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Background: A range of computational methods that rely on the analysis of

genome-wide expression datasets have been developed and successfully used for drug

repositioning. The success of these methods is based on the hypothesis that introducing

a factor (in this case, a drug molecule) that could reverse the disease gene expression

signature will lead to a therapeutic effect. However, it has also been shown that globally

reversing the disease expression signature is not a prerequisite for drug activity. On the

other hand, the basic idea of significant anti-correlation in expression profiles could have

great value for establishing diet-disease associations and could provide new insights into

the role of dietary interventions in disease.

Methods: We performed an integrated analysis of publicly available gene expression

profiles for foods, diseases and drugs, by calculating pairwise similarity scores for diet

and disease gene expression signatures and characterizing their topological features in

protein-protein interaction networks.

Results: We identified 485 diet-disease pairs where diet could positively influence

disease development and 472 pairs where specific diets should be avoided in a disease

state. Multiple evidence suggests that orange, whey and coconut fat could be beneficial

for psoriasis, lung adenocarcinoma and macular degeneration, respectively. On the other

hand, fructose-rich diet should be restricted in patients with chronic intermittent hypoxia

and ovarian cancer. Since humans normally do not consume foods in isolation, we

also applied different algorithms to predict synergism; as a result, 58 food pairs were

predicted. Interestingly, the diets identified as anti-correlated with diseases showed a

topological proximity to the disease proteins similar to that of the corresponding drugs.

Conclusions: In conclusion, we provide a computational framework for establishing

diet-disease associations and additional information on the role of diet in disease

development. Due to the complexity of analyzing the food composition and eating
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patterns of individuals our in silico analysis, using large-scale gene expression datasets

and network-based topological features, may serve as a proof-of-concept in nutritional

systems biology for identifying diet-disease relationships and subsequently designing

dietary recommendations.

Keywords: gene expression, enrichment score, diet-disease associations, diseases, protein-protein Interaction

network

INTRODUCTION

Diet plays a very important role in maintaining health and
preventing diseases by influencing the physiological state of
humans in a number of ways. The antioxidant properties of
molecules in fruits and vegetables are known to be protective
against free radical damage (Moo-Huchin et al., 2015; Vinha
et al., 2015). Especially savoy cabbage, spinach and collard were
proved to exhibit high antioxidant potential (>80%) (Vinha
et al., 2015). There has been evidence of the metabolic effects
of diet on aging and age-related diseases (Mattison et al.,
2000; Speakman and Mitchell, 2011; Johnson et al., 2013;
Solon-Biet et al., 2014; Finkel, 2015). It has been shown that
reducing food intake without malnutrition can prolong lifespan
(Mattison et al., 2000; Lin et al., 2002), whereas metabolic
sensors regulated by food nutrients, such as mechanistic target
of rapamycin (mTOR), sirtuins and adenosine monophosphate
(AMP)-activated protein kinase (AMPK), may contribute to the
aging phenotype (Finkel, 2015). On the other hand, food may
be a risk factor for certain diseases, including the development
of cancer by affecting processes such as cell differentiation
and apoptosis, as well as the hormonal regulation of cellular
functions (Mayne et al., 2016). For instance, red meat and
alcohol have been associated with colorectal cancer and cancers
of the gastrointestinal tract, respectively (Wiseman, 2008). High-
fat diary foods have been found to contribute to the risk of
Alzheimer’s disease (Knight et al., 2014). In addition, as a
lifestyle factor, diet can act on the epigenome and alter relevant
gene expression profiles, potentially influencing the pathogenesis
of type 2 diabetes mellitus (Barres and Zierath, 2016). Since
food composition and eating patterns are highly complex,
identifying relationships between diet and diseases remains a
challenging task. New approaches are needed to identify the role
of different foods in disease development and to design dietary
recommendation.

Abbreviations: AD, Alzheimer’s disease; ALL, acute lymphoblastic leukemia;

AML, acute myeloid leukemia; AMPK, adenosine monophosphate (AMP)-

activated protein kinase; BE, Barrett’s esophagus; CD, Crohn’s disease; CML,

chronic myelogenous leukemia; COPD, chronic obstructive pulmonary disease;

DAPH, 4,5-dianilinophthalimide; DE, differentially expressed; EAC, Esophageal

adenocarcinoma; EGFR, epidermal growth factor receptor; ES, enrichment score;

ESCC, esophageal squamous cell carcinoma; HBV, hepatitis B virus; HBV-ALF,

acute liver failure due to hepatitis B virus; HBV-associated HCC, hepatitis B

virus-associated hepatocellular carcinoma; HCC, hepatocellular carcinoma; HCV,

hepatitis C virus; IBD, inflammatory bowel disease; JIA, juvenile rheumatoid

arthritis; mTOR, mechanistic target of rapamycin; NSCLC, non-small cell

lung cancer; PCA, principal component analysis; PDAC, pancreatic ductal

adenocarcinoma; PPI, protein-protein interaction; RA, rheumatoid arthritis; SLE,

systemic lupus erythematosus; UC, ulcerative colitis.

Systems biology may serve as a solution here and it has been
considered as a powerful tool for integrating multi-omics data to
perform extensive analyses and to gain a global understanding
of how diet contributes to health and disease (Panagiotou
and Nielsen, 2009; Badimon et al., 2016). Using systematic
approaches, we previously identified plant-based food-disease
and food-drug associations through interactions between food
bioactive compounds and disease proteins (or drug targets)
(Jensen et al., 2014, 2015a). We proposed a statistical framework
for screening specific phytochemicals that perturb drug targets
and disease-related pathways (Jensen et al., 2014), and pinpointed
key proteins in colon cancer that may be perturbed by dietary
interventions (Westergaard et al., 2014). Investigating food-
drug associations led to the recognition of foods that may
negatively interfere with drug treatment for specific diseases,
providing a platform for designing dietary recommendations in
association with certain medications (Jensen et al., 2015a). We
also developed a database linking foods with their small-molecule
components (http://www.cbs.dtu.dk/services/NutriChem-1.0/),
which provides a comprehensive source for chemoinformatics-
based inference of food-disease interactions (Jensen et al.,
2015b). Moreover, diet has not only a direct effect on the
host but also an indirect effect on gut microbiota alterations
(David et al., 2014), which may contribute to pathogenesis
of disorders such as inflammatory bowel diseases (Albenberg
and Wu, 2014). In a previous study of our group (Ni et al.,
2015), we investigated at molecular level how diet could affect
gut microbiota functionality and revealed that small-molecule
nutrients mainly affected the expression of bacterial genes
related to metabolic pathways, providing useful insights for
microbiome-targeted dietary recommendations. The high-fiber,
low-fat diet can result in remarkable changes in the composition
and functions of gut microbiota, especially the ones related
to butyrogenesis and secondary bile acid synthesis, which are

