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Diseases affecting skeletal muscle exhibit considerable heterogeneity in intensity,

etiology, phenotypic manifestation and gene expression. Systems biology approaches

using network theory, allows for a holistic understanding of functional similarities

amongst diseases. Here we propose a co-expression based, network theoretic

approach to extract functional similarities from 20 heterogeneous diseases comprising

of dystrophinopathies, inflammatory myopathies, neuromuscular, and muscle metabolic

diseases. Utilizing this framework we identified seven closely associated disease

clusters with 20 disease pairs exhibiting significant correlation (p < 0.05). Mapping

the diseases onto a human protein-protein interaction network enabled the inference

of a common program of regulation underlying more than half the muscle diseases

considered here and referred to as the “protein signature.” Enrichment analysis of 17

protein modules identified as part of this signature revealed a statistically non-random

dysregulation of muscle bioenergetic pathways and calcium homeostasis. Further,

analysis of mechanistic similarities of less explored significant disease associations

[such as between amyotrophic lateral sclerosis (ALS) and cerebral palsy (CP)] using a

proposed “functional module” framework revealed adaptation of the calcium signaling

machinery. Integrating drug-gene information into the quantitative framework highlighted

the presence of therapeutic opportunities through drug repurposing for diseases affecting

the skeletal muscle.

Keywords: co-expression networks, functional module framework, bioenergetics, calcium signaling, skeletal

muscle physiology, neuromuscular disease, drug repurposing, human protein interaction network

INTRODUCTION

Human skeletal muscle is a versatile tissue, with structure and function governed by complex
interactions between its sensing, signaling, force transduction, metabolic and basic cellular
processing machinery (transcription and translation) (Kierszenbaum and Tres, 2015). Precisely
coordinated activity between each of its components is essential for muscle health and normal
functioning of associated motor activity. A disruption to any component within this complex
system of interactions leads to disorders of the muscle, typically characterized by muscle fiber
loss, reduced motor output and possibly death. Epidemiological, clinical, and physiological studies
have contributed immensely to our understanding of pathogenesis and manifestation of individual
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muscle diseases, revealing similarities amongst them (Jones and
Round, 1990; Askanas and Engel, 2008).

Recent advancements in genomic technologies have enabled
newer opportunities for understanding mechanisms that
are common and distinct across muscle pathologies. High-
throughput measurements, multiscale phenotypic data and
integrative analysis are beginning to provide increasingly
comprehensive understanding of muscle dynamics, specifically
for biomarker discovery (Laaksonen et al., 2006; Dewey et al.,
2011; Azuaje et al., 2012; Gupta et al., 2014). However, very
few studies have developed and implemented techniques for
extracting similarities underlying muscle diseases, on a much
broader scale. For instance, Blandin et al. (2013) utilized the
yeast-two hybrid (Y2H) methodology combined with co-
expression networks to generate a muscular LGMD-centered
interaction network (LGMD-Limb girdle muscular dystrophy)
identifying a total of 1,018 proteins connected by 1,492 direct
binary interactions enriched for cytoskeletal and extracellular
matrix protein interactions.

TABLE 1 | Diseases affecting muscle.

Major disease category Disease Extant evidence for genetic association GEO series

Muscular Dystrophy Becker muscular dystrophy (BMD,

Dystrophinopathies)

DMD GSE3307

Duchenne muscular dystrophy (DMD,

Dystrophinopathies)

DMD GSE3307, GSE6011

Emery Dreifuss muscular dystrophy (EDMD) STA (EDMD1), LMNA (EDMD2) GSE3307

Facioscapulohumeral muscular dystrophy (FSHD) FSHMD1A (rearrangement in subtelomeric region of 4q35) GSE9397, GSE10760

