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Acquired long QT syndrome, mostly as a result of drug block of the Kv11. 1 potassium

channel in the heart, is characterized by delayed cardiac myocyte repolarization,

prolongation of the T interval on the ECG, syncope and sudden cardiac death due to

the polymorphic ventricular arrhythmia Torsade de Pointes (TdP). In recent years, efforts

are underway through the Comprehensive in vitro proarrhythmic assay (CiPA) initiative, to

develop better tests for this drug induced arrhythmia based in part on in silico simulations

of pharmacological disruption of repolarization. However, drug binding to Kv11.1 is more

complex than a simple binary molecular reaction, meaning simple steady state measures

of potency are poor surrogates for risk. As a result, there is a plethora of mechanistic detail

describing the drug/Kv11.1 interaction—such as drug binding kinetics, state preference,

temperature dependence and trapping—that needs to be considered when developing

in silico models for risk prediction. In addition to this, other factors, such as multichannel

pharmacological profile and the nature of the ventricular cell models used in simulations

also need to be considered in the search for the optimum in silico approach. Here we

consider how much of mechanistic detail needs to be included for in silico models to

accurately predict risk and further, howmuch of this detail can be retrieved from protocols

that are practical to implement in high throughout screens as part of next generation of

preclinical in silico drug screening approaches?

Keywords: kv11.1, herg, acquired long QT syndrome, arrhythmia, pharmacology, CiPA, modeling

INTRODUCTION

In the past 20 years, a range of structurally unrelated drugs, including antihistamines, antibiotics
and antipsychotics, have been withdrawn from the market due to adverse effects on cardiac
repolarization - so called acquired long QT syndrome (aLQTS). aLQTS is characterized by
prolongation and sometimes morphological deformation of QT segments on the 12-lead
electrocardiogram (ECG), syncope and sudden cardiac death due to the polymorphic ventricular
arrhythmia Torsade de Pointes (TdP). Theoretically, aLQTS can occur due to unwanted drug
induced modulation of any of the ionic channels that contribute to cardiac repolarization either
through direct modulation of channel conductance (Cavero et al., 2000; Perrin et al., 2008a) or
up/down regulation of channel trafficking and expression on the cell membrane (Dennis et al.,
2007; Ballou et al., 2015). In practice however, the overwhelming majority of these drugs cause
aLQTS through blockade of the Kv11.1 potassium channel that carries the rapid component of the
delayed rectifier current in the heart (IKr) (Perrin et al., 2008b).
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As a result of the prevalence of these proarrhythmic side
effects, regulatory guidelines have been put in place as part
of preclinical drug development to ensure such dangerous
compounds do not get to market. In their current form, these
guidelines use simple steady-state measures of Kv11.1 inhibitory
concentration and action potential prolongation to estimate
arrhythmic risk (E14, 2005; S7B, 2005). However, while these
steady-state measures of Kv11.1 block are very sensitive (no
new proarrhythmic drugs have knowingly come to market since
the inception of these guidelines), they are not specific. The
link between Kv11.1 block, repolarization delay, and TdP is
poorly understood meaning these measures are poor surrogates
for actual risk of TdP. Given that not all drugs that block
Kv11.1 are going to be proarrhythmic, this has likely resulted
in an unnecessarily high attrition rate of drugs in development
(Redfern et al., 2003; Sager et al., 2014).

