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Hypertension (HTN) is an escalating health issue worldwide. It is estimated that 1.56

billion people will suffer from high blood pressure (BP) by 2025. Recent studies reported

an association between gut dysbiosis and HTN, thus proposing interesting avenues

for novel treatments of this condition. The sympathetic nervous system (SNS) and the

immune system (IS) play a recognized role in the onset and progression of HTN, while

reciprocal communication between gut microbiota and the brain can regulate BP by

modulating the interplay between the IS and SNS. This review presents the current state

of the science implicating brain-gut connection in HTN, highlighting potential pathways

of their interaction in control of BP.
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HYPERTENSION (HTN)

Over the past few decades, HTN has become the most prevalent condition seen in primary care
(Mozaffarian et al., 2015), and is the highest modifiable risk factor for cardiovascular disease (CVD)
and stroke (Egan et al., 2010). Data from National Health and Nutrition Examination Survey
(NHANES) indicate that prevalence of HTN in adults over 20 years was estimated to be 34.0%
from 2011 to 2014, in contrast to 67.2% among those over 60 years of age (Benjamin et al., 2017).
What is the most alarming is that data generated in NHANES surveys in 2011 to 2012 revealed
that the prevalence of high BP was 1.8% among boys and 1.4% among girls aged 8–17 (Benjamin
et al., 2017). This underscores the concerns that accompany HTN and its prevalence in younger
patients. Higher BP in early adulthood has been associated with high risk of for all-cause mortality,
including CVD and coronary heart disease (CHD)-associated mortality. Overall, compared with
dietary, lifestyle, and metabolic risk factors, high BP is the leading cause of death in women and the
second-leading cause of death in men (Heidenreich et al., 2011).

The pathophysiology of HTN has been intensively investigated, and quite a few factors that
contribute to the pathogenesis of HTN are identified. They include, but are not be limited
to, uncontrolled activation of immune system (IS) (Singh et al., 2014), overactive sympathetic
nervous system (SNS) (Mancia and Grassi, 2014), dampened parasympathetic nervous system
(PNS), dysregulation in the renin-angiotensin system (RAS) (Aroor et al., 2013; Kamide, 2014;
Cabandugama et al., 2017), endothelial dysfunction (Mendizábal et al., 2013), genetic mutations
(Jones et al., 2017; Li et al., 2017b), and diverse environmental factors (Kulkarni et al., 1998;
Hamano et al., 2012). In the current review, we focus on the role of IS, SNS, PNS and gut microbiota
as an environmental factor in gut-brain axis in the regulation of blood pressure (BP).

NEUROGENIC COMPONENTS OF TREATMENT-RESISTANT HTN

Treatment-resistant HTN is characterized by uncontrolled high BP that persists despite the
combined use of three or more antihypertensive agents of different classes, one of which is a
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diuretic (Acelajado and Calhoun, 2010). The prevalence of
treatment-resistant HTN is estimated to be between 15 and
20% among the hypertensive patient population. Resistant
HTN is associated with several factors that include excessive
dietary sodium retention secondary to chronic kidney disease
(CKD)(Borrelli et al., 2013); obesity (Lohmeier and Iliescu,
2013); prescription drugs (Faselis et al., 2011); heavy alcohol
consumption (Pimenta et al., 2008) and obstructive sleep apnea
(OSA) (Khan et al., 2013), among others. Overactive SNS
is present in all the aforementioned conditions, suggesting a
significant role in the pathophysiology of treatment resistance.
In addition to chronically elevated SNS activity (Tsioufis et al.,
2011) accompanied by norepinephrine (NE) spillover (Tsioufis
et al., 2011), dampened parasympathetic activity (Masuda, 2000)
is also among several common characteristics of resistant HTN,
indicating a neurogenic component that contributes to the
initiation, maintenance and progression of HTN. Increasing
evidence also suggests that, coupled to autonomic dysfunction,
treatment-resistant HTN is accompanied by a chronic low-
grade inflammatory profile that facilitates end-organ damage and
perpetuates the hypertensive state (Grassi et al., 2011), suggesting
a close link between SNS and the IS.

ROLE OF THE AUTONOMIC NERVOUS
SYSTEM (ANS)