aspects known to affect cancer risk (O’Keefe et al., 2015).
However, the studies described above mainly relied on known

dietary chemical compositions and their direct interactions with
disease proteins, microbiome proteins or drug targets, ignoring

the global effect that diet may induce at the gene expression level

and possible associations with disease gene expression signatures.

Based on the hypothesis that if a disease state is signified by a

specific set of genome-wide expression changes, then introducing

a factor that could reverse the disease gene expression signature

will naturally lead to a therapeutic effect (Sirota et al., 2011),
a range of methods have been developed and successfully used

for drug repositioning that involves screening of new clinical

applications of well-known and approved drugs (Lamb et al.,
2006; Iorio et al., 2010; Shigemizu et al., 2012; van Noort et al.,
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2014). Among numerous application examples of this approach,
Lamb et al. (2006) recognized that 4,5-dianilinophthalimide
(DAPH) might be a potential therapeutic agent for Alzheimer’s
disease (AD) and that sirolimus could be tested in acute
lymphoblastic leukemia (ALL) patients with dexamethasone
resistance. Subsequently, Pacini et al. developed DvD, which
provides a pipeline for comparisons between drug and disease
gene expression profiles (Pacini et al., 2013). Another example
is the identification of 247 drugs that consistently significantly
reversed lung cancer gene expression changes (Fortney et al.,
2015), from which spiperone and pimozide had been reported as
promising drugs for lung cancer. Using systems-level approaches,
our objectives here are: (1) to establish diet-disease correlations
and identify diets that could either reverse or induce the
expression of disease-related genes, by calculating pairwise
similarity scores between diet and disease gene expression
signatures; (2) to understand mechanistic similarities and
differences in the mode of action of diet- and drug-based
interventions, though integration of gene expression signatures,
advanced topological analysis and information on experimentally
validated associations of diet with disease phenotypes; (3) to
predict synergistic food pairs, since humans do not normally
consume foods in isolation, that may facilitate the design of more
complete dietary recommendations for specific groups at risk by
applying different algorithms.

MATERIALS AND METHODS

Diet, Drug, and Disease Gene Expression
Data
For diet, drugs and diseases, only the datasets that have
well-controlled experimental design including gene expression
profiles measured before and after interventions (here referring
to diet, disease or drug) under the same conditions were
used for analysis. In addition, we only kept the datasets
using oligonucleotide microarrays and the ones with available
annotations to Entrez gene IDs. The raw and processed gene
expression profiles of foods and diseases were downloaded from
NCBI GEO (Edgar et al., 2002) and ArrayExpress (Parkinson
et al., 2005). We processed gene expression profiles of 18 foods
from 23 datasets (Table S1) and 111 diseases from 212 datasets
(Table S2). Using the classification proposed by Goh et al. (2007),
74 of the 111 diseases were further classified into 17 disease
classes. The gene expression datasets for 121 drugs corresponding
to 48 diseases (Table S3) were downloaded from NCBI GEO,
ArrayExpress, Cmap (Lamb et al., 2006) and DrugMatrix R©

(Ganter et al., 2005; https://ntp.niehs.nih.gov/drugmatrix/index.
html).

In terms of data processing, RMA normalization (Irizarry
et al., 2003) was applied to raw data from the Affymetrix
microarray platforms, including the Affymetrix Human Genome
U133 Plus 2.0 Array, Affymetrix Human Genome U133A Array
and Affymetrix Human Gene 1.0 ST Array. For other microarray
platforms, processed data were used. Probe sets were mapped
to Entrez genes based on the annotations provided by GEO.
Multiple probe sets mapped to the same gene were converted

to the average intensities. Probe sets mapped to multiple gene
identifiers or with missing values in over 20% samples were
removed.

To increase the data size, datasets from rats and mice were
also included (Iskar et al., 2013). In processing these datasets,
we only retained genes with human orthologs based on NCBI
Homologene (Sayers et al., 2009), and the orthologous genes were
used for subsequent analyses. Previous studies have shown that
particular transcriptional changes induced by different growth
conditions, stress or disease can be conserved between species
(Miller et al., 2010; Zheng-Bradley et al., 2010; Dowell, 2011), so
it is feasible to combine datasets from rats, mice and human to
generate unique gene expression signature lists.

Enrichment Score (ES) Calculation
The R package RankProd (Hong et al., 2006), which is
based on the rank product method (Breitling et al., 2004)
that could overcome the platform heterogeneity, was used to
detect differentially expressed (DE) genes by integrating various
experimental datasets (Figure 1). With a false discovery rate
(FDR) ≤0.05, significantly DE genes for each food/drug/disease
were identified.

The ES method developed by Pacini et al. (2013) was applied
to establish diet-disease and drug-disease associations. Genes
were rank-ordered based on the log fold change calculated by
RankProd. The number of genes used for ES calculation was
determined dynamically by the number of significantly DE genes.
Afterwards, the enrichment scores were calculated using the
Kolmogorov-Smirnov-based statistic (Subramanian et al., 2005;
Iorio et al., 2013) for each food/drug gene set against each disease
gene set. If the FDR-corrected P-value was less than 0.05, then
diet-disease pairs (or drug-disease pairs) were considered to
be significantly associated. Furthermore, a positive enrichment
score indicated correlated diet-disease pair (or drug-disease pair),
whereas a negative enrichment score indicated anti-correlated
relationship.