To address this issue, the Comprehensive in vitro
Proarrhythmia assay (CiPA) has been proposed as a new safety
paradigm in understanding TdP and assessing proarrhythmia
risk (Sager et al., 2014). CiPA has two primary objectives:
(1) Detailed in vitro electrophysiological characterization of
drug interaction with Kv11.1 (and other cardiac ion channels)
and integration of this data into in silico models to predict
proarrhythmia in simulations of the cardiac action potential
and (2) Validation of in silico models using human induced
pluripotent stem cell derived cardiac cardiomyocytes (Fermini
et al., 2016). Central to the first of these objectives is our
understanding of the mechanistic subtleties of how drugs
interact with Kv11.1. There are several key factors that contribute
to a drug’s pharmacological profile and hence contribute to
proarrhythmic risk, including the kinetics of drug binding and
unbinding, gating-state preference and temperature dependence.
These factors are not easily quantified by simple steady-state
measures, yet can have significant effects on the measured
potency of a drug as well as profound impact on the degree
of repolarization delay and the emergence of proarrhythmic
markers seen in in silico simulations. For example, Figure 1
demonstrates an in silico simulation of 6,561 theoretical
drugs that block Kv11.1 all at calculated IC50 doses and yet
the simulated action potential prolongation is significantly
varied. Furthermore, whilst Kv11.1 is the major repolarizing
current in the cardiac action potential, there are multiple other
currents that contribute to repolarization, a concept known
as repolarization reserve (Roden, 1998). In this context, the
evolution of drug induced TdP may involve block of multiple
ion channel currents and a drug’s affinity for a variety of targets
may modify the proarrhythmic risk associated with its block
of Kv11.1. Determination of the proarrhythmic risk profile of
Kv11.1 blocking drugs is therefore a multifaceted problem that
goes beyond simple measures of potency. As a result, using in
silico means to predict the risk associated with individual drugs
is a complex process for which the optimal implementation
remains to be decided upon. In this article we will consider what
level of mechanistic detail describing the interaction between
drug and ion channel target needs to be included for in silico
models to accurately predict risk and further, how much of
this detail can be retrieved from protocols that are practical to

FIGURE 1 | (A) In silico analysis of APD90 with respect to the ratio of affinity

for the open vs inactivated state, Ko /K i. A family of theoretical drugs was

constructed using permutations of the forward and reverse rates for binding to

the open state of the channel (kf,open and kb,open respectively) and the

inactivated state of the channel (kf,inact and kb,inact respectively) in the range

(Continued)
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FIGURE 1 | Continued

0.01–100 s-1 using half-logarithmic increments. An IC50 dose of each drug,

calculated in silico using a simulated direct drug application of the drug at a

holding potential of 0mV, was applied to the O’Hara Rudy action potential at

1000ms pacing cycle length. Drugs with higher affinity for the open state are

shown on the right (Ko / K i > 1) and drugs with higher affinity for the

inactivated state are shown to the left (Ko / K i < 1). The green line shows the

APD90 for IKr50 (a 50 % conductance block of Ikr) of 428ms. Adapted from

Lee et al. (2016). (B–E) Drug binding kinetics contribute to reverse rate

dependence. (B) Action potentials simulated at 500ms pacing interval in

response to an IC50 dose of the drugs selected in (A). Black line represents a

control action potential with no drug applied. (C) Action potentials at 1,000ms

pacing interval. (D) Action potentials at 2,000ms pacing interval. (E) Pacing

cycle dependence of 1APD90.

implement in high throughout screens as part of preclinical
development?

COMPLEXITY OF THE KV11.1/DRUG
INTERACTION

In many cases, a drug’s interactions with its ion channel
pharmacological target can be described as a simple bimolecular
reaction according to the equation:

(1)

Where O represents the open ion channel, D is drug, and kf and
kb are the rates of association and dissociation respectively. A
dissociation constant (KD), describing the affinity of binding can
then be defined as the quotient of kb from kf :

KD =
kb

kf
(2)

In the scenario where this binding results in block of the ion
channel current, the IC50, the drug concentration at which 50%
of channels are blocked, approximates the KD. Whilst Kv11.1
interaction with drugs does not follow this simple rule (Windley
et al., 2016), it nevertheless provides a useful framework for
discussion of drug binding to Kv11.1. A detailed consideration
of the factors that contribute to the complexity of block of these
channels is presented in the following sections.

Drug Binding Kinetics
The inclusion of drug binding kinetics in in silico simulations
has been demonstrated to significantly alter predictions of
cardiac action potential prolongation (Di Veroli et al., 2014; Lee
et al., 2016). Specifically, drugs of equivalent affinity for Kv11.1
demonstrate varying degrees of action potential prolongation
(Figures 1B–D). In some experiments, up to 4-fold increased
difference in prolongation can be observed when comparing
equipotent drugs with fast kinetics (τon = 0.1 s) to those with
slow kinetics (τon = 100 s) (Di Veroli et al., 2014), which is
within the range of time constants for drug binding observed for

known drugs (Windley et al., 2017). Moreover, this differential
prolongation is accentuated at different pacing frequencies; fast
drugs cause greater prolongation at lower pacing frequencies
while the opposite is true for slow drugs. At a pacing cycle length
of 1,000ms this leads to a difference in prolongation of APD90

of 52ms when these parameters are incorporated into in silico
simulations (Figure 1C; Lee et al., 2016).