Limb-Girdle muscular dystrophies (LGMD) Type 2A CAPN3 GSE3307, GSE11681

LGMD Type 2B DYSF GSE3307

LGMD Type 2I FKRP GSE3307

Inflammatory Myopathies Polymyositis (PM) Mostly idiopathic with evidence for association with HLA

alleles

GSE3112

Dermatomyositis (DM) Mostly idiopathic with evidence for association with HLA

alleles

GSE5370

Juvenile dermatomyositis (JDM) Mostly idiopathic with evidence for association with HLA

alleles

GSE3307, GSE11971

Inclusion body Myopathies Inclusion body myositis (IBM) Mostly idiopathic with evidence for association with HLA

alleles

GSE3112

Hereditary inclusion body myopathy (HIBM) GNE, MYH2 GSE12648

Metabolic disorders

affecting muscle

Mitochondrial encephalopathy, lactic acidosis, and

stroke-like episodes (MELAS)

MT-TL1 GSE1462

Acute quadriplegic myopathy (AQM, Endocrine

myopathies)

Idiopathic GSE1017

Chronic fatigues syndrome (CFS) Idiopathic GSE14577

Progressive external opthalmoplegia (PEO) MT-TL1 and/or POLG, SLC25A4, and C10orf2 GSE1017

Neural diseases affecting

muscle

Amyotrophic lateral sclerosis (ALS) C9orf72, SOD1, TARDBP, FUS, ANG, ALS2, SETX, VAPB

(familial); idiopathic (sporadic)

GSE3307

Hereditary spastic paraplegia (SP) ATL1, SPG4, SPG20, SPG7 GSE3307

Cerebral Palsy (CP) Mostly idiopathic GSE11686

Other Sarcopenia GSE1428

This table represents the 20 muscle diseases considered in the current study along with the major disease category, current evidence for genetic association and the Gene Expression

Omnibus (GEO) accession of the studies corresponding to muscle diseases. Sarcopenia was not included in any major disease category as it is an age related loss of muscle tissue.

In this study, we propose a quantitative framework to
assess relationships between 20 diseases affecting the muscle
which, based on their pathological/clinical presentation,
were categorized into dystrophinopathies, inflammatory
myopathies, neuromuscular and metabolic diseases of the
muscle (Table 1, see Methods) (Engel and Franzini-Armstrong,
2004). Briefly, dystrophinopathies include Emery-Dreifuss
muscular dystrophies (EDMD), limb girdle muscular dystrophies
(LGMDs), Duchenne muscular dystrophy (DMD) and Becker
muscular dystrophy (BMD). While EDMDs and LGMDs
are caused by mutations in muscle structural genes, DMD
and BMD are caused by frame shift and in-frame mutations
respectively, of the DMD gene. Progressive weakening and
wasting of skeletal muscle characterize all these diseases. The
inflammatory myopathies considered include polymyositis
(PM), dermatomyositis (DM), juvenile dermatomyositis (JDM),
inclusion body myositis (IBM) and hereditary inclusion body
myositis (HIBM). These myopathies are caused primarily
by infiltration of immune cells and are characterized by
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chronic inflammation and weakening of muscle. Metabolic
diseases of the muscle including the mitochondrial myopathies
[progressive external opthalmoplegia (PEO) and mitochondrial
encephalomyopathy, lactic acidosis and stroke-like episodes
(MELAS)], acute quadriplegic myopathy (AQM) and chronic
fatigue syndrome (CFS) all exhibit impaired metabolism,
preferential loss of thick filaments and altered excitability of
muscle. While the mitochondrial myopathies-PEO and MELAS
are caused by mutations in mitochondrial DNA (MT-TL1
gene), AQM and CFS are idiopathic. The neuromuscular
diseases-amyotrophic lateral sclerosis (ALS), spastic paraplegia
(SP) and cerebral palsy (CP) all affect muscle secondary to
neurodegeneration and are characterized by spasticity and
progressive weakening of muscle.