Hierarchical Cluster Analysis
Hierarchical clustering was used to show disease similarity based
on the enrichment scores of diseases across all the drugs here.
After extracting the enrichment score between each disease and
each drug, the R package Pvclust (Suzuki and Shimodaira, 2006)
was employed to compute Pearson correlation coefficients as the
distance metric between disease pairs and to perform hierarchical
clustering.

Principal Component Analysis (PCA) at the
Pathway Level
KEGG pathway enrichment analysis was performed for each diet
and drug using the R package Gostats (Falcon and Gentleman,
2007), with significantly enriched pathways identified at FDR
<0.05. Then the diet-disease and drug-disease pairs with
negative enrichment scores (anti-correlations) were retrieved and
grouped into disease classes as described above. For each disease
class, we first constructed a binary matrix: if the pathway was
enriched for one food or drug then it was marked as 1, otherwise
as 0. Subsequently, for each disease class we aggregated the

Frontiers in Physiology | www.frontiersin.org 3 September 2017 | Volume 8 | Article 753

https://ntp.niehs.nih.gov/drugmatrix/index.html
https://ntp.niehs.nih.gov/drugmatrix/index.html
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Zheng et al. Identifying Diet-Disease Associations

FIGURE 1 | The framework of our methodology applied in this study. The differentially expressed (DE) genes of diets, drugs and diseases were detected using the R

package Rankprod, by comparison with respective control groups. The R package Gostats was applied for KEGG pathway enrichment analysis. The identified

significant pathways for diets, drugs and diseases were used to construct the score matrix for the PCA. Diet-disease and drug-disease associations were calculated

using the enrichment score (ES) method in DvD package. Hierarchical analysis was performed to show disease similarity based on the ES scores. Using a python

script developed by Guney et al. (2016), we measured the proximity values between DE genes of diets or drugs and diseases within a human protein-protein

interaction (PPI) network. Synergistic food pairs were identified using the approaches from Bansal et al. (2014).

pathways enriched for all foods or drugs into “diet” and “drug,”
respectively. To avoid the bias caused by different numbers of
food-disease and drug-disease pairs, we used the proportion of
foods or drugs marked as “1” as the final score of each enriched
pathway for each disease class. This score matrix was used for
PCA.

Using the same method and cutoff, pathway enrichment
analysis was also performed for disease-induced gene expression
profiles. Here, the disease-related pathways for foods or drugs
were defined as the common enriched pathways between gene
expression signatures of diseases and foods (or drugs).

Network Proximity Analysis
The proximity measure proposed by Guney et al. (2016) was used
to further analyze the diet-disease and drug-disease pairs with
anti-correlated relationships (negative enrichment score). For

diseases with FDA-approved (or clinically investigated) drugs,
the disease-associated genes were retrieved from Menche et al.
(2015). In total, disease genes were retrieved for 19 diseases
corresponding to 63 FDA approved (or clinically investigated)
drugs and 18 anti-correlated foods. The interactome data were
obtained from the PPI network compiled byMenche et al. (2015).
Using the Python script located at https://github.com/emreg00/
toolbox (Guney et al., 2016), the proximity measures between DE
genes of foods or drugs and the disease genes were calculated.

Chemical Similarity between Dietary
Compounds and Drugs
Canonical SMILES (simplified molecular input entry system) of
dietary bioactive compounds were retrieved from NutriChem
(Jensen et al., 2015b) and SMILES of drugs were retrieved from
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DrugBank (Law et al., 2014), PubChem (Bolton et al., 2008),
and BindingDB (Gilson et al., 2016). The pairwise similarity
scores between dietary compounds and drugs were measured by
Morgan (ECFP like) fingerprints and Tanomito coefficients. The
cutoff for similarity scores was set at 0.4.

Identifying Synergistic Pairs
Three approaches from Bansal et al. (2014) were adopted
here: (1) the Rank 2 method, which identifies a set of core
genes defined by statistically significantly DE genes in at least
one food administration and uses these genes to estimate an
interaction score by calculating the number of overlapping genes,
taking directionality into account; (2) the Rank 4 method,
which computes a Pearson correlation between gene expression
profiles of two foods using DE genes in at least one food;
and (3) the Rank 9 method, which uses the rank-aggregation
method to combine food-pair similarity results obtained from
gene expression correlations, commonly affected pathways and
functions. A detailed description of these methods is available
from Bansal et al. (2014). Food pairs serving as a gold standard
met two criteria: (1) the food pair should share at least one same
association with the same disease, and (2) the total sum of the
number of supported references, as recorded in NutriChem (10
of 18 foods from our data can be found in this database) (Jensen
et al., 2015b), for each shared disease association between 2 foods
should be more than 10. The method that recovered most of
the gold standard pairs was used for identifying synergistic food
pairs.

RESULTS

Evaluation of the Enrichment Score
Method for Associating Diet with Diseases
Based on Global Gene Expression
Signatures
We collected gene expression profiles for 111 diseases and 121
drugs indicated for at least one disease (Tables S2, S3) from public
databases. Pairwise correlations between drugs and diseases were
calculated using the ES method (Pacini et al., 2013), after which
correlated and anti-correlated drug-disease pairs were identified
(Figure 1) (see Materials and Methods for more details). The
essence of this approach is to quantify the similarity of gene
expression signatures between drugs and diseases by calculating
the consistency of the rank of drug gene expression signatures
in the ranked gene lists for diseases, and vice versa. The ranked
gene lists are generated according to their differential expression
(commonly ranked by fold change). If the most up-regulated (or
down-regulated) genes for drug tend to be enriched at the top
(or bottom) of ranked list for disease, and vice versa, it indicates
similar (or correlated) gene expression profiles between drug
and disease, whereas the enrichment of down-regulated (or up-
regulated) genes at the top (or bottom) of the ranked list reflects
anti-correlated drug-disease pair. Of 160 known drug indications
for diseases, 38 were identified to be significantly anti-correlated
according to the ES. This percentage of recovery is consistent
with a previous study on drug repositioning (Shigemizu et al.,

2012), since globally reversing the disease expression signature is
not a prerequisite for a drug to be active. We next investigated
the recovery of known drug and disease relationships at the
disease class level (17 classes in total). Cancer was the only disease
class for which we recovered significantly more known drug-
disease relationships using the ES method than random guessing
(Fisher’s exact test P = 0.0004) (Table S4). Notably, cancer is
considered a type of disease that can induce global changes
in gene expression (Yeoh et al., 2002; Andersson et al., 2005;
Sotiriou and Pusztai, 2009), suggesting that associations with the
corresponding drugs may be more easily recovered.

