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The shape of the cardiac action potential (AP) is determined by the contributions of

numerous ion channels. Any dysfunction in the proper function or expression of these ion

channels can result in a change in effective refractory period (ERP) and lead to arrhythmia.

The processes underlying the correct targeting of ion channels to the plasma membrane

are complex, and have not been fully characterized in cardiac myocytes. Emerging

evidence highlights ion channel trafficking as a potential causative factor in certain

acquired and inherited arrhythmias, and therapies which target trafficking as opposed to

pore block are starting to receive attention. In this review we present the current evidence

for the mechanisms which underlie precise control of cardiac ion channel trafficking and

targeting.
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FUNCTIONAL EXPRESSION OF ION CHANNELS IN THE
SARCOLEMMA AND CARDIAC EXCITABILITY

The function of the heart is governed by the electrical and mechanical activity of myocytes.
The functional expression of several different types of ion channels in the myocyte sarcolemma
determines the shape and duration of the action potential (AP), and therefore controls the effective
refractory period (ERP) of the myocardium. The ERP is a protective mechanism that keeps the
heart rate in check and thus prevents arrhythmias. Any prolongation or shortening of the ERP is
therefore potentially arrhythmogenic. Most genetic arrhythmias are caused by mutations which
alter the biophysical properties of ion channels. However, the proper functional expression of
ion channels can be disrupted at several points including at the transcriptional, translational, and
post-translational levels. In the last two decades, studies have emerged in which mutations carried
by ion channels have been shown to be linked to trafficking defects, resulting in retention and/or
degradation of the channel early in the trafficking process.

The density of active ion channels in specific membrane domains is a dynamic process resulting
from the concomitant and antagonistic action of anterograde (exocytosis, recycling) and retrograde
(internalization) pathways. Targeting and stabilization of these channels by anchoring partners in
specialized domains of the sarcolemma also dynamically regulate the electrical activity of the cell
(Balse et al., 2012; Figure 1).

The majority of mutations related to trafficking defects involve endoplasmic reticulum (ER)
exit defects, leading to targeting of misfolded channels to degradation by the ERAD system
(endoplasmic reticulum-associated degradation, lysosomal, or proteasomal). Such mutations have
been identified forHERG (Furutani et al., 1999), KCNQ1 (Gouas et al., 2004), and SCN5A (Valdivia
et al., 2004) and associated with long QT and Brugada syndromes. Sorting signals carried by
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ion channels also are necessary for ER and trans-Golgi network
exit (TGN) (Kupershmidt et al., 2002). A mutation involving
an endocytotic defect of TRPM4 has also been identified in
human progressive familial heart block type I (Kruse et al., 2009).
Finally, another crucial factor is the association (early or late) of
ion channels with ancillary subunits, chaperones, and anchoring
partners that are involved in channel function and localization.

BEYOND CHANNELOPATHIES:
TRAFFICKING PROCESSES AS
REGULATORS OF CARDIAC ACTION
POTENTIAL

Trafficking and targeting of integral membrane proteins,
including ion channels and receptors, have been explored in
other cell types such as epithelial cells and neurons. Although
these studies have yielded great insights, these mechanisms have
not been studied extensively in cardiomyocytes. Such research
may provide insight into the regulation of cardiac excitability via
ion channel trafficking. Although trafficking defects have been
reported for certain ion channel mutations, and are associated
with retention in intracellular organelles, the characterization
of intracellular trafficking in control and disease conditions are
largely lacking in native cardiomyocytes. The fact that these cells
are highly structurally and functionally specialized suggests that
trafficking and targeting of cardiac ion channels may involve
unique and specific pathways. Furthermore, the propagation
of electrical activation within the myocardium is a complex
process controlled by the spatial/differential distribution of ion
channels within single cardiomyocytes that eventually establishes
the anisotropic ratio. The underlying mechanisms regulating ion
channel targeting to sarcolemmal subdomains, and tethering into
macromolecular complexes remains a largely unanswered, yet
important question.