These rate dependent effects therefore contribute to one
of the most commonly measured indicators of proarrhythmic
propensity—reverse rate dependence (RRD)—where an inverse
relationship exists between action potential prolongation and
depolarization frequency (Hondeghem et al., 2001a,b). The
implied mechanism of this is that drugs with different kinetics of
binding reach different levels of steady state block as a function
of the relative rates of drug binding, unbinding and cycle length.
Specifically, for the drugs shown in Figures 1B–D, this manifests
as a maximal 30% block of Kv11.1 achieved with application of
slow drugs at an IC50 dose during 1Hz pacing, compared to
50% block for fast drugs under the same conditions (Lee et al.,
2016). While it is known that other factors including genetic
background and environmental factors including adrenergic
upregulation of IKs (Sanguinetti et al., 1991; Bosch et al., 2002;
Bányász et al., 2009) contribute to RRD, it is clear that the kinetics
of the drug/channel interaction are also central to this established
measure of proarrhythmia.

Another characteristic of drug interaction with Kv11.1 that
is at least partially underpinned by the kinetics of binding and
unbinding is that of “trapping” (Carmeliet, 1992; Yang et al.,
1995; Mitcheson et al., 2000b; Perry et al., 2004; Stork et al.,
2007). For some drugs, this phenomenon is due to true drug
trapping. In these cases the drug molecule remains within the
channel pore, sterically prevented from diffusing out as a result
of closing of the cytoplasmic gate when the channel deactivates
(Mitcheson et al., 2000b; Stork et al., 2007). Other compounds
however, are more likely to display “virtual trapping,” where
drug unbinding is significantly slower than the rate of channel
deactivation (Perry et al., 2004). In these cases, depending on
the voltage protocol used, the drug will appear to be “virtually
trapped” if the interpulse time is insufficient for complete drug
dissociation. (Lee et al., 2016; Windley et al., 2017). However,
the extent to which the degree and type of trapping can be
measured in vitro using simple voltage protocols is limited. For
example, in the step depolarization protocol used by Windley
et al. (2017) and Li et al. (2017), the degree of trapping is
estimated with a fixed 15 s interpulse interval. The limitations of
this approach are twofold. First, it is not possible to distinguish
between true trapping and virtually trapped drugs. In practical
terms, in silico simulation has demonstrated that true trapping
results in significantly greater APD90 prolongation and greater
pro-arrhythmic risk, Di Veroli et al. (2014) and therefore it is
important to distinguish between the two. Second, any virtually
trapped drug that dissociates quicker than 15 s will be described
as non-trapped. Even if there was significant residual block
evident at 5 or 10 s, the protocol cannot test this. In the context
of cardiac cycle, where a typical diastolic interval might be on the
order of 600ms, this might be a significant shortcoming. Even so,
Li et al. have shown that including an approximation of trapping
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and kinetics based on this protocol in their in silico models
is useful in improving proarrhythmic prediction. For example,
discrimination between drugs with low, medium and high risk
of proarrhythmia using the metric ability of the “cqInward”
(which represents the net inward current during the cardiac

action potential) is incrementally improved when descriptions of
trapping and kinetics are included in simulation as compared to
simple IC50 measures of drug potency (Li et al., 2017; Figure 2).
This is therefore clearly an important factor to consider, even if it
is described with some degree of simplicity.

FIGURE 2 | Drug binding kinetics improves risk prediction. (A,B) Concentration-dependent cqInward for all CiPA (Comprehensive in vitro Proarrhythmia Assay)

training compounds. (High risk drugs are labeled in red, intermediate risk in blue and low risk in green) x-axis is the ratio between the simulated concentration and free

Cmax; y-axis is the cqInward metric. Stars indicate the threshold dose, which is the highest dose that did not elicit an early afterdepolarization (EAD). The metric

cqInward is the net inward current for each drug and is calculated as (INaL_AUC_drug/INaL_AUC_control+ICaL_AUC_drug/ICaL_AUC_control)/2, where AUC is the

integrated area under the curve of the late sodium (INaL) and L-type calcium (ICaL) current traces during steady-state action potential simulation with (_drug) or

without (_control) drugs. (A) Simulations are performed using instantaneous block of Kv11.1 base on dose response curves. (B) Simulations are performed using a