To further evaluate the efficacy of the ES method, pairwise
scores were calculated between the expression signatures of 18
foods (Table S1) and 111 diseases. The objective of this analysis
was to evaluate whether the relatively small size of the diet-
induced gene expression datasets available in public databases
could reveal shared pathophysiological characteristics of the
diseases. Hierarchical clustering was performed to determine
whether this method could reflect disease similarity based on
disease correlation profiles across all 18 foods (Figure 2). We
identified several clusters of diseases with potential commonality.
The most representative was a large cluster of cancers that
included chronic myelogenous leukemia (CML), prostate cancer,
different subtypes of lung cancer and sarcomas. Furthermore,
Crohn’s disease (CD) and ulcerative colitis (UC), which are
collectively known as inflammatory bowel disease (IBD), as well
as another inflammatory disease, systemic juvenile idiopathic
arthritis, clustered together. Similar clusters were reported in a
previous drug repositioning study (Sirota et al., 2011). However,
more commonalities in pathophysiology were revealed here due
to the larger disease dataset used. Esophageal adenocarcinoma
(EAC) and Barrett’s esophagus (BE), which is the main risk factor
of EAC (Sikkema et al., 2010), appeared together. Adenoma of the
small intestine and carcinoma in situ of the small intestine, which
are both subtypes of cancer of the small intestine, also clustered
together. Most of the clusters identified above were also retrieved
when the hierarchical clustering was based on correlation profiles
of each disease across all the drugs (121) used in our study
(Figure S1).

Positive and Negative Diet-Disease
Correlation Profiles Based on Global Gene
Expression Signatures
Having illustrated that the ES method was able to retrieve
known drug therapeutic indications and pathophysiological
characteristics, this method was applied to identify diets that
could be recommended or avoided in a particular disease state.
With an FDR-corrected P < 0.05 (1,000 permutations), we
identified 485 diet-disease pairs that showed an anti-correlation
relationship, indicating that diet might have a positive impact
against disease development. We also retrieved 472 pairs that
showed correlation relationships, implying that these foods
should be avoided in a disease state (Table S5). Interestingly,
no foods had a solely positive or negative correlation with
the entire range of diseases, indicating that there are probably
no “generally good” or “generally bad” foods (Figure 3). The
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FIGURE 2 | Hierarchical clustering of diseases using diet-disease enrichment scores. The number before each disease name was used as a disease ID. The

clustering is based on the enrichment scores of diseases across all foods. The clusters highlighted with red are known to share characteristic pathophysiology.
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FIGURE 3 | Food-centric diet-disease network. Each node is a disease associated with the food represented by dashed circle. The number inside each node is the

disease ID also used in Figure 2. Only associations with absolute enrichment score values >0.13 were selected for visualization. Nodes are connected if two foods

show opposite associations toward the same disease, and the edge thickness is proportional to the difference between two enrichment scores.

network shown in Figure 3 also reveals that, even in cases of
anti-correlation between a food and a disease, consuming that
food simultaneously with another food may compromise its
beneficial effect. For example, kiwifruit had an enrichment score
=−0.451 against Huntington’s disease, whereas blueberry had an
enrichment score= 0.135.

The top-ranked foods in the list of most anti-correlation
relationships were kiwifruit (44) and tofu (37). Kiwifruit was
anti-correlated with cardiomyopathy (ES = −0.154) and several
cancers, such as cervical cancer (ES = −0.056) and lung
cancer (ES = −0.089), among other diseases. Tofu (bean curd)
showed anti-correlated relationships with breast cancer (ES
= −0.104) and cardiomyopathy (ES = −0.152). Another soy
product, soy protein isolate, was also anti-correlated with bladder
cancer (disease ID: 18, ES = −0.099), breast cancer (disease
ID: 20, ES = −0.112), ovarian cancer (disease ID: 79, ES =

−0.083) and prostate cancer (disease ID: 89, ES = −0.220).
Persimmon peel was anti-correlated with diseases belonging
to different classes, such as pancreatic ductal adenocarcinoma
(PDAC, disease ID: 83, ES = −0.118), cardiomyopathy (disease
ID: 24, ES = −0.285), Huntington’s disease (disease ID: 59,
ES = −0.237) and rheumatoid arthritis (RA, disease ID: 94,
ES = −0.045). For the cancer disease class in particular, no
foods were found to have solely anti-correlations with the entire
range of cancers. Tofu showed the highest number of anti-
correlated relationships with cancer diseases (21), followed by
alcohol (20), turnip (19), cranberry (14), and fructose (14). For
certain cancers, we found the diets predicted to be anti-correlated
include more cancer-related pathways than other diets. Taking
esophageal squamous cell carcinoma (ESCC) as an example, 9
diets (e.g., tofu, persimmon peel, etc.) showed anti-correlated
relationships, for which 11 of 52 significantly enriched pathways

are ESCC-related (i.e., pathways also significantly enriched in
ESCC). On the other hand, only 6 of 51 enriched pathways
for other diets are ESCC-related. Pathways related to cell cycle,
amino sugar and nucleotide sugar metabolism, biosynthesis of
unsaturated fatty acids, protein export and spliceosome were
observed to be enriched only for the anti-correlated diets. In
conclusion, in addition to many associations not previously
reported, our analysis recovered several experimentally validated
relationships in which diet may exhibit a beneficial effect on the
development of a disease, demonstrating the effectiveness of the
ES method.