Environmental cues are perceived by the CNS via the peripheral
nervous system afferents. The CNS processes the afferent inputs
and organizes the efferent outputs into behavioral and other
physiological responses (Bienenstock et al., 2015). In this way,
the autonomic nervous system (ANS) involuntarily regulates
host physiological homeostasis. The two branches of the ANS,
the SNS and parasympathetic nervous system (PNS), cooperate
closely to regulate the visceral organs antagonistically, though
synergistic regulation also exists (Wehrwein et al., 2016). In
the CNS, the central cardioregulatory autonomic centers are
located in the hypothalamus and brainstem. Physiologically,
ANS efferents modulate the cardiovascular functions and BP in
several ways (Wehrwein et al., 2016): (1) sympathetic regulation
of heart rate (HR) and vasomotor tone; (2) sympathetic
regulation of the endocrine renin angiotensin system (RAS);
and (3) parasympathetic regulation of HR. In neurogenic HTN,
imbalance in ANS in animal models and human patients
(Narkiewicz et al., 2005; Santisteban et al., 2013; Mancia and
Grassi, 2014; Zubcevic et al., 2014) leads to over-activation
of sympathetic drive, spillover of NE, and peripheral and
central inflammation (Mancia and Grassi, 2014; Santisteban
et al., 2015). An important aspect is mediated via the stress
response pathways (Ulrich-Lai and Herman, 2009), involving
the hypothalamus-pituitary-adrenal (HPA) axis and several
hormones that uphold the appropriate reactions to perceived
threats. Chronic stress continuously activates the HPA axis,
resulting in persistent release of glucocorticoid hormone, cortisol
(human) or corticosterone (rodent), which exerts its BP-raising
ability through its negative effects on vasodilation, and positive
effects on RAS (Singh et al., 2011). In addition to the SNS, as

mentioned above, the PNS also contributes to the regulation
of BP via parasympathetic (vagal) pathway, resulting in the
modulation of cardiac output and HR.

GUT MICROBIOTA AND THE IS

In recent years, gut microbiota has been linked to the initiation
and progression of numerous diseases and conditions, including
intestinal disorders (Carding et al., 2015) CNS conditions
(Mangiola et al., 2016) and various systemic diseases (Chow
et al., 2010; Yang et al., 2015). Gut, as the largest immune
organ in the body, harbors trillions of bacteria. The numbers
of microorganisms within the gastrointestinal (GI) tract in
humans are approximately 10 times that of somatic cells in the
human body. Moreover, the number of genes the gut microbiota
possess exceeds 100 times more than the genes in humans
(Kurokawa et al., 2007). Thus, the gut microbiota is a significant
variable in how an organism interfaces with and responds to its
environment.

The continuous interaction between microbiota and the gut
effectively regulates the physiological homeostasis within the gut
locally, as well as in the host systemically. Intestinal mesenteric
lymph system, also known as Gut-associated lymphoid tissue
(GALT), has features of anatomically compartmentalized
structure where immune responses are initiated and immune
cells are educated. GALT is an interface between the blood and
the intestinal lymph fluid, and supplies activated immune cells
to intestinal epithelium and lamina propria, where they interact
with gut microbiota (Jandhyala et al., 2015). Even in the absence
of disease, vast numbers of lymphocytes and other immune
effector cells residing across the gut tissue to react to and tolerate
gut microbiota. Therefore, the intestinal microbiota plays a
critical role in determining the level of immunologic outcomes
of various signaling events in host cells. It is inevitable that
the intestinal and systemic homeostasis are tightly controlled
by regulatory immune mechanisms, which are established
by interactions between trillions of microbes, microbial gene
products and pattern recognition receptors (PRRs). Disruption
of this balance by inimical signals has significant consequences
that may result in a vast number of diseases, as previously
described (Yang et al., 2013).

To date, a group of commensal bacterial genera have been
identified and intensively investigated, including Lactobacillus,
Clostridium, Bifidobacterium, Bacteroides, Streptococcus, and
Enterobacterium (Yang et al., 2015; Donaldson et al., 2016).
Recent findings from The Human Microbiome Project showed
that thousands of microbes inhabit the gut of the human
population, with a high degree of variation in composition
between individuals (Consortium, 2012). Despite this variation
among individuals, the microbial genes involved in the basic
up-keep of metabolic activities are functionally similar between
individuals (Consortium, 2012).

Gut dysbiosis is generally characterized by a decrease in
microbial population diversity and stability, and blooms in
certain harmful bacteria (Zeng et al., 2017). The metabolic
network within the host harboring dysbiotic microbes can also be
altered in situ, resulting in insulin resistance and abnormal levels
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of short chain fatty acids (SCFAs) (Gao et al., 2009;Machiels et al.,
2014), among other metabolic disturbances. Inflammatory bowel
diseases (IBD), for example, is associated with chronic intestinal
inflammation and disruption of the gut barrier has also been
partially attributed to gut dysbiosis (Tamboli et al., 2004).

In addition to the role of prebiotics in promoting growth
of certain beneficial bacteria (typically Bifidobacterium and
Lactobacillus) (Kootte et al., 2012), and their role in reducing
pathological gut leakiness and inflammation (Ulluwishewa et al.,
2011), several probiotics have been evaluated in clinical trials in
relation to BP regulation. A meta-analysis of 9 randomized trials
showed a significant decrease in both the systolic BP (SBP) and
diastolic BP (DBP) in patients who consumed a daily dose of
≥1011 CFU of Lactobacillus helveticus (Khalesi et al., 2014). These
studies suggest that gut microbiota play an important role in the
control of BP homeostasis and that the correction of gut dysbiosis
by probiotics may be beneficial for BP control.

