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The use of wearable sensor technology for athlete training monitoring is growing

exponentially, but some important measures and related wearable devices have received

little attention so far. Respiratory frequency (fR), for example, is emerging as a valuable

measurement for training monitoring. Despite the availability of unobtrusive wearable

devices measuring fR with relatively good accuracy, fR is not commonly monitored during

training. Yet fR is currently measured as a vital sign by multiparameter wearable devices in

the military field, clinical settings, and occupational activities. When these devices have

been used during exercise, fR was used for limited applications like the estimation of

the ventilatory threshold. However, more information can be gained from fR. Unlike heart

rate, V̇O2, and blood lactate, fR is strongly associated with perceived exertion during

a variety of exercise paradigms, and under several experimental interventions affecting

performance like muscle fatigue, glycogen depletion, heat exposure and hypoxia.

This suggests that fR is a strong marker of physical effort. Furthermore, unlike other

physiological variables, fR responds rapidly to variations in workload during high-intensity

interval training (HIIT), with potential important implications for many sporting activities.

This Perspective article aims to (i) present scientific evidence supporting the relevance of

fR for trainingmonitoring; (ii) critically revise possible methodologies tomeasure fR and the

accuracy of currently available respiratory wearables; (iii) provide preliminary indication

on how to analyze fR data. This viewpoint is expected to advance the field of training

monitoring and stimulate directions for future development of sports wearables.
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INTRODUCTION

The large diffusion of wearable devices has stimulated interest in athlete training monitoring, with
the aim of maximizing performance, and minimizing the risk of injury and illness (Düking et al.,
2016). The development of sport-related technologies is occurring rapidly and is often guided by
market forces rather than athlete or scientific needs. In this process, it is not uncommon that
technological solutions and measures are available before the sport scientist or practitioner can
appreciate their importance, and this can reduce the use of new technologies. Emblematic here,
is the example of respiratory frequency (fR), which may provide a better marker of physical effort
compared to traditionally monitored physiological variables. However, despite the availability of
unobtrusive wearable devices measuring fR with relatively good accuracy, the practice of measuring
fR during training is not common yet.
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CURRENT APPLICATIONS OF
RESPIRATORY WEARABLES

For a long time, fR has received little consideration also in the
clinical field, despite being recognized as a vital sign capable
of predicting serious adverse events. A series of papers entitled
“Respiratory rate: the neglected vital sign” (Cheng et al., 2008;
Cretikos et al., 2008; Gandevia and McKenzie, 2008; Steichen
et al., 2008) and “Rate of respiration: the forgotten vital sign”
(Parkes, 2011) contributed to redirect attention to fR in the
clinical field. These contributions also inspired the present
manuscript, which aims to draw attention to the potential of fR
for monitoring training in sport. Due to its importance as a vital
sign, fR is currently measured by unobtrusive multi-parameter
wearable devices mainly in the military field, clinical setting, and
during occupational activities. When these devices have been
used during exercise, fR is typically used for limited applications
such as the estimation of the ventilatory threshold during
incremental exercise (Hailstone and Kilding, 2011). Whilst, the
disproportionate and progressive increase in fR, which begins
with attainment of the first ventilatory threshold, may be used
as a practical non-invasive method for estimating the ventilatory
thresholds (Cross et al., 2012), there are other important reasons
why athletes should consider monitoring fR during training.

RESPIRATORY FREQUENCY AS A
MARKER OF PHYSICAL EFFORT

fR is often measured in exercise physiology as one of the two
components (together with tidal volume) of minute ventilation.
However, minute ventilation has typically received much more
attention than its components, being the best single indicator
of the ventilatory output. Nevertheless, recent evidence suggests
that fR and tidal volume are regulated by different inputs during
exercise, and that their differential responses contain valuable
information (Nicolò et al., 2017a,b). fR plays an important role
during exercise as a strong marker of physical effort, more so
than other traditionally monitored physiological variables. The
non-linear increase of fR during incremental exercise parallels
the well-known time course of blood lactate (La−), resembling
the change in physical effort and task difficulty experienced at
exercise intensities above the first ventilatory threshold. In fact, fR
better reflects physical effort than La− when an incremental test
is performed after exercise-induced muscle damage (Davies et al.,
2011) or glycogen depletion (Busse et al., 1991), and in patients
with McArdle’s disease (Voduc et al., 2004). This suggests that
physical effort is more causally linked with fR than La−.