In acquired arrhythmias such as heart failure and atrial
fibrillation, ion channel dysfunction and electrical remodeling
are often associated with tissue remodeling including
hypertrophy/dilatation, replacement and interstitial fibrosis, and
gap junction disorganization (Rucker-Martin et al., 2006). In
this context, abnormal trafficking and targeting of cardiac ion
channels emerge as important pathogenic factors of the electrical
remodeling (Schotten et al., 2011). Importantly, increased
knowledge of the pathways underlying cardiac ion channel
trafficking may yield novel drug targets which lack the problems
associated with conventional pore block therapies. Such
therapies are frequently highly non-selective and have numerous
unwanted side effects. The purpose of this mini-review is to
provide an overview of the mechanisms of trafficking of ion
channels in native cardiomyocytes that could potentially result
in the discovery of new targets for antiarrhythmic therapies.

HYPOKALEMIA AND HERG CHANNEL
REGULATION

The IKr current is encoded by the human ether-a-go-go–related
gene (HERG, also known as KCNH2) in the heart (Sanguinetti
et al., 1995; Trudeau et al., 1995). HERG mutations resulting

in reduced IKr cause type 2 long QT syndrome (LQT2),
which predisposes individuals to life-threatening arrhythmias.
HERG mutations often disrupt the forward trafficking of hERG
(thereby reducing sarcolemmal expression of the channel), and
subsequently result in decreased IKr (Anderson et al., 2006).
The hERG channel is also a notorious target for several classes
of drugs that engender acquired long QT syndrome (LQTS)
(Sanguinetti and Tristani-Firouzi, 2006). For instance, LQTS and
Torsades de pointes are exacerbated by hypokalemia, with a
moderate increase in serum [K+] capable of correcting LQTS in
some patients (Compton et al., 1996). Hypokalemia is therefore
considered a risk factor for LQTS and sudden cardiac death.

Guo and colleagues elegantly revealed how the plasma
membrane density of hERG channels is regulated under
physiological and pathophysiological (hypokalemia) conditions.
They showed that lowering extracellular potassium drastically
accelerated hERG internalization and degradation both in
overexpression systems and native IKr in a hypokalemia rabbit
model (Guo et al., 2009). Rabbits fed with low-K+ diet showed
prolonged QTc correlated to significantly prolonged APD90.
In vitro, exposure to 0mMK+ medium completely and reversibly
eliminated IKr without significant effects on other potassium
currents. The decrease in IKr accompanied reduced expression
of hERG, combined with reduced surface expression of the
channel. Finally, they showed that 0mM K+ medium induced
the internalization of hERG by increasing ubiquitylation and
resulted in lysosomal degradation (Guo et al., 2009). These
findings provide a potential mechanism for hypokalemia-
induced exacerbation of LQTS.

LIPIDIC CONTENT AND KV1.5 CHANNEL
REGULATION

Cardiac excitability can be regulated by cellular lipid content.
Free cholesterol is a major lipid class shown to regulate
membrane fluidity, curvature, and stiffness (Lundbaek et al.,
1996). The function of several cardiac ion channels are regulated
directly by cholesterol, which modulates channel properties
(Oliver et al., 2004; Epshtein et al., 2009).

The IKur current, carried by KV1.5 channels, is an important
component of atrial repolarization (Fedida et al., 1993; Wang
et al., 1993) and has been implicated in the pathology of atrial
fibrillation (Van Wagoner et al., 1997; Brundel et al., 2001). The
groups of D. Fedida and J. Martens contributed substantially
to the study of the trafficking of KV1.5 channel in expression
systems (McEwen et al., 2007; Steele et al., 2007). Trafficking of
vesicles is regulated by several Rab GTP-ases, involved at every
stage of the process; regulating sorting, tethering and docking
of trafficking vesicles. The early endosome (EE), associated with
Rab4, mediates fast recycling while the recycling endosome,
associated with Rab11, coordinates the slow recycling of proteins
back to the cell membrane.