COMMUNICATION BETWEEN THE GUT
AND THE BRAIN

The gut-brain axis involves bidirectional communication
between the CNS and the enteric nervous system and gut
commensals (Cryan and Dinan, 2012; Bienenstock et al., 2015).
The mechanisms behind the emerging gut-brain axis are still not
completely clear, but there are several tantalizing hypotheses,
which include the role of the IS, bacterial metabolites, vagal
afferent pathway and endocrine effects (Figure 1). It is also
important to emphasize that these variables likely interact with
each other to maintain homeostasis.

Role of the IS in Gut-Brain Axis
IS Signaling to the CNS
The CNS responses can be activated via circumventricular organs
(CVOs) during systemic inflammation (Johnson and Gross,
1993), as demonstrated in some intestinal disorders (Matteoli and
Boeckxstaens, 2013). CVOs are specialized structures lacking the
blood brain barrier (BBB), thus allowing direct communication
between brain parenchyma and peripheral fluids. As a result,
these highly-vascularized CVOs are able to monitor hormonal
and cytokine changes in circulation (Akrout et al., 2009; Krause
et al., 2011). In addition, vagal afferent pathway also mediates the
signaling from IS to CNS, which will be discussed in the vagal
pathway section.

CNS Regulation of the IS
One of the ways through which CNS communicates with
IS is via the ANS. Sympathetic innervation exists in both
primary (bone marrow, thymus) and secondary (spleen, lymph
nodes, mucosa-associated lymphoid tissue) lymphoid organs.
NE released from the terminals of sympathetic postganglionic
neurons binds to the adrenergic receptors expressed on both
innate and adaptive immune cells. The adaptive immune cells
respond to SNS cues predominantly via the b2-ARs (Lorton and
Bellinger, 2015), and stimulation of b2-ARs on these immune
cells modulates diverse aspects of immune cell functions. In
the bone marrow, hematopoietic stem cells (HSC) receive direct

SNS input via the ARs expressed on the cell surface. This
largely physiological response of the IS to the sympathetic
tone is beneficial in mobilization of hematopoietic stem and
progenitor cells (HSPC) during the “active” period of a day,
in anticipation of possible infection and injury (Hanoun et al.,
2015). However, this response may become pathological when
SNS is chronically activated, regardless of time, such is the case
in HTN. In HTN, increased activity of the femoral sympathetic
nerve is associated with a significant elevation in NE in the
bone marrow, leading to an overactive IS in the SHR (Zubcevic
et al., 2014). In the secondary lymphoid organs, sympathetic
nerves travel along with the local vasculature and associated
connective tissue, and form neuroeffector junctions with the
immune cells in the lymphoid parenchyma. GALT is also
innervated by sympathetic nerves that extend from the vascular
beds in the gut (Bellinger and Lorton, 2014). Interestingly,
sympathetic drive avoids the innervation of germinal center
where the differentiation and maturation of B cells occurs
(Popper et al., 1988), though it is known that B cells can
be modulated by the substances released from sympathetic
terminals (Pongratz and Straub, 2010). Interestingly, the effects
of adrenergic signaling on the immune cells have been implicated
in both anti-inflammatory and pro-inflammatory responses
(Lorton and Bellinger, 2015), depending on the level of activation
of specific immune cells and the stage of the disease (Lorton and
Bellinger, 2015).

In addition, the PNS also plays an important role in
the regulation of IS. Electrical vagal stimulation experiments
demonstrated attenuation of systemic inflammatory responses
to endotoxin by reducing the pro-inflammatory TNF responses,
but not the anti-inflammatory IL-10 (Borovikova et al., 2000). In
subsequent mechanistic investigations, Wang et al. demonstrated
that the nicotinic acetylcholine receptor alpha 7 (α7nAChR)
present on macrophages is an essential regulator of the anti-
inflammatory effects resulting from vagal nerve stimulation
(Wang et al., 2003). Therefore, temporary activation of the vagal
nerve leads to the release of anti-inflammatory acetylcholine
that binds to α7nAChR+ macrophage and suppresses the
production of pro-inflammatory cytokines (Báez-Pagán et al.,
2015). However, chronic inflammation, including that observed
in HTN, is associated with attenuation of both afferent and
efferent vagal responses (Kentish and Page, 2015), indicating
its deleterious effect on vagal reflexes. From this, it is tempting
to propose that afferent vagal signaling from the gut may
alter the profile of immune cells via modulation of efferent
cholinergic tone, thus reducing mucosal inflammation and
maintaining the gut homeostasis (Matteoli and Boeckxstaens,
2013).

Therefore, the observed deregulation of both SNS and PNS in
HTN may contribute to the exaggerated inflammatory responses
in HTN. Any alterations in one or both of these pathways can be
involved in the pathophysiology of HTN.