Unlike V̇O2, heart rate (HR) and La−, fR shows an effort-
like response during a variety of exercise paradigms. During
both time-to-exhaustion and self-paced time trial protocols,
fR increases approximately linearly over time and approaches
maximal values at the end of exercise. This response is observed
during both continuous (Nicolò et al., 2016a) and intermittent
(Nicolò et al., 2014a,b, 2017b) exercise of different duration,
and with a variety of experimental interventions that affect
performance. Moreover, unlike other physiological variables,

the time course of fR is closely associated with that of Rating
of Perceived Exertion (RPE) (Nicolò et al., 2014a, 2016a,
2017b). This association is found even after locomotor muscle
fatigue (Marcora et al., 2008) and damage (Davies et al., 2009),
inspiratory (Mador and Acevedo, 1991) and expiratory (Taylor
and Romer, 2008) muscle fatigue, muscle glycogen depletion
(Busse et al., 1991), increases in body temperature (Hayashi
et al., 2006), hypoxia (Koglin and Kayser, 2013), ingestion of
sodium bicarbonate (Robertson et al., 1986), prior endurance
exercise (Spengler et al., 2000), and after expiratory muscle
training (Suzuki et al., 1995). Conversely, HR, V̇O2, and La− are
partially dissociated from RPE under some of these experimental
interventions. Therefore, fR appears to be sensitive to different
fatigue states, and thus may present potentially important
implications for training and recovery monitoring. Furthermore,
fR may be a good predictor of time to exhaustion during constant-
workload trials (Pires et al., 2011a,b) and can help understand
how effort is distributed during self-paced time trials (Nicolò
et al., 2014a, 2016a). The observation that fR is a stronger
correlate of RPE than other physiological variables is not novel
(Noble et al., 1973; Robertson et al., 1986), and it has previously
been proposed as a variable to monitor during training (James
et al., 1989; Neary et al., 1995). However, the importance of fR as a
marker of physical effort has emerged from recent investigations
(Nicolò et al., 2014a, 2016a, 2017b).

An important feature differentiating fR from other
physiological variables is the very fast response at exercise
onset and offset. During sustained all-out exercise, fR increases
rapidly at the beginning of exercise and quickly reaches maximal
values that are maintained throughout the trial, even where
an exponential decrease in power-output occurs (Nicolò et al.,
2015). A rapid response of fR is also observed during the
alternation of work and recovery phases characterizing high-
intensity interval training (HIIT) (Nicolò et al., 2014b, 2017b).
Furthermore, fR changes in proportion to workload variations
in work and recovery across different HIIT sessions (Nicolò
et al., 2017b). This makes fR a useful variable to describe the
fast changes in effort that characterize HIIT (Figures 1A–C). In
contrast, V̇O2 and HR do not respond abruptly to such changes
in workload (Nicolò et al., 2014b, 2017b).

The experimental evidence for fR as a marker of effort
is substantiated by our understanding of the mechanisms
underlying its regulation. One of the major regulators of
ventilation during exercise is central command (Forster et al.,
2012), i.e., the central neural drive associated with voluntary
motor effort. Moreover, it has been suggested that central
command regulates preferentially fR rather than tidal volume
(Nicolò et al., 2017b). Central command is also the sensory
signal for perceived exertion (Marcora, 2009), and this provides
a neurophysiological explanation for the association observed
between perceived exertion and fR. This is why in the present
manuscript we refer to “physical effort” as a theoretical construct
which is distinct from, but linked to, perceived effort. Physical
effort can be defined as the degree of motor effort, (i.e., the
magnitude of central command) (Nicolò et al., 2016b). For the
applied sport scientists and practitioners, physical effort (and
thereby fR) reflects how hard, heavy and strenuous a physical task
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FIGURE 1 | Typical subject performing a 20-s work 40-s rest self-paced intermittent cycling time trial lasting 30min (i.e., 30 repetitions). Data are from Nicolò et al.