dynamic model of Kv11.1-drug binding with incremental improvement in arrhythmia risk stratification. Reproduced from Li et al. (2017).
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In summary, the kinetics of binding and unbinding of drugs
to Kv11.1 play an important role in accurate prediction of
prolongation of repolarization and proarrhythmic propensity.
The addition of greater complexity, such as variability in
ionic channel densities/function seen in different layers of the
ventricular myocardium (Saiz et al., 2011) or congenital LQTS
mutants (Romero et al., 2014), will further compound these
effects. Consequently, in pursuit of a robust and comprehensive
risk prediction assay, detailed understanding of these baseline
measures of drug binding kinetics are likely an important
component for in silico risk prediction and inaccurate estimation
will likely lead to compounding errors as we continue to build
and refine prediction models.

State Dependent Binding
The vast majority of drugs which target Kv11.1 require channel
opening in order to gain access to the receptor site within the
inner cavity of the channel pore (Kiehn et al., 1996; Walker et al.,
1999; Vandenberg et al., 2012). However, a drug’s affinity can
be relatively greater for either the open state (Ko) or inactivated
state (Ki) resulting in a state preference in drug binding. To date,
there are no studies that have been able to demonstrate drug
binding in the closed state. Several studies have demonstrated
that some, but not all, drugs with high affinity binding to Kv11.1
show preferential binding to the inactivated state (Suessbrich
et al., 1997; Ficker et al., 1998; Numaguchi et al., 2000; Perrin
et al., 2008a; Du et al., 2014). These studies show that Kv11.1
binding potency in certain high affinity drugs is reduced by using
inactivation attenuatedmutants, such as N588K or S631A (Perrin
et al., 2008a; Du et al., 2014), or the inactivation deficient mutant
S620T (Suessbrich et al., 1997; Ficker et al., 1998; Perrin et al.,
2008a;Wu et al., 2015). The inference being that these drugs favor
binding to the inactivated state, hence channel mutants which
reduced inactivation are less likely to bind the drug in question.

However, it is important to note that it is not always the case
that there is a direct correlation between the extent of inactivation
and the affinity of drug binding, even for state-dependent
blockers. Electrophysiological studies using concatenated Kv11.1
tetramers containing variable number of inactivation deficient
subunits have demonstrated changes in drug binding affinity that
occur independent of inactivation (Chen et al., 2002; Wu et al.,
2015). The major molecular determinants for drug binding to
Kv11.1 are two aromatic residues Y652 and F56 in the S6 helix
(Mitcheson et al., 2000a; Chen et al., 2002; Wu et al., 2015). In
addition to these two S6 aromatics, Thr623, Ser624, and Val625
at the base of the selectivity filter, and Phe557 on the S5 helix also
contribute to drug binding at least for some drugs (Mitcheson
et al., 2000a,b; Saxena et al., 2016). It is likely that conformational
changes that accompany inactivation, but that are not strictly
necessary for the open to inactivated state transition, alter the
arrangement of these residues within the pore cavity to allow for
additional close molecular interactions that result in preferential
binding to the inactivated state (Durdagi et al., 2012). This is
supported by evidence from molecular dynamics simulations,
albeit those limited to using homology models of Kv11.1, which
demonstrate these conformational changes (Durdagi et al., 2012).

Of course, there are also non-state dependent drugs whose
potencies are not affected by inactivation deficient mutants.
These drugs include: quinidine, erythromycin, perhexiline
(Perrin et al., 2008a), and clozapine (Hill et al., 2014). Moreover,
studies have suggested that some compounds may also have an
open state preference with minimal binding to the inactivated
state (Kamiya et al., 2001; Park et al., 2002; Su et al., 2004).
However, the contention with these studies is that rather than
using mutagenesis to manipulate state occupancy, they utilize
complex non-standardized voltage protocols to demonstrate
state preference since an open deficient Kv11.1 mutant is not
useful due to an absence of current. It is likely that the recent
advent of high resolution structures of Kv11.1 (Wang and
MacKinnon, 2017) and the potential this presents to generate
more structures of drugs interacting with inactivation deficient
Kv11.1 channels, will allow more accurate molecular dynamic
simulations to probe these questions around state-dependent
drug binding in more detail.