Immune Responses within the CNS
The brain has the means to generate a local immune response,
and this defense mechanism primarily involves glial cells. It
has been shown that excessive or sustained activation of central
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FIGURE 1 | Proposed brain-gut axis in hypertension. A number of signaling mechanisms connect the gut and brain, including the following: (i) descending autonomic

innervation of cardiovascular and GI systems (yellow and red circle outlines) and sympathetic regulation of the immune system (red circle outline), which also impacts

the gut (red and blue circle outlines); (ii) ascending connections, including circulating factors (SCFAs, endocrines, cytokines) that are perceived by the brain

circumventricular organs (CVOs), while vagal signaling from the gut is processed in the NTS (purple and green circle outlines). The interaction between gut microbiota

and GI system is shown in the blue circle outline. SCFA, short chain fatty acid; SFO, subfornical organ; OVLT, organ vasculosum of lamina terminalis; AP, area

postrema; NTS, nucleus tractus solitarius.

immunity by systemic stimuli results in an imbalance, and even
damage, to the neurons that can lead to neuroinflammation
and neurodegeneration (Hoogland et al., 2015). Chronic
neuroinflammation within the brain cardioregulatory regions
reportedly leads to dysfunction of SNS and subsequent elevation
in BP (Schlaich et al., 2004). Two major glial cell populations,
microglia and astroglia, constitute 5–20% and 20–40% of total
glial cell population in the CNS, respectively. Under normal
physiological conditions, microglia react to environmental
antigens, clear apoptotic cell debris, and maintain the
homeostasis of CNS immune system. Astroglia were traditionally
considered to play primarily a structural and supportive role,
in addition to supplying nutrients to the neurons. Recently, the
overshadowed role of astroglia in the CNS has been expanded
and appreciated (Stern and Filosa, 2013). Astroglia, with
thousands of dendrites and synapses, dynamically communicate
with surrounding neurons and other glial cells. Any changes in
the environment may result in release of cytokines/hormones
and enhanced communication between neurons and glia. When
severe chronic threats alter the internal milieu of the brain,
microglia and astroglia both respond and perpetuate a rise in
inflammation in the CNS that has a profound impact on neuronal

activity, and consequently BP (Stern and Filosa, 2013; Araque
et al., 2014). In addition, recent studies have confirmed the
existence of a lymphatic vascular system in the brain, initiating
a breakthrough in the brain immunological field (Louveau
et al., 2015). Though the complete function of this meningeal
lymphatic vessel system is not fully understood, early roles
hypothesized include a drainage system for the CSF and clearance
of macromolecules from the brain (Aspelund et al., 2015).

The IS in BP Regulation
Research linking the IS and cardiovascular system has made
great progress in recent decades. By utilizing the recombination-
activating gene 1 (RAG1)-deficient mice, which lack the mature
T and B cells, the important role of immune activation in
development of HTN has been illustrated. One important study
demonstrates that abnormalities of vascular function were not
observed in the RAG1-deficient mice treated with AngII, while
AngII-induced BP elevation was also blunted in this model
(Guzik et al., 2007). Genetic mutation of RAG1 in Dahl salt-
sensitive rat, a hypertension model that can be induced by high
salt diet, also attenuated HTN, but adoptive transfer of T cells can
restore these cardiovascular abnormalities, indicating the crucial
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role of T cells in HTN-associated inflammation (Harrison, 2014).
Interestingly, AngII-dependent HTN has also been associated
with expansion in the splenic B cells and elevation in circulating
IgG. This hypertensive response is partially depleted in B cell-
activating factor receptor (BAFFR)-deficient mice, and restored
by B cell transfer (Chan et al., 2015). These studies clearly
demonstrate the essential roles of both T and B cells in different
forms of HTN.

As a consequence of an imbalanced local IS, excessive
inflammatory mediators from the gut translocate via blood and
lymphoid fluid, which may potentially result in inflammation
of the CNS (Varatharaj and Galea, 2017). Neuroinflammation,
in turn, can result in dysregulated ANS leading to exacerbated
neurogenic HTN (Zubcevic et al., 2011). Overactivation of the
central IS also leads to production of a variety of inflammatory
cytokines and reactive oxygen species (ROS) that subsequently
result in damage of the BBB (Yenari et al., 2006), infiltration of
inflammatory cells (Gurney et al., 2006) and increased activity
in cardioregulatory regions of the brain (Shi et al., 2014).
Recently, Santisteban et al. reported that a transplant of bone
marrow from the hypertensive SHR to normotensive WKY rats
induced activation of peripheral and central inflammation, as
well as increased BP in the hypertensive bone marrow chimera
(Santisteban et al., 2015). The pro-hypertensive effects of the
bone marrow also extended to increase in the sympathetic drive.
Thus, overactive peripheral IS can affect the central IS and
modulate neuronal activity in cardioregulatory brain regions thus
contributing to HTN.