Cranberry showed the largest number of correlated
relationships with diseases (40), with the highest enrichment
scores against infection of the central nervous system (disease
ID: 44, ES = 0.284), Crohn’s disease (disease ID: 25, ES =

0.234) and glioblastoma (disease ID: 50, ES = 0.218) (Table
S5). Kiwifruit followed cranberry in the list of foods with the
most correlated relationships (39) against, e.g., ankylosing
spondylitis (ES = 0.254), periodontitis (ES = 0.207) and bipolar
disorder (ES = 0.203), among others. Caffeinated coffee was
found to be correlated with lung cancer in our analysis, which
is consistent with previous findings that coffee consumption
may be associated with an increased risk of lung cancer (Guertin
et al., 2015; Xie et al., 2016). A lard-rich diet was correlated with
ovarian cancer (disease ID: 79, ES = 0.060), nonlymphocytic
leukemia (disease ID: 3, ES = 0.065) and hepatocellular
carcinoma (HCC) (disease ID: 54, ES = 0.047). Studies have
reported that increased consumption of lard (an animal fat)
may contribute to an elevated risk of ovarian cancer (Zhang
et al., 2002; Fontelles et al., 2016). Possible mechanisms of action
include the association of animal fat with prolactin secretion
(Fontelles et al., 2016), which affects the pituitary secretion of
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trophic hormones (Melmed, 2011). Another example is the
correlation of a fructose-rich diet with ovarian cancer (disease
ID: 79, ES = 0.149), papillary thyroid carcinoma (disease ID: 51,
ES= 0.098) and glioblastoma (disease ID: 50, ES= 0.083).

Alcohol had the most associations in our analysis (85) and,
the most anti-correlated relationships with diseases (46). Alcohol
was found to be anti-correlated with RA (ES=−0.114), whereas
prostate cancer also displayed an anti-correlation with alcohol
consumption (ES=−0.096).

To analyze diet-disease relationships from the disease
angle, we subsequently linked disease pairs on the basis
of shared foods with the same associations (either anti-
correlation or correlation) between them, thereby generating
two networks (Figures 4A,B, respectively). For clarity, the
network construction did not include disease classes with
fewer than 3 diseases showing anti-correlated (or correlated)
relationships with diet or edges connecting diseases that
had fewer than 4 shared foods. For several diseases that
our analysis revealed to have either an anti-correlation or
correlation with specific foods, the corresponding drug also
showed an anti-correlation based on the enrichment score
(Figures 4A,B). Examples included “altretamine-ovarian cancer”
(cancer), “orciprenaline-emphysema” (respiratory), “gliquidone-
diabetes” (endocrine) and “ketoprofen-rheumatoid arthritis”
(connective tissue), among others, which also increased our
confidence that the foods found to be anti-correlated with these
diseases may exhibit positive effects. Blueberry, caffeinated coffee
and turnip showed an anti-correlated relationship with ovarian
cancer, with enrichment scores higher than altretamine (Table 1).

As shown in Figure 4A, many cancers were linked to each
other. Non-small cell lung cancer (NSCLC, disease ID: 75)
showed anti-correlations with 8 foods (including whey, soy and
tofu). Moreover, NSCLC had high connectivity; it shared foods
with anti-correlated profiles against 27 other cancers as well as
(interestingly) with 46 non-cancer diseases (Figure 4A). PDAC
(disease ID: 83) was anti-correlated with 8 foods (including tofu
and persimmon peel) and was linked to 31 other cancers as

well as 54 non-cancer diseases (Figure 4A). However, there were
also several cases with highly unique disease gene expression
signatures, producing an isolated position in the network.
Among such cases were respiratory-related diseases; the foods
associated with these conditions were rarely anti-correlated with
any other disease (Figure 4A).

In the network of correlated relationships between diet
and diseases (Figure 4B), several diseases had anti-correlated
relationships with their corresponding drugs, highlighting that

TABLE 1 | Enrichment score comparisons between anti-correlated diet and

recovered known drugs against diseases.

Disease name Drug Diet

Drug name Enrichment

score

Food name Enrichment

score

Ovarian cancer Altretamine −0.086 Blueberry −0.139

Caffeinated coffee −0.125

Turnip −0.100

Soy −0.083

Garlic oil −0.067

Emphysema Orciprenaline −0.066 Alcohol −0.102

Persimmon peel −0.073

Orange −0.068

Diabetes Gliquidone −0.138 Red wine −0.174

Blueberry −0.142

Caffeinated coffee −0.125

Turnip −0.048

Rheumatoid

arthritis

Ketoprofen −0.067 Alcohol −0.114

Orange −0.106

Red wine −0.079

Cranberry −0.079

Garlic oil −0.070

Fructose −0.043

Tofu −0.044

Persimmon peel −0.045

FIGURE 4 | Disease class-centric association networks. Disease class-centric association networks built based on shared foods with same (A) anti-correlation or (B)

correlation. The size of each node is proportional to the number of diets showing anti-correlated or correlated relationships with the corresponding disease. Diseases

classified into same disease class are encircled by a dashed line. Edges connect diseases that were anti-correlated (or correlated) with the same foods, and the edge

thickness is proportional to the number of such common foods. Only disease classes that have at least three diseases showing anti-correlated (or correlated)

relationships with diet and edges with at least 4 associated foods are shown here.
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foods correlated with a specific disease could pose a risk.
Examples included “turnip-osteoarthritis” and “grape-uterine
fibroids.” An examination of the network connectivity revealed
a similar pattern as above; many cancers were intra- and
interconnected with non-cancer diseases (Figure 4B). One
disease that presented high connectivity in the network was
ovarian cancer. Ovarian cancer (disease ID: 79) showed
correlated relationships with 10 diets (including lard-rich,
fructose-rich and high-fat diets) and was connected with 25 other
cancers as well as (interestingly) with 53 non-cancer diseases
(Figure 4B). We think that the relationships revealed between
specific diseases or disease classes, which were often unexpected,
highlight the need for a complete assessment of an individual’s
medical status before proceeding to dietary recommendations.