How important then is the consideration of state dependent
binding for in silico prediction of arrhythmic risk? The data
in Figures 3A,B shows that an IC50 dose of two drugs with
opposite state preferences differ in the degree of observed
APD prolongation by 56 ms—clearly a significant amount
in predicting their proarrhythmic potential. However, this
relationship also needs to be considered through the prism of the
limitation that the measured IC50 is itself influenced by the state
preference and how this manifests as a function of the voltage
protocol used to measure the potency. Current safety guidelines
mandate equilibrium testing of drugs to estimate potency to
estimate arrhythmic risk (S7B, 2005). However, measures of drug
potency vary between voltage protocols for some drugs but not
for others (Kirsch et al., 2004; Yao et al., 2005; Milnes et al.,
2010). These differences, which can be an order of magnitude in
disparity, are in part due to using voltage protocols which favor
occupancy of either the open or inactivated state, so favoring
drug binding to that state (Milnes et al., 2010). Therefore, how
can one measure state preference for incorporation into in silico
simulations? The processes of channel opening and inactivation
occur over overlapping voltage ranges, so it is almost impossible
to tease out the relative affinities for the two states from a single,
relatively simple voltage protocol. One potential approach to this
might be to examine multiple protocols, that each sample the
state occupancy of open vs. inactive differently, and attempt to
infer information about state preference from the differences in
IC50s measured using each. However, this is a relatively complex
task that may not be amenable to high throughput screens.

Temperature Dependence
The temperature dependence of potency of Kv11.1 block is a
phenomenon that has been described in the literature for many
drugs (Guo et al., 2005; Yao et al., 2005; Alexandrou et al.,
2006; Hill et al., 2007). For instance, Guo et al. (2005) and
Alexandrou et al. (2006) demonstrate an increase in potency
with respect to increasing temperature from 22 to 37◦C for
fluoroquinolone antibiotics (erythromycin and moxifloxacin
respectively), although not to the same magnitude. In contrast,
other drugs, including loratadine and bepridil, exhibit reduced
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FIGURE 3 | Effect of state preference on cardiac action potential prolongation. (A) 2 drugs with equal but opposite ratio of affinity for the open vs. inactivated state

were selected from the dataset in (A). The inactivated state preference drug (Ko /K i =10−4) is shown in blue-dash. The open state preference drug (Ko /K i =104) is

shown in red-dash. (B) Ventricular action potentials corresponding to the two drugs in (A) in comparison to IKr50. (C–F) Effect of pacing cycle length on cardiac

action potential prolongation. 2 drugs with equal and opposite ratio of affinity for the open vs inactivated state and equal APD90 at a pacing cycle length of 1,000ms

were selected from (A). The inactivated state preference drug (Ko /K i =10−4) is shown in blue-solid. The open state preference drug (Ko / K i =104) is shown in

red-solid. (C) Action potentials at 500ms pacing interval. (D) Action potentials at 1,000ms pacing interval. (E) Action potentials at 2,000ms pacing interval. (F) Pacing

cycle dependence of 1APD90

potency at physiological temperatures (Kirsch et al., 2004). Larger
scale studies have also established that a range of different drugs
have a variable degree of Kv11.1 blockade when examined at
ambient temperature compared to physiological temperatures
(Kirsch et al., 2004; Yao et al., 2005). Moreover, differences in
temperature sensitivity can be accentuated by different voltage
protocols (Kirsch et al., 2004).

In relation to gathering data to constrain in silico models,
this problem is further complicated by recent studies by Windley
et al. (Windley et al., 2016), that revealed some mechanistic
insights into the temperature dependence of drug binding to

Kv11.1. Using a direct measurement of kinetics at 0mV rather
than a pulsed voltage protocol, Windley et al. demonstrated that
for cisapride, increasing temperature from 22 to 37◦C did not
affect affinity of binding, but significantly altered kinetics. In silico
the temperature dependence of binding and unbinding kinetics
could not be described by a simple bi-molecular interaction,
but required inclusion of an “encounter-complex”; a conducting
intermediary state between unblocked and blocked channels
states. This change in kinetics could also be used to potentially
explain apparent differences in drug potency when using varying
pulsed voltage protocols as discussed in the following section
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For example: at 20 nM comparing 22–37◦C, Windley et al.
observed a 5.5-fold increase in cisapride binding rates to Kv11.1.
Based on the analysis in Lee et al. (2016), this could account
for a ∼20ms increase in drug-induced APD90 prolongation,
despite no change in affinity. In addition to these effects of
temperature on drug binding, the gating of the Kv11.1 channel
itself is sensitive to temperature. Specifically, at 37◦C there are
increases in channel conductance, a hyperpolarizing shift in
activation and a depolarizing shift in inactivation (Vandenberg
et al., 2006), resulting in an overall increase in in open state that
will also influence the measured potency of drugs that display
state dependent binding (see Section State Dependent Binding).