Role of Short Chain Fatty Acids (SCFAs)
and Lactate in the Gut-Brain Axis
SCFAs, primarily generated by the gut microbiota through
anaerobic fermentation, have been shown to have multiple
beneficial effects to the host (Hara et al., 1999; Gao et al., 2009;
Canani et al., 2011). Acetate, propionate and butyrate are the
main metabolic SCFAs generated in the intestine. SCFAs are
also present in circulation (Cummings et al., 1987), and are
detected in the brain (Kim et al., 2013; Liu et al., 2015). Thus,
the presence or absence of SCFAs in circulation may also affect
the CNS (Frost et al., 2014; Bourassa et al., 2016). SCFAs bind
to the metabolite-sensing receptors, mainly G-protein coupled
receptor (Gpr) 41, 43, 109a, and olfactory receptor (Olfr) 78
in mice (homology with Olfr59 in rats) to trigger intracellular
signaling. These receptors are widely expressed in diverse
organs/tissues, including sympathetic ganglia, endothelial cells,
epithelial cells, renal juxtaglomerular apparatus, and smooth
muscle cells (Pluznick et al., 2013; Li et al., 2014; Nøhr et al.,
2015). Thus, this interaction offers a novel mechanism by which
microbial metabolites in the gut can affect BP.

SCFAs and BP
SCFAs are vasodilators and thus reduce BP in both rodents
(Nutting et al., 1991) and humans (Mortensen et al., 1990)
when applied systemically. Intake of dietary fiber, which is the
major source of SCFAs in vivo after anaerobic fermentation,
had positive effects on BP in two separate randomized clinical
trials (He et al., 2004; Whelton et al., 2005). Pluznick et al.

demonstrated that propionate is able to induce hypotensive
responses when administrated in wild type anesthetized mice
(Pluznick et al., 2013) in a dose-dependent manner. This BP-
lowering effect of SCFAs is differentially modulated by disruption
of Olfr78 and Gpr41 gene expression, suggesting there are
opposing roles for Olfr78 and Gpr41 in SCFA-mediated BP
regulation. Olfr78 was proposed to increase BP, while Gpr41
decreased BP when bound by SCFA (Pluznick, 2014). The
mechanisms related to these opposite effects are attributed to the
distinct G protein α-subunits and second messengers associated
with Olfr78 and Gpr41 receptors (Saito et al., 2009).

Role of Butyrate in Gut-Brain Axis
Among themajor SCFAs, butyrate is themost widely studied. The
effects of butyrate on gut-brain axis may be exerted through its
impact on the IS, regulation of metabolism, and direct effect on
the nervous system.

Its role in modulating IS responses includes, but is not
limited to, regulation of recruitment of circulating leukocytes
to inflammatory sites, suppression of production of pro-
inflammatory cytokines, and modulation of production and
release of chemokines and expression of adhesion molecules
in neutrophils (Vinolo et al., 2011; Vieira et al., 2012).
Moreover, supplementation of butyrate in drinking water of
rodents enhances the expression of Foxp3 gene and induces
production of regulatory T cells in vivo, thus suppressing
inflammation (Furusawa et al., 2013). The anti-inflammatory
properties of butyrate may also be reflected in its role in
epigenetic modification. Butyrate is a potent histone deacetylase
(HDAC) inhibitor, and in turn contributes to hyperacetylation
of histones and transcription factors. The direct result of this
hyperacetylation is ultimate bidirectional changes in transcript
expression of downstream genes (Rada-Iglesias et al., 2007; Yang
et al., 2013). Since this is a reversible modification in contrast
to the genetic defect (Allis and Jenuwein, 2016; Wang et al.,
2017), it highlights the potential of butyrate in novel therapeutics.
Moreover, HDAC inhibition also exerts anti-inflammatory
effects by suppressing the activation of nuclear factor κB
(NFκB), a major downstream factor in multiple inflammatory
signaling pathways (Adcock, 2007). Another beneficial property
of butyrate is its ability to modify the acetylation levels of Foxp3
promoter and thereafter activate the expression of Foxp3 gene
in T cells, which is essential for regulatory T cell differentiation
(Furusawa et al., 2013). Due to these beneficial effects on the IS,
applications for butyrate are actively being pursued and evaluated
in immune diseases such as IBD (Tedelind et al., 2007).

Administration of butyrate in diet at 5% wt/wt has also
been shown to efficiently increase insulin sensitivity and reduce
adiposity (Gao et al., 2009), suggesting that there are metabolic
effects of this SCFA. Beneficial metabolic effects of butyrate may
extend to direct effects on mitochondrial bioenergetics. In the
periphery, butyrate has been shown to increase mitochondrial
respiration and energy expenditure (Gao et al., 2009). Moreover,
ex vivo incubation of butyrate with colonocytes from germ-
free (GF) mice rescued the deficits in mitochondrial respiration
and inhibited energy deprivation-driven autophagy (Donohoe
et al., 2011). In the CNS, the role of astrocytes in glial-neuronal
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communication is highlighted by their reported ability to donate
mitochondrial fragments to neurons, thus favoring the recovery
of neurons from ischemia-induced oxidative stress (Hayakawa
et al., 2016). Thus, improvement in astrocyte mitochondrial
function may be potentially beneficial to neurons in HTN
(Hayakawa et al., 2016).