A Comparative View of Diet-Disease and
Drug-Disease Associations Based on
Global Gene Expression Signatures
Both diet and drugs play important roles in disease prevention;
however, their different modes of action against diseases have

not been fully evaluated. Here, we investigated and compared
the different underlying mechanisms of diet and drugs in terms

of affected biological pathways and chemical structural similarity

between their components. First, a principal component analysis
based on significantly enriched pathways (FDR < 0.05) (see

Materials and Methods for more details) was applied to evaluate
differences in the mechanisms by which diets and drugs induced

their positive effect on diseases. Only diets and drugs showing
an anti-correlated profile with a disease based on the ES were

included. Figure 5 clearly demonstrates that diet and drugs

had distinctly separate significantly enriched pathways. Pathways

related tometabolism, includingmetabolic pathways, phagosome
and lysosome, tended to be enriched for diet. In contrast,

pathways related to cell signaling, including the P53 signaling
pathway, cell cycle and NOD-like receptor signaling pathway,

were mainly enriched for drugs.

In a further examination of different preventive actions
against diseases between diet and drugs at the pathway level,
our attention was restricted to enriched pathways for diet
(or drugs) that were also altered in diseases (simply referred

FIGURE 5 | Distinct pathways enriched in diet and drug gene expression signatures found anti-correlated with diseases. The first two components from PCA

accounted for 55.8% of the total variance. Colors denote two classes of administrations: diet (red) and drug (blue). Arrows denote representative variables (pathways)

with a relative contribution ranked in the top 30 to either of the principal components and are labeled with pathway names.
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to as disease-related pathways). Using the same method as
above, we identified and extracted, for each disease class, the
top three disease-related pathways enriched in the most anti-
correlated foods (and drugs). As described above, pathways
enriched for diet were mainly related to metabolism, such as
oxidative phosphorylation, arginine and proline metabolism,
while pathways enriched for drugs tended to be associated
with signaling processes (Table S6). This discrimination between
the main target pathways elicited by these two classes of
administration is in agreement with published findings that diet
mainly affects metabolic pathways (Mattson and Shea, 2003;
Pi-Sunyer, 2005; Pavlova and Thompson, 2016) while drugs
affect signaling pathways (Ono and Han, 2000; Downward,
2003; Fresno Vara et al., 2004; Nencioni et al., 2007; Klaus and
Birchmeier, 2008).

In addition to biological functions, we compared foods and
drugs from a chemical structural point of view. Only plant-based
foods with phytochemical compositions available in NutriChem
(Jensen et al., 2015b) were included in this comparison. In total,
we retrieved 20 food-drug pairs in which at least one compound
in the food showed chemical structural similarity to a drug (see
Materials and Methods section). Interestingly, compared with
other food-drug pairs, these pairs tended to share more anti-
correlated diseases identified by the ES method (Figure S2);
however, this result was not statistically significant. For example,
coconut and azacitidine shared 10 anti-correlated diseases, such
as bladder cancer, Huntington’s disease and cardiomyopathy.
Coconut contains kinetin riboside, a molecule with structural
similarity to azacitidine. Similarly, garlic had 8 overlapping
anti-correlated diseases with the drugs chlorpromazine and
mesoridazine, which are structurally similar to trifluoperazine
(derived from garlic). Although the size of the dataset was
relatively small for forming general conclusions, we should not
reject the idea that, despite the complex chemical composition of
foods, one critical bioactive component may sometimes “drive”
the gene expression response of the host.

Evaluating the Therapeutic Value of Diet
Based on an Integrated Topology Analysis
Our analysis here was based on the hypothesis that if a drug
is effective against a disease, it may target proteins within or
in close proximity to the disease gene module. Accordingly, we
calculated proximity scores, Zc, from the module of differentially
expressed (DE) genes of diet to the module of disease-
related genes in the PPI network. To put our findings into
perspective, we compared diets with drugs in terms of network
proximity. Therefore, proximity scores between FDA-approved
(and clinically investigated) drugs and corresponding diseases
were also calculated. Based on diet-disease anti-correlation
relationships that we identified above and information on disease
modules retrieved from Guney et al. (2016), 19 diseases, 18
foods and 63 drugs were involved in the network analysis and
visualization (Figure 6).

We found that 40 out of the 98 (41%) diet-disease pairs
identified as anti-correlated were closer than the distance from
randomly selected sets of proteins to the disease genes (Zc < 0),

only slightly lower than 28 of the 62 (45%) known drug-
disease associations (Table S7). These 40 diet–disease pairs,
whose associations were supported by both the ES and proximity
method, probably represent a more trustworthy set for dietary
interventions. In addition, we investigated whether there were
significant differences between the proximity scores of diet-
disease and drug-disease pairs. The diets identified as anti-
correlated with diseases showed similar topological proximity
to the disease proteins as the corresponding drugs (Fisher’s
exact test, P = 0.6247). More specifically, for some diseases,
such as colon cancer, lung cancer, lung adenocarcinoma, ovarian
cancer and HCV, the gene expression changes induced by the
corresponding drugs were much closer to the disease genes
than all the anti-correlated foods. On the other hand, several
foods that were anti-correlated with certain diseases induced
gene expression changes that were much closer to the disease
genes than the corresponding drugs; garlic oil was closer to
bacterial infection (Zc = −0.57) than flucloxacillin (Zc = 0.94),
and kiwifruit (Zc = −2.12) was much closer to Parkinson’s
disease than all FDA-approved drugs. Garlic oil has been reported
to have an antimicrobial effect against human enteric bacteria
(Aydin et al., 2000; Ross et al., 2001). Melatonin, a derivative of
the essential amino acid tryptophan identified in kiwifruit, was
demonstrated to mitigate Parkinson’s disease (Wang, 2009). As
shown in Figure 6, turnip and whey were connected to most
diseases with Zc < 0, such as psoriasis and prostate cancer.
The proximity between all corresponding FDA-approved drugs
and these two diseases showed Zc < 0, indicating a possible
explanation of their efficacy. Notably, for the same diseases,
both turnip and whey had comparable proximity scores to
the corresponding drugs. The proximal distance in the whey-
psoriasis pair was Zc =−1.85; it has been reported that XP-828L,
a protein extract isolated from bovine sweet whey, has potential
benefit for mild to moderate psoriasis (Drouin et al., 2007).
Whey was also proximal to prostate cancer (Zc = −1.66) and
has been shown to increase the synthesis of glutathione (GSH),
which may play an important role in preventing prostate cancer
development through its antioxidant activities (Kent et al., 2003).
Another food, orange, was proximal to psoriasis (Zc = −2.26),
and its peel extracts have been demonstrated in a pilot study to
significantly reduce the skin lesions of patients (Hakim et al.,
2000).