(2014a). The time course of power output is depicted in (A). Of note, fR responds very fast to the alternation of the work and recovery phases, and increases

progressively over time (B). The rapid change in fR according to variations in workload can be better observed by showing the time course of fR within the 60-s

work-recovery cycle (C). The solid thick line represents the average of the entire trial, the dashed lines represent each repetition and the solid vertical line separates the

20-s work from the 40-s recovery. For details on this analysis see Nicolò et al. (2014b). This is also a convenient representation to show fR data real time during HIIT. In

order to synthesize the effort of the training session, the fR distribution (D) and concentration (E) profiles have also been constructed. The distribution profile describes

the time spent above each fR-value, while the concentration profile describes the time spent at each fR-value. Both analyses can also be used to describe several

training sessions. See Kosmidis and Passfield (2015) for more details on the two analyses.
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is, whilst perception of effort is the conscious sensation of this
physical task (Marcora, 2010).

Sports scientists and practitioners are therefore encouraged
to consider fR among the variables to monitor in training. Note,
most of the evidence suggesting fR to be a valid marker of effort
comes from studies that used cycling as exercise modality, while
less data are available on other exercise modalities. A similar fR
response was observed during incremental exercise performed
either with legs or arms separately as well as with legs and arms
combined, despite considerable differences in absolute V̇O2,
workload and HR (Robertson et al., 1986). This suggests that fR
reflects the effort exerted during exercise irrespective of absolute
workload, metabolic demand, and muscle masses involved. On
the other hand, different ventilatory responses have been found
when comparing running with cycling (Elliott and Grace, 2010).
A different degree of entrainment (coupling between locomotion
and breathing rhythms) between cycling and running is often
proposed as an explanation for between-modality differences in
fR, but experimental evidence is conflicting. The entrainment
phenomenon is well-documented in some sports like rowing,
where high inter-individual variability in entrainment pattern
is observed (Siegmund et al., 1999). Thus, for rowing a degree
of caution is suggested in the interpretation of fR until more
research is conducted.

HOW TO MEASURE RESPIRATORY
FREQUENCY IN THE FIELD

The limited consideration given to fR in sport should not be
ascribed to technical limitations. It is the easiest ventilatory
variable to measure during exercise and several respiratory
wearables have been developed. Directly, fR can be measured
with portable devices registering flow-rate at the mouth (e.g.,
flow sensors), but require the use of a facemask. These devices
(e.g., K5, Cosmed, Rome, Italy) are accurate but relatively
obtrusive and not well-suited to training monitoring. However,
they are widely used as criterion devices for validating less
obtrusive respiratory wearables. Indirectly, fR can be measured
using the strain and movements of the chest and abdomen
induced by ventilation, the sound of breathing, or the effect that
ventilation has on biosignals such as electrocardiogram (ECG)
and photoplethysmogram (PPG). fR can also be measured with
sensors monitoring exhaled carbon dioxide, air temperature or
humidity, but these sensors are not commonly considered for
wearable solutions used in sport.

The majority of commercially-available respiratory wearables
register ventilation-induced thoracic and/or abdominal strain
through sensors embedded into straps or clothes. Commonly
used sensors are inductive (Hexoskin R©, Carré Technologies
Inc., Montreal, Que., Canada; LifeShirt R©, Vivometrics, Inc.,
Ventura, CA, U.S.A.; EquivitalTM EQ02 LifeMonitorTM, Hidalgo
Cambridge, U.K.), piezo-electric (Pneumotrace IITM, UFI, Morro
Bay, CA, USA), capacitive (ZephyrTM BioHarnessTM, Zephyr
Technology, Auckland, New Zealand), and piezo-resistive
(WearableWellness SystemTM, Smartex S.r.l., Italy). The accuracy
of most of these respiratory wearables is good as assessed by

comparison with a flow sensor criterion device. For instance, a
mean average difference (bias) ± limits of agreement (LoA) of
∼0.3± 2 and 0.2± 2.4 breaths·min−1 was found for Hexoskin R©

during submaximal incremental walking (Villar et al., 2015) and
for EquivitalTM EQ02 LifeMonitor during moderate-intensity
walking and running (Liu et al., 2013), respectively. A bias± LoA
of −0.1 ± 5.7 breaths·min−1 was found for LifeShirt R© during a
maximal incremental running test (Witt et al., 2006). A bias ±
LoA of −0.6 ± 5 and 0.2 ± 8.3 breaths·min−1 was found for
ZephyrTM BioHarnessTM during a maximal incremental running
test and a prolonged moderate-intensity running trial in the heat,
respectively (Kim et al., 2013). However, direct comparison of
the accuracy of different strain sensors in estimating fR during
exercise is lacking, and requires further investigation.