The implications of these studies are that for some drugs,
measures of potency and kinetics made at ambient temperatures
may not be useful in constraining in silico models used to
predict proarrhythmia at physiological temperatures (Windley
et al., 2016). This is potentially a concern for large scale, high-
throughput drug screening as many of the current generations
of automated patch clamp platforms are limited to recording
at ambient temperature (Fermini et al., 2016). However, efforts
are currently underway, through the CiPA in silico Working
Group and High Throughout stream to establish the practical
importance and consequences of this issue.

MEASURING AND MODELING DRUG
BINDING TO KV11.1

The complexity of Kv11.1-drug interactions therefore has clear
implications for how the field should approach both measuring
of these phenomena in vitro, as well as how we describe them
using in silicomodels that can be used for risk prediction. Current
guidelines stipulate the IKr current should be assayed but do
not specify voltage protocols, or details, such as temperature
or cellular expression systems. As a result there is a lack of
standardization in how block of IKr current is measured (Fermini
et al., 2016). Redfern et al. (2003) proposed a 30-fold safety
margin between the measured IC50 of a drug and its maximum
unbound plasma concentration (Cmax) to distinguish between
safe and unsafe drugs. However, many studies have shown
variance in drug potency dependent as a function of temperature
and voltage protocol (Kirsch et al., 2004; Yao et al., 2005; Milnes
et al., 2010) and this safety margin becomes unreliable if a true
IC50 value cannot be agreed upon. For example, the reported
IC50 values for cisapride, span a 60-fold range (Potet et al.,
2001; Rezazadeh et al., 2004). One approach therefore is to use
in silico modeling to “fine-tune” in vitro experimental protocols
to more closely mimic in vivo conditions (Ellinwood et al.,
2017). However, even if a standardized protocol could be agreed
upon, such as using a physiological cardiac action potential to
reproduce the state transitions of Kv11.1 that are seen during
the cardiac cycle, this would not take into account the impact of
variations in heart rate or action potential prolongation which
are paramount to the highly dynamic binding kinetics of the
drug/Kv11.1 interaction. For example the data in Figures 3C–F

shows two drugs with equal and opposite gating state preference.
At 1,000ms pacing cycle length the APD90 differs by 1ms.

However, at 500ms pacing cycle length the open state preference
drug prolongs the APD90 by 35ms more than the inactivated
state preference drug; while at 2,000ms pacing cycle length the
open state preference drug prolongs the APD90 by 53ms less than
the inactivated state preference drug. (Figures 3C–F) Moreover,
these standardized conditions also lack the ability to predict
variations in physiological conditions, such as hyper/hypo-
kalaemia (Wang et al., 1997) or low pH (and the consequent
changes in protonation of drug compounds) (Moreno et al., 2011;
Wang et al., 2016), all of which are known to affect the state-
dependence of drug binding. An alternative therefore, is to use
non-physiological voltage protocols to accurately constrain in
silicomodels of drug binding (Hill et al., 2014; Beattie et al., 2017)
that can then be used in silico to evaluate a limitless range of
physiological conditions.

This approach however brings with it a new set of challenges.
There exists a wide variety of models of Kv11.1/drug interaction
in the literature, each with different structures and each
constrained by different in vitro datasets. Furthermore, they
differ substantially in their ability to describe the key features of
Kv11.1/drug binding dynamics discussed above, such as kinetics
and state dependence (Figures 4A,B; Di Veroli et al., 2013;
Hill et al., 2014), drug trapping (Figure 4C; Li et al., 2017)
and temperature dependence (Figure 4D; Windley et al., 2016).
While each of these models represents a good description of
drug binding under certain conditions, they differ significantly
in their predicted state occupancies over any given voltage
protocol (Figures 4Aii,Cii), so will result in a difference in state-
dependent drug binding. As yet, no Markov model provides
a universal solution that we can be sure would be useful for
prediction of proarrhythmic risk. As a result, further complexity
may need to be added, or the existing models constrained with
new in vitro data, to improve the model’s predictive accuracy
(Fermini et al., 2016). The issue of what is the optimum approach
to measuring and modeling drug binding to Kv11.1 is therefore
an open question and the optimum balance between how much
and what type of data is required to constrain in silico models
and what is practical to do in the context of high throughput data
acquisition is yet to be determined.