In Silico Identification of Synergistic Food
Pairs
Because humans normally do not consume foods in isolation and
due to possible interactions between different foods, we employed
gene expression profiles to identify food pairs with synergistic
effects (signal argumentation when consumed together). Bansal
et al. (2014) evaluated and ranked 31 computational methods
used to predict the activities of compound pairs based on an
experimentally assessed gold standard. We selected as candidates
threemethods that ranked at the top of Bansal’s list for identifying
synergistic pairs (see Materials and Methods for more details).
Analogously, the literature-reported food-disease relationships
were used for assessing the suitability of these approaches in
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FIGURE 6 | Network-based diet-disease and drug-disease proximity. Nodes represent diseases (red circle), diet (blue square) or drug (blue triangle). Blue triangle with

red border represents FDA approved drugs. The node size scales with the number of disease genes and the number of DE genes of diet and drug. Diets (or drugs)

and diseases are linked by anti-correlated relationships between them. The link color represents whether the diet (or drug) is proximal (Zc < 0, green) or distant (Zc <

0, gray) to the disease. The edge thickness is proportional to the absolute value of the proximity score.

our study. Here, we used 4 food pairs (consisting of 5 different
foods) as a gold standard (see Materials and Methods). When
we applied these three methods to the gene expression profiles
of the 5 foods, we recovered 3, 0, and 1 gold standard food pairs
using Rank 2, 4, and 9 methods, respectively. Notably, the Rank
2 method recovered 3 out of 4 gold standard food pairs, which
was comparable to the PC index (which essentially quantifies
the proportion of corrected identification) of 0.605 reported in
Bansal et al. (2014). Therefore, the Rank 2 method was used to
identify potential pairwise synergistic relationships between the
18 foods in our study. As a result, 58 food pairs with synergistic
effects were identified (Figure S4; Table S8).

We found that food pairs predicted to be synergistic
tend to share more anti-correlated diseases (Wilcox ranked
sum test, P = 0.00018, Figure S5). As the pair with the
highest interaction score, alcohol and kiwifruit had 23 anti-
correlated diseases in common based on the ES. Persimmon
peel and kiwifruit, with a relatively high interaction score,

were anti-correlated with 31 and 44 diseases, respectively, while
23 diseases were shared by these two foods. Another pair
with a high interaction score was orange-cranberry, which
were both anti-correlated with cancers, including chronic
myeloid leukemia, NSCLC and autoimmune disease rheumatoid
arthritis. We also found that they shared 4 significantly
enriched pathwaysmainly related to immune response, including
ribosome, phagosome, shigellosis and pathogenic Escherichia coli
infection.

In addition, for synergistic food pairs, we investigated the
correlations of their ES profiles across all 111 diseases included
in our dataset. As a result, 42 out of 58 synergistic pairs showed
positive correlations, among which 31 pairs were significantly
positively correlated (Pearson correlation, P < 0.05). In contrast,
only 4 of 16 pairs that showed negative correlations were
statistically significant. This finding also reflects the similar
therapeutic potential against diseases between the synergistic
food pairs.
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DISCUSSION

In summary, we developed a computational framework
using genome-wide gene-expression profiles and network-
based features to identify the effects of diet on disease
development and/or progression. Previous studies on drug
repositioning proposed different methods to establish drug-
disease correlations using gene expression signatures and
evaluated their performance by their ability to recover known
relationships (Sirota et al., 2011; Shigemizu et al., 2012). Here, the
enrichment score method developed by Pacini et al. (2013) was
evaluated in a larger dataset before being applied to food-induced
gene expression signatures. The recovery percentage was similar
to a previous study on drug-repositioning (Shigemizu et al.,
2012), and the cancer disease class had a significantly higher
recovery rate using the ES method than random.

We were also able to recover a significant number of cases in

which a particular food has been experimentally shown to have
a positive or negative effect on disease progression. Hierarchical

clustering based on correlation profiles of each disease across

the whole drug or food panel led to the identification of several
disease clusters with potential common pathophysiological
properties, with the cancer cluster to be the most striking
example. Our result is consistent with reports that cancers
in different organs may have underlying biological similarities
(Yang and Sun, 2007; Risbridger et al., 2010; Dawany et al., 2011).
This finding increased our confidence that also the new diet-
disease associations that our in silico analysis proposed should
be carefully examined and perhaps followed up for experimental
validation. From our analysis, kiwi, tofu, soy and persimmon all
stand out as the diets with most anti-correlation relationships
with cancers. Due to its antioxidant and cytotoxic properties,
kiwifruit has been used to treat cancers in Chinese traditional
medicine (Motohashi et al., 2002). Additionally, kiwifruit has
a protective effect against cardiovascular disease as a result
of its antioxidative, antihypertensive and hypocholesterolemic
activities (Jung et al., 2005). Tofu is a primary soy food that is
commonly consumed in Asian countries, such as China, Japan
and Korea, which have been reported to have low incidences
of breast and prostate cancer (Adlercreutz, 2002; Kim et al.,
2008). Soy products contain isoflavones; these phytoestrogens,
such as genistein, daidzein and glycitein, are known to influence
several biological processes, including the biological activity of
sex hormones and their effect on growth factors (Adlercreutz,
2002). There is increasing evidence that soy has a protective effect
on non-small cell lung cancer (NSCLC) cases with epidermal
growth factor receptor (EGFR) mutations and breast, ovarian
and prostate cancers (Shu et al., 2001; Lee et al., 2003; Zhang
et al., 2004; Matsuo et al., 2008; Mishra et al., 2011). In particular,
tofu has been reported to be associated with a decreased risk
of breast cancer (Hirose et al., 2003; Kim et al., 2008). In
addition, tofu intake could alter susceptibility to low-density
lipoprotein oxidation and may lower the risk of coronary
heart disease (Ashton et al., 2000). Persimmon peel is rich in
antioxidants, such as carotenoids and polyphenols (Gorinstein
et al., 2001; Izuchi et al., 2009), which are known to protect
against oxidative stress and have been implicated in various

