effects of octopamine (OA) and tyramine

(TA) on RhoprOctβ2-R. (B) RhoprOctβ2-R is selective for octopamine and tyramine, while serotonin and dopamine are inactive against the receptor. (C) The effects of

various biogenic amine antagonists on RhoprOctβ2-R. Phentolamine and gramine significantly reduced octopamine-induced receptor activation (One-Way ANOVA

followed by Dunnett’s Multiple Comparison Test compared to octopamine groups at 100%, *P < 0.05, **P < 0.01, ***P < 0.001). All receptor agonists and

antagonists were tested at 10−5 M. Data represent the mean ± SEM of n = 5–6 per treatment.

FIGURE 8 | Functional characterization of R. prolixus Tyr1 receptor in HEK293 cells. (A) Dose-response curve showing the effects of tyramine (TA) and octopamine

(OA) on the RhoprTyr1-R. (B) RhoprTyr1-R is more selective for tyramine. (C) Various biogenic amine antagonists, notably yohimbine and phenoxybenzamine, reduced

the tyramine-induced activation of the RhoprTyr1-R (One-Way ANOVA followed by Dunnett’s Multiple Comparison Test compared to tyramine groups at 100%,

*P < 0.05, **P < 0.01, ***P < 0.001). All receptor agonists and antagonists were tested at 10−5 M. Data represents the mean ± SEM of n = 3–6 per treatment.

in TM3, Ser231 and Ser235 in TM5 and Phe338 in TM6 are all
believed to participate in ligand binding (Strader et al., 1995;
Sato et al., 1999; Blenau and Baumann, 2001; Huang et al.,
2007; Chen et al., 2011). In 2011, Chen and colleagues reported
that an Asp115, Ser202, and Tyr300 were required for Bombyx
mori Octβ2-R activation and cAMP elevation in HEK293 cells
(Chen et al., 2011). Similarly, a report by Ohta et al. (2004)
showed that the Asp134 residue in TM3 and Ser218 and Ser222

in TM5 were essential for activation of the B. mori Tyr1-
R suppression of cAMP levels in HEK293 cells (Ohta et al.,

2004). Essentially, these ligand interacting residues found in
RhoprOctβ2-R and RhoprTyr1-R are homologous to the residues
found in other octopamine and tyramine receptors from other
insects. Therefore, it is established that the cloned receptors
contain the predicted structural and biochemical features needed
for biological activity.

Predictions are hypothetical and do not grant function,
therefore, biological activity of Octβ2-R and RhoprTyr1-R
was investigated in HEK293/CNG cells. Octopamine is one
order of magnitude more potent than tyramine in activating
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FIGURE 9 | Spatial analysis of transcript expression of biogenic amine receptors in the adult female reproductive system. (A) RhoprOctβ2-R transcript is widely

distributed in the reproductive tissues. The expression of RhoprOctβ2-R is significantly higher than the reproductive tissues (one-way ANOVA followed by Tukey

multiple comparisons test; *P < 0.05). (B) RhoprTyr1-R transcript is expressed in all reproductive tissues. RhoprTyr1-R transcript expression in the ovary is

significantly higher than the lateral oviducts and the cement gland (one-way ANOVA followed by Tukey multiple comparisons test; *P < 0.05, ***P <0.001). CNS,

central nervous system; OVA, ovary; LOV, lateral oviduct; COS, common oviduct and spermatheca; BUR, bursa; CEM, cement gland. Data represents the mean ±

SEM of three biological replicates for RhoprOctβ2-R and four biological replicates for RhoprTyr1-R, each biological replicate included two technical replicates.

RhoprOctβ2-R. The half-maximal activation was 3.67 × 10−7

M for octopamine compared to 3.85 × 10−6 M for tyramine.
Octopamine fully activated the receptor, unlike tyramine which
is a partial agonist. Half-maximal activation values (EC50) of
other cloned Octβ2-Rs vary with a range of 10−9 to 10−7 M.
Octopamine has been shown to be one order of magnitude
more potent than tyramine in N. lugens (Wu et al., 2017), Apis
mellifera (Balfanz et al., 2014) and D. melanogaster (Maqueira
et al., 2005). In Chilo suppressalis, octopamine was found to be
two to three orders of magnitudemore potent than tyramine (Wu
et al., 2012). RhoprOctβ2-R was antagonized by phentolamine
> gramine > metoclopramide. In general mianserin and
phentolamine have been shown to be effective antagonists of
Octβ2-Rs in other insects (Maqueira et al., 2005; Wu et al.,
2012, 2017; Balfanz et al., 2014); however, this is not always
the case, and chlorpromazine and metoclopramide antagonized
the B. mori Octβ2-R (Chen et al., 2010). Octopamine’s potency
in activating Octβ2-R varies with different insects. Similarly,
functional analysis of RhoprTyr1-R showed that tyramine was
significantly more potent than octopamine in activating the
receptor. Tyramine (EC50 = 5.17 × 10−8 M) was found to be
two orders of magnitude more potent than octopamine (EC50