We showed that membrane cholesterol depletion via methyl-
β-cyclodextrin (MβCD) increased the number of functional
KV1.5 channels in the sarcolemma of atrial myocytes, also
reducing their mobility as shown by Fluorescence recovery After
Photobleaching (Balse et al., 2009). Cholesterol depletion triggers
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exocytosis of ion channels from sub-membrane compartments.
Indeed, the overexpression of a dominant negative (DN) form of
Rab11 (associated with the recycling endosome), prevented the
current increase upon MβCD treatment whereas overexpression
of a DN form of Rab4, associated with the early endosome, did
not. The recycling endosome, considered a slow route for ion
channel recycling (Steele et al., 2007), is particularly sensitive
to cholesterol depletion as rapid dissociation (<10min) of the
channel from the vesicle was observed (Balse et al., 2009).
These results showed that channel turnover can be modified by
changes in the lipid environment and that sub-membrane storage
compartments can be recruited tomodify the electrical properties
of cardiomyocytes.

MECHANICAL CHALLENGE AND KV1.5
CHANNEL REGULATION

Cardiomyocytes are exposed to mechanical forces when the
heart contracts. These forces consist of stretch, shear and strain
constraints. Shear forces in the myocardium are primarily
generated by the movement of sheets of cardiomyocytes sliding
relative to each other when the muscle contracts, as well as
by blood flow during the cardiac cycle (LeGrice et al., 1995;
Costa et al., 1999). Increased shear stress stimulates intracellular
calcium transients (Morad et al., 2005), increases the beating
rate of neonatal ventricular myocytes (Lorenzen-Schmidt et al.,
2006), and triggers propagating APs in monolayers of ventricular
myocytes (Kong et al., 2005).

FIGURE 1 | General scheme of the various steps and regulators involved in

the trafficking of ion channels. Ion channels are targeted to the plasma

membrane via the anterograde and recycling pathways (red arrows). Once

targeted to a specialized domain of the membrane, ion channels are stabilized

by anchoring partners/associate subunits to be functional (green). Then,

signals for internalization (blue arrows) lead to either degradation or recycling.

PM, plasma membrane; EE, early endosome; LE, late endosome; ECM,

extracellular matrix; RE, recycling endosome; GC, Golgi complex; ER,

endoplasmic reticulum; SV, secretory vesicle.

We showed that in rat atrial myocytes shear stress activates
a large outward current, mirrored by a decrease in AP duration
(Boycott et al., 2013). The main ion channel mediating the
increase in current KV1.5, which was recruited from subcellular
compartments to the sarcolemma, a phenomenon which was
directly observed by TIRF microscopy. The donor compartment
was again identified as the recycling endosome. KV1.5 channel
exocytosis requires integrin signaling through focal adhesion
kinase (FAK) and relies on an intact microtubule system. We
also found that the response was dysregulated in a model of
chronic hemodynamic overload. Hypertrophied atrial myocytes
had reduced Kv1.5 expression, despite an increase in basal
IKur . The response of these cardiomyocytes to shear stress
was reduced, and the kinetics altered. Our results suggested
chronically increasedmechanical stress over activates the integrin
signaling pathway, resulting in an increased IKur , AP shortening
and a reduction in the capability of cells to respond to shear
stress (Boycott et al., 2013). Thus, pools of KV1.5 from the slow
recycling route may comprise an inducible reservoir mediating
faster atrial repolarization. The shortening of the AP observed
following heart failure in the atria could be partly explained by a
shift in the trafficking balance toward increased exocytosis.

MODULATION OF KV1.5
INTERNALIZATION BY
ANTIARRHYTHMICS

Whereas conventional antiarrhythmic drugs generally target
ion permeability by binding to the pore of the channel,
increasing evidence suggests some compounds can indirectly
disrupt protein trafficking. In this context, sustained efforts have
been conducted to develop antiarrhythmic agents that affect
channel trafficking, notably hERG channels blockers that stabilize
misfolded channels and rescue hERG trafficking mutants (Wible
et al., 2005).