pathological conditions, including cardiovascular disease, cancer
and neurological disorders (Dalle-Donne et al., 2006; Valko et al.,
2007).

Similar to identifying the beneficial effects of specific foods,
the ES method seemed to successfully recover known negative
effects of diet in the development or progression of diseases,
and it generated new relationships that should be considered for
experimental validation or further computational analysis. One
notable example is the correlation of fructose diet with several
forms of cancer. The intake of dietary sugars such as glucose and
fructose has increased considerably, especially fructose, which is
frequently used as food additive for palatability. Furthermore,
it has been reported that fructose promotes cancer growth
by a variety of mechanisms, including altered cell metabolism
and indirect enhancement of protein synthesis (Port et al.,
2012), increased reactive oxygen species, DNA damage and
inflammation (Liu and Heaney, 2011). Alcohol is probably the
most intriguing case, since in our analysis it had the most
associations (including correlations and anti-correlations) and,
surprisingly, the most anti-correlated relationships with diseases.
Usually, alcohol intake is considered harmful to human health;
however, alcohol consumption has also been associated with
a lower risk of specific diseases (Howard et al., 2004; Allen
et al., 2009; Kallberg et al., 2009; Costanzo et al., 2010; Brien
et al., 2011). Here, alcohol was predicted to be anti-correlated
with RA, which is consistent with the finding of different
studies that increased alcohol intake decreased the risk of RA
(Kallberg et al., 2009; Maxwell et al., 2010; Di Giuseppe et al.,
2012; Jin et al., 2014). Prostate cancer also displayed an anti-
correlation with alcohol consumption, whereas similar anti-
correlated relationships between prostate cancer and alcohol,
or specific alcohol types such as red wine, have been reported
previously (Breslow et al., 1999; Schoonen et al., 2005).

Diet may not only exert beneficial effects through the
directly affected proteins but may also propagate their effects on
human health though functionally or physically related genes,
especially disease-related ones, within a human protein-protein
interaction (PPI) network. To further quantify the therapeutic
effects of diets that were identified as anti-correlated with
diseases using the global-level ES method, we used the relative
proximity measure proposed by Guney et al. (2016) to capture
topological features in the PPI network. In several cases, the
therapeutic potential of particular diets was further supported
by a network-based topological analysis, which revealed that
foods often directly target genes within or in the vicinity of
specific disease gene modules in the interactome and are likely
to have comparable therapeutic effects with the corresponding
drugs. Compared to the ES method that reflects the global
effects of a dietary intervention, the network-based proximity
method, which depends on the existing knowledge about disease
proteins and a set of gene expression signatures, could provide
additional insight into the relationships between diet and
diseases. However, as Guney et al. postulated (Guney et al.,
2016), there are some limitations of network-based proximity.
The method was unable to explain the therapeutic value of
cases where the drugs (or in our case foods) were distant to
the corresponding diseases, nor could it predict the direction
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of the effect (beneficial or harmful) of drugs (or foods).
The gene expression anti-correlation and network topology-
based approaches focus on different angles in quantifying the
possible therapeutic effects, and they are less likely to correlate
with each other (Figure S3); therefore, the proximity score
method can still be considered as a complementary tool for
uncovering the underlying mechanism of the therapeutic value
of dietary interventions. From our integrative analysis, the list
of “recommended diet for corresponding diseases” with top
evidence (both high enrichment scores and close proximity to
disease genes) include orange, whey and coconut fat for psoriasis,
lung adenocarcinoma and macular degeneration, respectively. In
addition to the aforementioned correlated foods with literature
support, other identified foods with relatively stronger evidence
include fructose-rich diet for chronic intermittent hypoxia and
ovarian cancer, as well as alcohol for osteonecrosis of the jaw
and sarcoidosis, which should be avoided during the course of
corresponding diseases.

CONCLUSIONS

Despite our identified anti-correlated and avoided foods, the
prospective personalized nutritional recommendation needs
deeper understanding and well-designed systematic analysis of
more experimental data, and metadata information. In our
study, large-scale public gene expression data for drugs and
diseases were integrated into a comprehensive analysis. These
data resources have been extensively used for drug repositioning
to screen for promising drugs with new therapeutic indications,
which highlights the efficacy of a systematic analysis of a
large number of gene expression profiles. In contrast to drugs
and other bioactive molecules for which a large number of
gene expression profiles from cell lines, animal models and
humans exist, the publicly available gene expression data for
diet are very limited (only 18 foods were available to use by

February 2016). It will certainly increase the reliability and
usage of our proof-of-concept study if gene expression profiles
from more foods are incorporated in the analysis, and this
is a direction that the scientific community should take into
consideration. Furthermore, with more public data and relevant
sample information, multivariable analyses can be conducted
to obtain a more complete description of the effects of diet
in different groups of people. It should be also noted that the
enrichment score method to establish diet-disease correlations
is based on global gene expression profiles, thus certain diseases
that induce sporadic or local expression variations might not be
suited to such analysis. Furthermore, our identified food pairs
were predictions based on well-established methods in another
field, thus they should be subject to appropriate experimental and
clinical validations before further clinical applications.
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