= 6.88 × 10−6 M). Nonetheless, octopamine fully activated
Tyr1-R at ≥10−4 M concentrations. Tyr1-Rs from B. mori
(Ohta et al., 2003) and L. migratoria (Vanden Broeck et al.,
1995; Poels et al., 2001) have been shown to be activated by
tyramine at similar concentrations reported here for RhoprTyr1-
R. Tyramine was two orders of magnitude more potent than
octopamine in these organisms (Vanden Broeck et al., 1995;
Poels et al., 2001; Ohta et al., 2003). In A. mellifera (Blenau and
Baumann, 2001) and D. melanogaster (Saudou et al., 1990; Enan,
2005), tyramine was only one order of magnitude more potent
than octopamine. Interestingly, tyramine is three times more
potent than octopamine in activating a Tyr1-R in C. suppressalis

(Wu et al., 2013). Yohimbine was the most effective antagonist
in inhibiting tyramine’s activation of RhoprTyr1-R. Overall,
yohimbine has been established as the most potent antagonist
of insect Tyr1-Rs (Arakawa et al., 1990; Saudou et al., 1990;
Robb et al., 1994; Vanden Broeck et al., 1995; Poels et al., 2001;
Enan, 2005; Rotte et al., 2009). The contribution of different cell
lines and the type of expression (stable and transient) can of
course alter the pharmacological data obtained in these assays.
Altogether, RhoprOctβ2-R and RhoprTyr1-R are bioactive and
exhibit a distinct yet similar pharmacological profile compared
to other octopamine and tyramine receptors.

RhoprOctβ2-R and RhoprTyr1-R are confirmed to be active
receptors, but where and what physiological processes could
these receptors mediate? Analysis of Octβ2-R and Tyr1-R
transcript distribution reveals that both receptors are highly
expressed in the CNS (Blenau et al., 2000; Rotte et al., 2009;
Wu et al., 2012, 2013, 2017; El-Kholy et al., 2015). Octβ2-R
transcript is highly expressed in skeletal muscle, reproductive
organs, leg, antenna and other structures (El-Kholy et al., 2015;
Wu et al., 2017) while Tyr1-R transcript is strongly expressed
in the heart and minorly expressed in the reproductive organs
(El-Kholy et al., 2015). Similar to other insects, strong expression
of RhoprOctβ2-R and RhoprTyr1-R transcripts was detected in
the CNS relative to the transcript expression in adult female
reproductive system. RhoprOctβ2-R transcript expression is
similar to Octβ2-R transcript expression in D. melanogaster and
N. lugens in the reproductive system (Lim et al., 2014; Li et al.,
2015; Wu et al., 2017). Indeed, the differential expression of
RhoprOctβ2-R and RhoprTyr1-R transcripts in the reproductive
system are likely correlated with the physiological effects
observed (Hana and Lange, 2017). Previously, it was shown
that an Octβ receptor is responsible for the inhibitory actions
in the oviducts and the bursa (Hana and Lange, 2017). The
expression of RhoprOctβ2-R transcript in the oviducts and the
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bursa supports this hypothesis, in fact, it is further strengthened
due to phentolamine strongly antagonizing RhoprOctβ2-R.
On the other hand, lower RhoprTyr1-R transcript expression,
relative to other reproductive tissues, reinforces the fact that
tyramine is unable to inhibit oviduct contractions by itself
(Hana and Lange, 2017). RhoprTyr1-R transcript expression
at the lateral oviducts could signify tyramine’s neuromodulator
rather than neurotransmitter properties at the oviducts (Hana
and Lange, 2017). In this scenario, tyramine modulates the
activity of other neuropeptides that stimulate contraction rather
than directly influencing contraction. To summarize, octopamine
and tyramine could be utilizing these found GPCRs to modify
rhythmic contractions and other various female reproductive
processes.

In conclusion, the cDNA of RhoprOctβ2-R and RhopTyr1-R
has been cloned and functionally characterized. RhoprOctβ2-R
isspecifically activated by octopamine, whereas RhoprTyr1-R is
specifically activated by tyramine. The wide spatial distribution of
these two receptor transcripts in the female reproductive system
suggest their importance in modulating reproductive processes.
Octβ2-R has already been established in D. melanogaster and
N. lugens to be important for ovulation of eggs (Lim et al., 2014;
Li et al., 2015; Wu et al., 2017). The RhoprOctβ2-R expressed in
the oviducts of R. prolixus is likely involved in the relaxation of
the oviducts which may be a vital step in the process of ovulation.
RhoprOctβ2-R and RhoprTyr1-R knockdown studies are needed
to further elucidate the role of these receptors in ovulation and
other reproductive processes in R. prolixus.
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