The group of J. Martens has been at the forefront of
investigations into the potential antiarrhythmic properties
of drugs which acutely modulate the surface density of
functional channels (Schumacher et al., 2009). The class I
antiarrhythmic drug quinidine is known to inhibit IKur
current through open-channel block of KV1.5 channel. Using
an immunocytochemical approach to quantify surface and
internalized channels, Schumacher and colleagues showed that
quinidine dose-dependently induced the internalization of KV1.5
channel over short-time frames (10min) in the HL-1 cell
line and in dissociated neonatal mouse myocytes. The effect
of quinidine was stereospecific as quinine has no effect on
KV1.5 channel surface density (despite exerting the pore-block
effect of its stereoisomer) and subunit-dependent, as the KV1.5-
related channels KV2.1 or KV4.2 did not show internalization
at the same time points and doses. In addition, quinidine-
induced KV1.5 channel internalization followed the same
endocytotic pathway as constitutive endocytosis (as previously
identified Choi et al., 2005), being microtubule-dependent and
dynamin-mediated. Finally, whereas acute treatment allows
channel recycling to the surface, chronic treatment with a
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clinical-compatible concentration led to channel degradation
through the proteasome. This pharmacological control of Kv1.5
surface expression and trafficking represents a novel mechanism
by which drug stimulated endocytosis of an ion channel may be
utilized as an anti-arrhythmic tool.

ORGANIZATION OF ION CHANNEL
MACROMOLECULAR COMPLEXES

It is noteworthy that emerging evidence challenges the
assumption that ion channels function as homogeneous
complexes. Rather, it seems likely that ion channels form macro-
complexes with other ion channels, and that these complexes
contribute to the stabilization of channels at the sarcolemma,
and facilitate proper electrical conduction. The MAGUK
protein SAP97 contributes to the formation of macromolecular
complexes involving different ion channel families: KV1.5
(Godreau et al., 2002; Abi-Char et al., 2008), KV4.x (El-Haou
et al., 2009; Gillet et al., 2015), Kir2.x (Leonoudakis et al.,
2001; Milstein et al., 2012; Matamoros et al., 2016), and NaV1.5
(Petitprez et al., 2011; Milstein et al., 2012), SAP97 also couples
ion channels to signaling pathways, allowing the regulation of
KV4.x channels by CaMKII (El-Haou et al., 2009). An important
recent breakthrough showed that SAP97 regulates the formation
of NaV1.5/Kir2.1 complexes, the two critical channels underlying
IK1 and INa, respectively. These currents are responsible for
maintenance of the resting membrane potential and rapid
depolarization during the upstroke of the AP (Milstein et al.,
2012). This multi-channel organization enables reciprocal
modulation, contributing to maintenance of normal cardiac
excitability. Interestingly, co-expression with Nav1.5 seems to
reduce internalization of Kir2.1, suggesting that participation in
a macromolecular complex reduces anterograde trafficking of
Kir2.1 (Milstein et al., 2012). Another example of multi-channel
organization for NaV1.5/Kir2.x, but mediated by syntrophin,
has been recently reported (Matamoros et al., 2016). In addition
to Nav1.5, other cardiac ion channels have been shown to
interact. For example, the KCNQ1/KCNE1 genes that encode
IKs (Barhanin et al., 1996; Sanguinetti et al., 1996) interact with
hERG, and the channels can reciprocally regulate (Ehrlich et al.,
2004; Ren et al., 2010; Organ-Darling et al., 2013), with KCNQ1
also functioning as a chaperone for hERG trafficking (Biliczki
et al., 2009). In the context of hypokalemia, KCNQ1/hERG co-
expression slowed the internalization of mature, i.e. cell-surface
expressed, hERG channels whereas KCNQ1 alone is not sensitive
to hypokalemia (Guo et al., 2011). As the association between
hERG and KCNQ1 only occurs at the plasma membrane,
KCNQ1 likely contributes to hERG membrane stability.

MODULATION OF ION CHANNEL
ANTEROGRADE TRAFFICKING BY
PARTNER PROTEINS

A fascinating question relates to the nature of the molecular
mechanisms which regulate ion channel targeting into distinct
subdomains of the sarcolemma and their tethering in large
molecular complexes. Cardiac myocytes are structurally and

functionally highly polarized cells. While the transmission of the
AP between myocytes occurs at the intercalated disc (ID), the AP
is conducted along the myocyte at the lateral membrane (LM).