Respiratory wearables positioned on the torso can be
affected by non-respiratory chest and abdomen movements
during locomotion. This problem is commonly addressed when
respiratory wearables based on movement sensors are used like
accelerometer-based devices registering chest and/or abdomen
movements (i.e., inclination changes), and algorithms resilient
to motion artifacts have been developed (Liu et al., 2011).
Compared to the use of a single accelerometer, the estimation
of fR improved with a sensor fusion method combining
accelerometer and gyro-sensor outputs (Yoon et al., 2014). An
improvement of 4.6 and 9.54% was observed during treadmill
interval training and resistance exercise, respectively, and this
method was found suitable for real-time fR monitoring (Yoon
et al., 2014). Respiratory wearables based on magnetometers have
also shown good agreement, with a bias ± LoA of ∼0.2 ± 3
bpm breaths·min−1 during moderate walking (McCool et al.,
2002). The combination of strain sensors with movement sensors
capable of detecting motion artifacts might be an attractive
solution for future development of respiratory wearables.

The sound of breathing is used in the clinical field for
estimating fR, but it has received little attention in sport (Peterson
et al., 2014). Recording breathing sound during exercise may
have some advantages in view of the relatively loud sounds
produced, especially during high-intensity. Anecdotally, athletes
report monitoring the breathing sounds of their opponents as
a gauge of their physical effort during endurance competitions.
However, environmental noise can interfere with the quality of
the acoustic registration and may explain why little attention has
been devoted to breathing sound so far.

It is well-established that ventilation affects the morphology
of the ECG signal, and that fR can be extracted from the
ECG with different techniques (Helfenbein et al., 2014). A few
encouraging attempts have also been made to derive fR from
ECG during cycling exercise (Bailón et al., 2006; Schumann
et al., 2016). It is also documented that ventilation affects the
PPG signal (Meredith et al., 2012), from which fR can be
extracted with appropriate computational processing (Charlton
et al., 2016). The PPG signal is receiving growing attention in
the sports wearable sector because of its simplicity of recording;
for instance, it can be obtained from different body sites like the
finger, the wrist and the earlobe. Nevertheless, data on the validity
of fR extracted from the PPG signal during exercise is sparse.
In an early attempt made during cycling incremental exercise,
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motion artifacts prevented a good estimation of fR and the error
of estimation increased with the increase in exercise intensity
(Nakajima et al., 1996). Some of these problemsmay be overcome
with the application of robust filters and appropriate computing
techniques (Lee et al., 2011). However, more research is needed to
evaluate whether fR can be satisfactorily estimated from the ECG
or the PPG signal during exercise.

Work on the development of respiratory wearables is likely
to increase from a technological point of view (including the
computing sector), because a range of sensors and methods can
be used to measure fR. Therefore, we expect growing interest
in the development of fR-based wearables specifically designed
for sporting activities, triggered by the understanding of the
importance of fR for training monitoring. Among the wearables
currently available, those measuring chest strain are the most
numerous, and their accuracy is generally good. However, the
wearability of some of these devices needs to improve before
use in monitoring training. Further validation studies are needed
to guide sport scientists and practitioners on the choice of the
suitable device. Validation studies have generally targeted few
exercise modalities (mainly walking and running), and some
devices have only been tested during moderate-intensity exercise.

HOW SHOULD RESPIRATORY
FREQUENCY DATA BE ANALYZED?

Since we are at an early stage of training monitoring by means of
fR, this section aims to provide some initial guidelines on how to

deal with fR data. It is important to point out that the variability
of fR is relatively high if compared to that of other physiological
variables like HR (Faude et al., 2017). This is not necessarily a
limitation because fR is also sensitive to variations in performance
induced by a variety of experimental interventions, indicating
its relatively high signal-to-noise ratio. However, the variability
issue should be considered when analyzing and interpreting fR
data. A breath-by-breath fR dataset should be filtered for errant
breaths (i.e., values resulting after coughs, sighs, swallows, etc.), as
commonly performed for gas exchange analysis (Lamarra et al.,
1987). Subsequently, data can be interpolated to 1-s intervals
and bin averaged according to experimental or practical needs.
Due to the inherent variability of fR, the maximal value of fR
(fRmax) should not be taken from breath-by-breath values but
from an average of no <10 s. For the same reason, average values
should be displayed real time during training activities rather
than breath-by-breath values.