Despite observable physiological similarities in diseases
within each group, diseases exhibit considerable heterogeneity
in intensity, etiology, phenotypic manifestation, and gene
expression. For instance, muscle in both inclusion body
myopathies (HIBM and IBM, Table 1) exhibit chronic
inflammation with visible vacuoles, however, IBM is mostly
idiopathic, while mutations in GNE and MYH2 cause HIBM
(Tomé and Fardeau, 1998). Systems biology, in particular
network theory, facilitates an understanding of the heterogeneity
and uniqueness underlying diseases mechanisms by integrating
multiscale data (transcript, protein, and drug). Here we utilized
a co-expression based scoring scheme to generate a network and
elucidate mechanisms underlying significant disease-relevant
modules. We further mapped them onto a “functional module”
framework within muscle and onto a human protein interaction
network, to infer a common program of regulation underlying
majority of the diseases. Further, incorporating drug data into
the quantitative framework allowed for identifying avenues for
drug repurposing in treating diseases of the muscle.

MATERIALS AND METHODS

Data Acquisition and Processing
The list of diseases available under the Medical Subject
Headings (MeSH) terms “neuromuscular,” “musculoskeletal,”
and “muscular” diseases was used as a guideline for identifying
muscular diseases of interest (Lipscomb, 2000). All available
(RNAseq + microarray platform) information from GEO
(Barrett et al., 2013) was downloaded and surveyed for maximum
coverage of muscle diseases in the MeSH headings identified
above. A single platform GPL96 (Affymetrix HG-U133A) offered
the highest coverage of muscle diseases surveyed. Choosing
studies from one platform alone (GPL96) limited possible noise
arising from platform differences. Additionally, studies with non-
muscle sample tissue, and less than two-samples/condition were
eliminated. Filtering the data for accuracy, and experimental
context using our constraints resulted in microarrays from
19 human diseases. In addition to these 19 diseases, samples
from “CP” (not available under the MeSH term categories
considered above) was also included resulting in 20 diseases
for analysis. CP is a movement disorder characterized by
contractures of the muscle with its primary insult on the nervous
system. Gene expression data for studies with. CEL files (disease

and control) are normalized using RMA (Robust Multi-array
Average). Studies with series matrix files were downloaded as is.
ComBat cross-array normalization is utilized for diseases with
more than one associated GSE (e.g., LGMD2A, DMD, and JDM,
Table 1), to remove study artifacts (Johnson et al., 2007).Multiple
probes were accounted for using the “collapseRows” function
of WGCNA library in R (Langfelder and Horvath, 2008).
The reduced and processed data sets subsequently included z-
transformed expression values of 12,789 genes across 20 diseases.

R (v 3.2.2) (R Core Team, 2015)/Bioconductor (Gentleman
et al., 2004) was used for all data processing and pipelines
implemented in this analysis.

Identifying Disease Similarity
Cyber-T’s (Kayala and Baldi, 2012) regularized t-test performed
on z-transformed expression values was used as a measure of
a gene’s differential activity. The associated T-statistic provided
insight into the difference in mean expression of a gene across
conditions and was referred to as the differential gene activity
(DGA) score for each disease state (Table S0). Partial pearson
correlation of DGA scores across diseases, quantified disease
similarity based on expression profiles. Use of partial correlation
have been shown to be effective in factoring out dependencies
such as variation in tissue types and experimental conditions
(Suthram et al., 2010). The “pcor” function available through
the “ppcor” package in R (Kim, 2015) was utilized to calculate
all possible pairwise partial correlations between each pair
of samples (here diseases) while eliminating the effect of all
other samples. We identified disease clusters using hierarchical
(complete-linkage) clustering of partial correlation.

Disease-Gene Based Disease Overlap
A comprehensive list of genetic factors affecting the 20 muscle
diseases from various sources such as OMIM (Amberger et al.,
2009), PheGenI (Ramos et al., 2014), ClinVar (Landrum et al.,
2014), and DisGeNET (Piñero et al., 2015) (henceforth referred
to as the disease-gene list) was downloaded and curated. A
hypergeometric model, with a null that disease-genes were
randomly drawn from the space of all genes was used to ascertain
the statistical overlap between diseases based on the disease-gene
list. The function “phyper,” available through base R packages was
utilized to calculate the hypergeometric p-values.