MULTICHANNEL PHARMACOLOGY

The final piece of the puzzle that needs to be considered
in developing ventricular cell simulations for in silico risk
prediction is the role of multichannel pharmacology, and how
this contributes to characteristics of the cellular action potential.
Whilst Kv11.1 blockade is certainly critical to understanding
aLQTS and drug induced TdP, it is not the sole determinant of
arrhythmogenesis since drugs that block Kv11.1 can often also
block other cardiac ion channels (Bril et al., 1996; Aiba et al.,
2005; Wu et al., 2008; Vicente et al., 2015) to suppress or promote
arrhythmogenesis (Fermini et al., 2016). An evaluation of the
potency of a panel of 30 drugs against the seven major currents
that contribute to repolarization demonstrated that the primary
pharmacological targets that determine proarrhythmia were IKr
(Kv11.1), ICaL (Cav 1.2), and INaL (Nav1.5-late). Furthermore,
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FIGURE 4 | Example Markov models of drug binding to Kv11.1. (Ai) Kinetic

and gating-state dependent model adapted from Lee et al. (2016). (Aii) State

occupancies of the combined closed (C-black), open (O-red) and inactivated

(I-blue) states using the Markov model in (Ai), simulated in an O’Hara Rudy

action potential at 1Hz. (B) Kinetic and gating-state dependent model

adapted from Di Veroli et al. (2013). (Ci) Drug trapping model adapted from Li

et al. (2017). (Cii) State occupancies of the combined closed (C-black), open

(O-red) and inactivated (I-blue) states using the Markov model in (Ci),

simulated in an O’Hara Rudy action potential at 1Hz. (D) Temperature

dependent model adapted from Windley et al. (2016). C0, C1, C2, Closed

states; IC1, IC2, Inactivated-closed states; I, IO, Inactivated states; O, Open

state; ID, IOD, Drug bound-inactivated states; OD, Drug bound-open state;

CD, Drug trapped state.

drugs with high TdP risk tended toward unopposed Kv11.1 block,
while drugs with low TdP risk had similar or higher potency for
the inward currents (ICaL and INaL) in conjunction with Kv11.1
block (Crumb et al., 2016). These multichannel pharmacological
profiles are reflected in the morphology of the AP waveform (and
hence the surface ECG). The AP waveform is formed through
summed contribution of all the individual ionic currents in the
cardiac myocytes. As a result, varied drug block of different
ionic currents will result in a spectrum of AP morphologies
and durations, which is idiosyncratic to individual drugs that
manifests in vivo as differences in QT duration as well as T wave
morphology (Figures 5Ci–Cii; Vicente et al., 2015). Critically for
in silico risk prediction, this “APmorphology signature” is in turn
linked to the drug’s pro-arrhythmic potential and potentially can
be used to predict TdP.

In this regard, drug induced morphological changes in the
cardiac AP have been shown to correlate with risk of TdP
(Hondeghem et al., 2001a). Specifically, this study suggested the
presence of AP “triangulation” (slow repolarization, without a
distinct plateau or rapid repolarization phase) was a marker of
risk of drug induced TdP. Several single drug studies exemplify
this point and support the link with multichannel pharmacology.
Drugs that block Kv11.1 without significant inward current
block, such as Sotalol (Milberg et al., 2004) and dofetilide
(Osadchii, 2012; Figure 5Aii), produce AP triangulation in
addition to prolongation, (Figure 5Bii) and are considered high
TdP risk drugs. Conversely, Verapamil, a potent blocker of
Cav1.2 as well as Kv11.1 (Figure 5Ai), does not manifest in
triangulation or prolongation of the AP (Figure 5Bi) and is
considered a low TdP-risk drug (Aiba et al., 2005). Similarly,
other drugs with multichannel pharmacological profiles, such
as ranolazine (Jia et al., 2011) and tolterodine (Martin et al.,
2006) demonstrate dose dependent AP prolongation without
AP triangulation and are also considered low risk. It is clear
therefore, that multichannel pharmacology, and its manifestation
in morphology of the AP, is an important detail that must be
considered for risk prediction.