The f Rmax reached during maximal effort exercise is similar
across different exercise paradigms and durations (Kift and
Williams, 2007; Nicolò et al., 2014a,b, 2016a, 2017b), with few
extreme exceptions (Nicolò et al., 2015). Therefore, different
maximal exercise protocols appear to be suitable for measuring
f Rmax. It is convenient to normalize fR to f Rmax to develop
prescription and monitoring strategies that can be generalized,
since there is relatively high variability in f Rmax across different
individuals, and the factors determining this variability are not
well-understood. The first attempt to interpret fR data normalized
to f Rmax was made by Nicolò et al. (2014a). They found a strong
correlation between fR and RPE with similar values across a

FIGURE 2 | Correlation between RPE and fR normalized to fRmax during a continuous (CON) and three different HIIT trials (40:20 s, 40 s work 20 s rest; 30:30 s, 30 s

work 30 s rest; 20:40 s, 20 s work 40 s rest) matched for effort and exercise duration (30min). The linear regression results from pooling together data from the four

trials. The regression equation of the correlation obtained was used to associate fR normalized to fRmax with the 6–20 RPE scale (upper left corner of the chart). This

was done in order to favor the interpretation of fR-values obtained during exercise. Reproduced from Nicolò et al. (2014a).
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continuous and three different HIIT trials matched for effort
and exercise duration. Therefore, values from the four trials
were considered together, and the regression equation of the
correlation obtained was used to associate fR normalized to f Rmax

with the well-known 6–20 RPE scale (Figure 2). For instance,
a value of 80% f Rmax approximately corresponded to an effort
perceived as hard, and a value of 88% f Rmax to an effort perceived
as very hard, with clear implications for training prescription
and monitoring. Indeed, fR is an objective variable that can be
measured continuously during exercise, while RPE is a subjective
variable which can only be collected at discrete points in time.
This approach could be improved further by normalizing fR to
the range of possible fR-values available (from fR measured at rest
to fRmax), in a similar manner to the formula used to obtain the
HR reserve (Karvonen and Vuorimaa, 1988). This normalization
procedure could be used to provide objective real-time feedback
on physical effort, with values conveniently ranging from 0
to 100. A real-time feedback could also allow athletes to
voluntary alter their breathing pattern as allegedly advised by
some coaches, although the potential benefit of this practice is
uncertain.

Different approaches may be used to synthesize fR data
from one or more training sessions. Unlike for HR, average
fR is similar across maximal-effort training sessions differing in
the HIIT format of exercise or duration (Nicolò et al., 2014a,
2016a, 2017b). Therefore, average fR may provide a simple
preliminary description of the overall physical effort of a training
session. However, more comprehensive analyses are required to
fully examine the potential of fR data. Two promising analyses
conceived to analyze large datasets are the training distribution
and the training concentration profiles described by Passfield and
Hopker (2017). The training distribution profile shows the total
session time spent above the reference fR-value (which can be

interpreted as the reference level of effort), which assumes every
possible value (Figure 1D). The training concentration profile
is a concentration curve (i.e., the derivative of the distribution
curve), which shows the cumulative time spent training at
each fR-value (effort level) (Figure 1E). fR distribution and fR
concentration profiles would therefore provide a breakthrough
in understanding training effort, which is currently summarized
by a single session value of RPE.

CONCLUSION

In this perspective article, we aimed to present scientific
evidence indicating the importance of monitoring fR during
training, and to propose possible methodologies and wearable
sensors currently available to measure fR in the field. We also
provided indications on how to analyze and interpret fR data.
This is expected to benefit athlete training monitoring and
the advancement of applied research in this area of sports
science, and to stimulate the development and use of respiratory
wearables specifically designed for sporting activities. That of fR
represents a good example of how wearable sensor development
should follow athlete’s needs and be informed by scientific
findings.
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