Muscle “Functional Modules” and
Functional Module Activity Score
We developed a framework of “functional modules” (FM)
within muscle that represented significant units required for
normal muscle activity (Table 2). Each of the 23 FMs were
represented by a group of manually curated list of biomarkers
that belonged to a broader functional pathway (family) within
muscle (Table S1). This list expanded on an existing framework
for muscle functional families (Mukund et al., 2014). Several
biomarkers within each FM were multi-functional and were
placed in FMs that were most relevant to skeletal muscle. The
functional module activity (FMA) score associated with each
functional module i in disease k, was calculated as mean DGA
score of its component genes. This score reflected the overall

Frontiers in Physiology | www.frontiersin.org 3 December 2017 | Volume 8 | Article 980

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mukund and Subramaniam Functional Similarities Among Muscle Diseases

TABLE 2 | Functional modules in muscle.

Family Functional module ID

Neuromuscular Junction

(NMJ)

Components of the NMJ 1

Synaptic basal lamina 2

Excitation Contraction

coupling (ECC)

Ion Channels of post synaptic muscle 3

Ion transporters pumps/exchangers 4

Calcium dynamics/homeostasis

required for ECC

5

Contraction Sarcomeric thin filament associated 6

Sarcomeric thick filament associated 7

Sarcomeric z-disc associated 8

Cytoskeleton Cytoskeleton 9

Extracellular Matrix (ECM) Components of ECM 10

Family Functional module ID

Mitochondrial energy

metabolism

Glycolytic metabolism 11

Oxidative metabolism 12

Mitochondrial electron transporters 13

Small molecule transporters 14

Members of outer and inner

mitochondrial membrane

15

Associated signaling 16

Hypertrophy Hypertrophy 17

Atrophy Atrophy 18

Inflammation Inflammation 19

Regulators Myogenic and cell cycle regulators 20

Fiber type maintenance Fiber type maintenance 21

Vasculogenesis Angiogenic processes 22

Oxidative stress Oxidative stress 23

This table represents the 23 functional modules identified as belonging to 13 main functional pathways (families) associated with muscle.

state of a module in a particular disease (Table S2). Specifically,
a negative FMA values reflected a downregulation of the module
genes in disease with respect to controls and the converse for
positive FMA values. Significance testing at p < 0.05 identified
FMs associated with each disease state.

Human Protein Interaction Network and
Protein Module Activity Score
The human protein-protein interaction network (PPIN) was
extracted from the STRING database (v9.1), containing both
direct (physical) and indirect (functionally derived) interactions
(Franceschini et al., 2013). Limiting the interactions to a
combined score cutoff of >0.85 allowed us to account for strong
interactions, with sufficient experimental evidence and resulted
in a total of 1,48,030 unique interactions among 10,341 proteins.
The PPIN was clustered using MCL (Markov Cluster) algorithm
a fast, scalable and unsupervised cluster algorithm for networks
based on simulation of stochastic flow. The MCL algorithm
finds cluster structure in graphs by iteratively computing the
probabilities of random walks through the graph (markov
matrices) using an alternation of two operators called expansion
and inflation. Expansion is the power of a stochastic matrix
using the normal matrix product (i.e., matrix squaring) and
inflation is the Hadamard power of a matrix (taking powers
entrywise), followed by a scaling step. A detailed description and
comparison are provided in Enright et al. (2002) and Brohee and
Van Helden (2006). Clustering the PPIN using MCL clustering
resulted in 1,025 protein modules (filtered for minimum module
size>2) with sizes ranging between 3 and 256 genes/proteins.We
considered 764/1,025 modules (6,215/8,581 proteins overlapping
with our list of 12,789 genes) with at least three genes/module for
further analysis (Table S3). Analogous to Suthram et al. (2010)
the protein module activity (PMA) score was calculated for each

protein module i in a disease k as the mean of DGA scores
for its component genes. In the end, we obtained a vector of
PMAik for each disease, representing the activity level of a given
protein module in each disease state (Table S4). Significance
testing identified protein modules with a p< 0.05 associated with
each disease. We defined the threshold for module expression
as upper 50th percentile of |mean PMA| scores from significant
modules across diseases.