In silico modeling again provides an ideal solution to

integrating pharmacological data from multiple cardiac ion
channels. Indeed, recent studies by Li et al. (2017) and Dutta et al.
(2017) have shown the value of this approach and demonstrated

that incorporating Cav1.2 and Nav1.5-late block into action
potential simulations improves arrhythmia risk prediction (Yang
et al., 2016; Li et al., 2017). However, in a similar vein to that
discussed above for models of the Kv11.1/drug interaction, there

are several models of the ventricular cardiac action potential
that have been proposed in the literature including the ten
Tusscher 2006 (TT06) (Ten Tusscher and Panfilov, 2006),
Grandi-Bers 2010 (GB10) (Grandi et al., 2010), and O’hara

Rudy 2011 (ORD11) models (O’Hara et al., 2011). Population
based studies using these cell models have allowed interrogation
of how the variation in repolarization reserve that occurs as
a result of differential expression of ion channels between
individuals can influence predicted drug effects as well as develop
our understanding of multichannel pharmacology (Sobie, 2009;
Lancaster and Sobie, 2016). However, each of the models is
considerably different in relation to the conductance levels of
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FIGURE 5 | In vitro, in silico and in vivo comparison of multi-channel pharmacology. (A) In vitro drug block of Kv11.1 (IKr-red), Cav1.2 (ICaL-green) and Nav1.5-Late

(INaL-blue) for (i) verapamil and (ii) dofetilide. Adapted from Vicente et al. (2015). (B) In silico cardiac action potential prolongation and morphology based on in vitro

data from Vicente et al. (2015), simulated using the O’Hara Rudy ventricular action potential. Control is shown in green, Cmax dose in yellow and super-Cmax dose in

red. Verapamil demonstrates less action potential prolongation and triangulation compared to Dofetilide. (C) In vivo ECG data demonstrating lead V2 in a patient at 0.5

and 2.5 h post injection of 120mg verapamil or 500 ug dofetilide. Verapamil demonstrates no change in prolongation or T-wave morphology while Dofetilide shows

marked changes in prolongation and T-wave notching between the 2 time points. Reproduced from Vicente et al. (2015).

individual cardiac ion channels. As a result, predictions around
APD prolongation and emergence of proarrhythmic markers
that each of the models make in response to drug block are
significantly different (Mirams et al., 2014) and do not reproduce
in vivo data (Britton et al., 2017). For example, Mann et al
showed that 50% inhibition of Kv11.1 caused 113, 22, and 34ms
prolongation of APD90 for ORD11, TT06 and GB10 respectively
(Mann et al., 2016). This issue is being considered by the field and
recent efforts have focused on refining cell models by rescaling
their ionic conductances using either patient data from subjects
with various subtypes of the long QT syndrome (Mann et al.,
2016) or published drug data (Britton et al., 2013; Dutta et al.,
2016). Even so, significant disparity still exists between the
“optimized” versions of the cell models, meaning the differences
in predicted risk that result from using different models are likely
to outweigh, or at least match, the differences associated with
descriptions of the drug/channel interaction. It may also prove
to be true that similar mechanistic descriptors that are becoming
routine for drug binding to Kv11.1, such as kinetics and state
dependence, also need to be incorporated for other cardiac ion
channels for optimum risk prediction. However, the benefit of
this relative to the cost of acquiring the datamay preclude such an
approach. What is clear, is that each of these facets of in silico risk

prediction—theMarkov descriptions of drug/channel interaction
as well as the model of the ventricular cell in which they are
incorporated, should each be considered as a priority for the field.

CONCLUSION

Understanding the intricacies of the Kv11.1/drug interaction
and optimizing our approaches to measuring and modeling
these characteristics is critical to developing better preclinical in
silico risk prediction. In doing this it is important to remember
that all models are simplifications. Therefore, the challenge is
to determine how much information needs to be included to
make them useful rather than how much information is needed
to make them accurate for every drug scenario, which would
potentially necessitate the collection of very large amounts of
data that may be redundant for many drugs. Given the potential
significance of factors, such as drug binding kinetics, temperature
dependence, state dependence and multichannel pharmacology
discussed above, it seems clear that these factors need to be
included at some level in models of drug binding. The major
challenge faced by the field in the short term is determining
what level of detail is necessary, and balancing this against the
practicalities of data acquisition in high throughout screens.
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