In addition, peripheral butyrate can be detected directly by
the butyrate-sensing receptors on afferents (Lal et al., 2001).
These afferent nerve responses are abolished in vagotomized rats,
indicating the involvement of vagal afferents in the butyrate-
responsiveness (Lal et al., 2001).

Thus, the potential impact of butyrate on epigenetic
and immunoregulatory mechanisms warrants attention, as
these regulatory mechanisms may lead to more specific and
efficacious therapeutic strategies for prevention and treatment
of different diseases ranging from genetic/metabolic conditions
to neurological degenerative disorders (Fernandes et al., 2014;
Bourassa et al., 2016).

Lactate in Gut-Brain Axis
Previously, we demonstrated a significant increase in lactate-
producing bacteria in the hypertensive rodent models (Yang
et al., 2015). Moreover, increased concentration of lactate in
stool samples from patients with ulcerative colitis or short
bowel syndrome has been reported (Vernia et al., 1988; Mayeur
et al., 2013). Lactate is primarily fermented to SCFAs by
human gut microbiota (Bourriaud et al., 2005). In addition,
the environmental pH in the gut also plays an important role
in the determination of the capability of microbes to utilize
lactate (Belenguer et al., 2007). Accumulation of lactate results
in lower pH in the stool, which in turn limits the utilization and
conversion of lactate to SCFAs. Therefore, imbalance of lactate
and SCFAs could potentially lead to HTN (Demartini et al., 1965;
Wikander et al., 1995; Shantha et al., 2013).

Lactate transporters (monocarbohydrate transporters, MCTs)
are widely expressed in the intestine and brain, indicating
the accessibility of lactate in both organs (Bergersen, 2015).
Interestingly, injection of L-lactate into locus coeruleus (LC)
induced a significant increase in arterial blood pressure in vivo
through its excitatory effect on LC (Tang et al., 2014).

Vagal Pathway in Gut-Brain Axis
The vagus nerve is comprised of approximately 90% of afferent
fibers that convey sensory information from the periphery to the
CNS (Berthoud and Neuhuber, 2000). The nucleus of the solitary
tract (NTS) is the major site in the medulla that receives afferent
information from visceral organs including the gut. The dorsal
nucleus of vagus in the medulla, by contrast, primarily sends
output to the gut. In this section, we focus on the vagal signaling
in the gut-brain axis.

Vagal Afferent Arm
The cell bodies of visceral vagal afferent neurons are located
in the nodose ganglia. The vagal afferent fibers are present
within the lamina propria and crypts of GI-tract, from where
they relay afferent sensory information to the CNS. In this way,
the sensory receptors (chemical and mechanical) present on

the vagal afferents can sense local changes in GI homeostasis
(Goehler et al., 2005; Cailotto et al., 2012). This information is
relayed and informs the CNS on mechanical distension of the
intestine, changes in chemicals/pH in the gut, and inflammatory
status of the tissue. In view of the latter, it has been shown
that peripheral administration of endotoxin lipopolysaccharide
(LPS) or IL-1β can induce activation of vagal afferents in
the gut (Goehler et al., 2000; Pavlov and Tracey, 2012). This
mechanism is dominant when intestinal inflammatory cytokines
are undetectable in circulation by CVOs during a low-grade
inflammation. Moreover, presence of Toll-like receptor 4 (TLR4)
within the nodose ganglia also supports a potential role of vagal
afferents in sensing the systemic immunoactive molecules in
addition to localized intestinal inflammation (Hosoi et al., 2005).

As part of the afferent limb of the vagal pathway, the
NTS plays an essential role in receiving the vagal afferent
information (Pavlov and Tracey, 2012). Glutamate is the major
neurotransmitter conveying information from the ascending
vagal afferents to NTS. The secondary neurons in NTS that
detect the afferent glutamatergic input form a tight network
of glutamatergic and GABAergic (gamma-amino butyric acid-
releasing) neurons, processes the incoming afferent signals and
subsequently projects it to other brain regions as well as to
downstream cholinergic efferent neurons modulating peripheral
responses. This signal relay eventually results in either excitatory
or inhibitory effects on the gut (Travagli et al., 2003) as well as the
cardiovascular system and the IS (Mancia and Grassi, 2014).

Vagal Efferent Arm
Vagal efferents innervate a number of organs, including the
gut. The direct communication between the enteric nervous
system (ENS) and CNS is mediated via the vagus nerve. In this
way, the CNS monitors the homeostatic state of the GI tract
and regulates contractile properties and acid secretion through
the vago-vagal reflex. In contrast, the ENS preserves complete
reflex circuits (sensors-interneuron-motor neurons). Therefore,
intestinal contractile/distension, local blood flow and nutrient
absorption is regulated locally within the intestine. Removal of
the vago-vagal reflex, thus, has minor impacts on the overall
intestinal function (Furness et al., 2014).