The direct targeting of hemichannels to the ID via the
microtubule plus-end-tracking protein EB1 (Shaw et al., 2007)
and the targeting of CaV1.2 to T-tubules by BIN1, a protein
involved in membrane invagination and endocytotic processes
(Hong et al., 2012) have been important major discoveries.

Recently, the spatial distribution of NaV1.5 has received
interest. Whereas NaV1.5 is highly concentrated at the ID (3
to 8 fold larger current), NaV1.5 channels at the LM show
a lower density (Verkerk et al., 2007; Lin et al., 2011). This
differential distribution of NaV1.5 channels favors the anisotropic
conduction of the myocardial depolarization wave (Spach, 1999).
Several partners of Nav1.5 have been identified such as gap
junctional (i.e., connexin-43), desmosomal (plakophilin-2), actin
cytoskeleton-binding (ankyrin-G), and the MAGUK protein
SAP97 at the ID and syntrophin at the LM (for review see Shy
et al., 2014). All these partners exert a positive regulatory effect
on INa since their silencing in vitro, Knock Out in vivo or reduced
expression in the Duchenne muscular dystrophy mouse model
leads to reduced sodium current and localization. However,
whether these proteins are involved anterograde trafficking of
NaV1.5 or associate with the channel once inserted in the
plasma membrane to stabilize it is not clear. Recently, we
have characterized a new partner of the NaV1.5 channel in the
myocardium, the MAGUK protein CASK. CASK is located at the
LM, in association with the syntrophin/dystrophin complex. In
contrast with other NaV1.5 partners, CASK negatively regulates
INa by impeding NaV1.5 anterograde trafficking to the LM
(Eichel et al., 2016). In dilated human atria, associated with AF
or valve regurgitation, expression of CASK is reduced without
affecting its localization. The consequence of this would likely
be increased INa at the LM and could be considered detrimental
for cardiac anisotropy. Keeping with the recent discovery that
SAP97 is necessary for the interaction betweenNaV1.5 and Kir2.1
(Milstein et al., 2012), MAGUK proteins could be major partners
for the organization of multi-channel complexes.

CONCLUSION

Although only proven in vitro at present, early ER/Golgi
trafficking rescue has been shown to be feasible for trafficking-
defective mutant channels by temperature decrease, Hsp70
and 91 cytosolic chaperones, and pharmacological chaperones.
Pharmacological chaperones include channel blockers, such
as anti-histamines (Astemizole), anti-serotoninergic (Cisapride)
and antiarrhythmics (e.g., E-4031 for hERG), that are difficult
to manipulate as they can also block the channel and worsen
the disease. However, certain pore-blocking drugs, such as
fexofenadine, have been shown to rescue hERG trafficking of
some mutant channels at concentrations far below the IC50
for pore-block (Rajamani et al., 2002). Furthermore, in an
iPSC model of LQTS2 in which hERG was not expressed at
the sarcolemma, sarcolemmal hERG expression was achieved
using the proteasomal inhibitor ALLN, which allowed the
re-trafficking and functional expression of the channel (Mehta
et al., 2014). These studies highlight the relevance of research into
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pharmacological rescue of trafficking deficient mutant channels.
Low molecular weight compounds such as DMSD, TMD and
glycerol act as nonspecific chemical chaperones mostly likely
by stabilizing proteins during folding and maturation (Kaufman
and Ficker, 2003). In acquired cardiopathies, three pathways
are worthy of special attention: the recycling endosome/Rab11
pathway, the endocytosis/dynamin/microtubule pathway and,
the association of ion channels with specific partners for
anterograde trafficking and correct targeting to specialized
membrane subdomains of the myocyte. Future studies are
necessary to explore the specific roles of ion channel partners
on ion channel trafficking/targeting vs. membrane scaffolding
to understand the relative contribution of these proteins in
dictating cardiac excitability and function under normal and
pathological conditions. The highly specialized architecture
of the cardiomyocyte dictates that more studies in native

cells are necessary to improve our understanding of the
mechanisms involved, and how they impact upon the pathology
of arrhythmia.
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