Vagal Pathway in BP Regulation
Selective vagal nerve stimulation has been shown to lower
BP by reducing heart rate (Gierthmuehlen and Plachta, 2016).
The beneficial effects of vagal nerve stimulation extend to
the reduction of intestinal, as well as systemic inflammation
(Matteoli and Boeckxstaens, 2013; Koopman et al., 2016). Thus,
considering the diminished vagal properties in HTN, there may
be multiple benefits of activation of vagal efferents in HTN,
including direct dampening of the IS responses. It has not been
discussed whether the impacts of gut dysbiosis on BP may
be through vagal pathway. However, multiple gut peptides can
be sensed by vagal sensory neurons (Grabauskas and Owyang,
2017). In addition, an association between obesity and altered
vagal pathway has been established, characterized by the reduced
mechanical sensitivity in the jejunum (Daly et al., 2011) and
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reduced c-fos expression in the AP and NTS upon CCK
treatment (Covasa et al., 2000).

Endocrine Systems and Neurotransmitters
in Gut-Brain Axis
Angiotensin II (AngII)
AngII is a vasoactive peptide of the RAS that can raise the
BP via direct vasoconstriction, activation of SNS, activation
of IS, and induction of biosynthesis of aldosterone. Two
distinct but interconnected parts of RAS (peripheral and central)
can contribute to elevation of BP via both independent and
interdependent mechanisms, whereby the CVOs bridge the
connection between peripheral and central AngII effects. We
have recently demonstrated the presence of gut dysbiosis and
gut inflammation in AngII-induced HTN, also characterized by
dysfunctional ANS and central inflammation (Yang et al., 2015;
Santisteban et al., 2017). However, it is not clear whether the
GI/microbiota effects are a cause or consequence in the AngII-
induced HTN, and whether there is a prominent role of AngII in
modulating the microbiome. Recently, it has been demonstrated
that AngII HTN and vascular dysfunction are blunted in GF
mice (Karbach et al., 2016), suggesting that gut microbiota may
contribute to the AngII-induced BP increase.

Serotonin (5-Hydroxytryptamine, 5-HT)
Serotonin is a monoamine neurotransmitter derived from
tryptophan. It is primarily found in the GI tract, in blood
platelets, and in the CNS (Yano et al., 2015). More than 90% of
the 5-HT in our body is synthesized in the gut, and 5-HT either
diffuses into circulation where it is sequestered by platelets, or
it binds to its receptors that are widely distributed on enteric
neurons, enterocytes, and immune cells (Watts et al., 2012).
Although it is generally accepted that 5-HT cannot translocate
from peripheral circulation into the brain across the BBB, it has
been suggested that alterations in gut microbiota have effects
on 5-HT levels in the hippocampus (Diaz Heijtz et al., 2011),
and that endothelial cells in the brain actively express 5-HT
transporters (Nakatani et al., 2008). In addition, the presence of
5-HT receptors in the CVOs may also mediate the connection
between gut and brain (Takeuchi and Sano, 1983; Scrogin et al.,
1998).

Notably, serotonin has been associated with pulmonary HTN
due to the discovery that anorexigens, indirect serotonergic
agonists, can cause pulmonary arterial HTN (MacLean and
Dempsie, 2009). The potential mechanisms contributing to
pulmonary arterial HTN include increased expression of 5-
HT receptors, reduction in serotonin transporter (SERT), and
generation of reactive oxygen species (ROS) in the lung
(MacLean and Dempsie, 2009). The role of serotonin in BP
control has been reviewed elsewhere (Watts et al., 2012).
Interestingly, the dysregulated production of serotonin in anxiety
and depression may also contribute to increased BP (Frick et al.,
2015). Psychosocial stressors associated with anxiety disorders
elicit activation of ANS and HPA axis, which consequently
predisposes individuals to the likelihood of developing HTN
(Player and Peterson, 2011).

GABA, Glutamate and Dopamine
GABA is a major inhibitory neurotransmitter in the mammalian
CNS. GABAergic neurons are present and involved in regulation
of excitation of several cardioregulatory brain regions, and
modulation of vagal signaling within the NTS. Elevated GABA
signaling in the NTS has been associated with HTN (Li
et al., 2013) and diabetes (Boychuk and Smith, 2016). GABA
is also an essential cardioregulatory neurotransmitter in the
paraventricular nucleus (PVN) of hypothalamus, where it
reportedly contributes to determining the level of sympathetic
outflow. For example, microinjection of a GABA antagonist into
the PVN produced significant dose-dependent increase in renal
sympathetic nerve activity (Li et al., 2006), suggesting inhibitory
modulation on the pre-sympathetic PVN neurons.

Glutamate is a major excitatory neurotransmitter in the
CNS. Activation of vagal afferents results in the release of
glutamate in the NTS and generates changes in membrane
potentials of the second-order NTS neurons by binding to alpha-
amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)
receptors or N-methyl-D-aspartate (NMDA) receptors, which
can contribute to the maintenance of resting membrane potential
or regulate convergence of stimulatory inputs, respectively
(Bonham and Chen, 2002). Injection of glutamate into NTS
produces dose-dependent hypotension (Talman et al., 1984), in
line with the role of glutamate in baroreceptor reflex responses.
On the other hand, microinjection of glutamate into the PVN
produced a dose-dependent increase in renal sympathetic nerve
activity and BP, effects that can be blocked by the NMDA receptor
antagonist (Li et al., 2006).

Both GABA and glutamate have been shown to be abundant in
the intestine (Reeds et al., 2000; Hyland and Cryan, 2010), and the
GI tract harbors abundant gram-positive facultative anaerobic
bacteria Lactobacillus and Bifidobacterium, both of which are able
tometabolize glutamate to produce GABA (Boonstra et al., 2015).
The results of several studies support two basic pathways through
which GI-derived GABA can be sensed and utilized by the CNS:
(i) GI-derived GABA may be able to diffuse into circulation and
cross the BBB (Takanaga et al., 2001; Steenbergen et al., 2015a);
and (ii) GI-derived GABA can be sensed by GABA receptors
within the ENS, which directly communicates with vagal afferents
(Auteri et al., 2015; Steenbergen et al., 2015b). However, direct
evidence for these is still lacking to reach a firm conclusion.

Dopamine (D), a common neurotransmitter, is produced in
both neuronal and nonneuronal cells. Previous study suggested
that almost half of D in the body was produced in the GI
tract (Eisenhofer et al., 1997). The locally produced D (i.e.,
renal proximal tubule, jejunum, Bacillus cereaus, B. mycoides,
B. subtillis Zeng and Jose, 2011; Clark and Mach, 2016) is
independent of innervation, and has shown significant effects
on BP regulation via renal D1-like receptors that modulate
NaCl excretion (Zeng and Jose, 2011). Long term treatment of
D1-like receptor antagonist increased BP, and impairment of
renal D1-like receptor has been associated with HTN (Haney
et al., 2001). Another important D receptor, D3, plays a
significant role in natriuresis and diuresis. D3−/− and −/+ mice
exhibit higher systolic and diastolic BP compared with wild
type controls. SHR, characterized by reduced expression of D3
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receptors, shows resistance to the BP-lowering effects of selective
D3 agonists.

INTERPLAY OF IS, SNS AND GUT
DYSBIOSIS IN HTN

Role of SNS in control of BP and HTN has been studied
extensively (Mancia and Grassi, 2014; Zubcevic et al., 2014).
Interventions modulating renal sympathetic activity are shown
to be efficient in BP control (Xiao et al., 2015), though this
innovative technology should be used with caution before the
evaluation of long-term safety and efficacy data are completely
obtained (Fengler et al., 2016). Moreover, denervation of splenic
sympathetic activity can prevent T cell activation and egression
from the spleen (Carnevale et al., 2016). In addition, our group
recently demonstrated that the loss of sympathetic signaling in
the bone marrow decreased BP and suppressed systemic and
gut immune responses (Eberle et al., 2014; Ahmari et al., 2016).
Thus, a reciprocal IS-SNS communication exists in which a
deregulation of one can lead to dysfunction of other in HTN.
We have recently shown that the suppressed immune responses
in the gut, as a function of reduced SNS effects on the IS, also
produced beneficial alterations in the gut microbiota (Yang et al.,
2017). Therefore, changes in the SNS activity have impacts on BP,
which is associated with alterations in the IS and gut microbiota.

Since the initial observation suggesting a link between gut
dysbiosis and HTN in 2015(Mell et al., 2015; Yang et al., 2015),
a few new studies have further investigated this interaction.
Recently published data demonstrated that fecal transplantation
from hypertensive rats and human patients induced BP increase
in normotensive rats andmice, respectively (Adnan et al., 2017; Li
et al., 2017a), indicating a causative and/or contributory role for
gut dysbiosis in HTN. However, these studies remain descriptive
and the precise mechanisms behind the association between gut
dysbiosis and HTN remain elusive. Considering the complexity
of interactions and vastness of potential mediators as reviewed
in the present manuscript, future studies should attempt to
elucidate mechanistic interactions between microbial, neuronal
and IS effectors in health and HTN.

CONCLUDING REMARKS

The prevalence of HTN and its debilitating role as a leading
risk factor for premature death, stroke and heart diseases have
expanded in the past decade. Projections show that around 41.4%
of US adults will have HTN by 2030 (Heidenreich et al., 2011).
Therefore, it is imperative to develop an effective treatment
and/or prevention strategy to reduce the burden of HTN,
especially resistant HTN, of which the available treatments have
been largely ineffective. The recent associative link between the
gut dysbiosis and HTN has opened the floodgates in research
on the role of the gut microbiome in CVD. We propose an
integrated network that regulates BP that involves feedback
between IS, nervous system and gut microbiota. Naturally,
manipulation of gut microbiota may have distinct advantages,
offering the possibility of relatively non-invasive and inexpensive
therapeutics. However, considering the complexity of interplay
between the three systems, manipulation of one may not
be sufficient in fully relieving the effects of the disease. All
said, the advancement in our knowledge on the role of gut
microbiota in CVD would greatly favor ∼970 million people
worldwide.
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