Significance Testing
A background distribution of disease correlations expected at
random was generated to assess the significance of observed
correlations. Disease and control sample labels were shuffled
prior to computing DGA scores and disease similarity (through
partial correlations). The whole process was repeated 100 times to
create a background distribution of disease correlations. This was
utilized to determine a permutation-based p-value (number of
the times the permuted statistic exceeded the observed statistic).
The background distributions for PMA and FMA scores were
similarly generated.

Network Visualization and Functional
Enrichment
All network visualization was performed using Cytoscape
software (Shannon et al., 2003). Enrichment was identified
using Gene Ontology’s -Biological Process category available via
ClueGO-a Cystoscape plugin (Bindea et al., 2009) and DAVID
v6.8 (Dennis et al., 2003). Venn diagram was created using
the “VennDiagram” package available through R/Bioconductor
(Chen and Boutros, 2011).

Drug Data
We utilized the drug gene interaction database (DGIdb) (Wagner
et al., 2015) to identify a list of expert-curated proteins/genes
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that serve as druggable targets. A list of currently approved drugs
from the FDA (or at least one jurisdiction) was downloaded from
Drugbank (Law et al., 2014), while drugs treating the disease
clusters were obtained from Medscape (Medscape, 2017)1 and
UpToDate R© (UpToDate, 2017)2

RESULTS

Clustering Muscle Diseases
Expression data for diseases affecting muscle (Table 1) was
processed (see Methods) resulting in a set of 12,789 genes across
the 20 diseases and utilized in our analysis. The change in gene
expression for each disease state (with respect to controls) was
quantified as the associated T-statistic of z-normalized values (see
Methods, Figure 1A, Figure S1) and referred to as differential
gene activity (DGA) score. Hierarchical clustering of diseases
based on partial correlation of DGA scores resulted in seven
disease clusters (Figure 1B, Table 1). Twenty (∼10%) of the
190 possible disease pairs were identified as being significant
(p < 0.05) via significance testing (see Methods, Figure 1C). Few
well-characterized intra-cluster associations marginally missed
the significance threshold and were not captured, for instance
the association between LGMD2B and DMD, BMD and DMD.

1https://reference.medscape.com/
2https://www.uptodate.com/contents/search

We ascertained if the observed significant disease correlations
(based on DGA scores) shared known genetic associations.
We compiled a list of genes associated with our disease set
from publicly available databases (see Methods). Pairs of disease
were considered to significantly share disease-genes if the
hypergeometric p-value of overlap was <0.05. We identified
that 26/190 possible disease pairs shared a significant genetic
basis, and 6/26 interactions overlapped with our 20 significant
DGA based associations (Table 3A), one-sided Fisher’s exact test
p-value of 0.036 (Table 3B).

Identifying Protein Modules Underlying
Muscle Diseases
Protein modules identified within a human-PPIN through
modularity detection algorithms (Enright et al., 2002; Brohee and
Van Helden, 2006) represented a group of strongly interacting
proteins with putative functional associations. We utilized PPIN
to examine if there was a common program of regulation
underlying different pathologies.

We generated a catalog of 1,025 protein modules by
querying a large-scale human PPIN available through STRING
(Franceschini et al., 2013) (see Methods) We identified that
764/1,025 modules (containing at least 3 nodes/module),
overlapped our list of 12,789 genes, with module sizes varying
from 3 to 256 proteins. We defined a protein module
activity (PMA) score calculated for each protein module

FIGURE 1 | Extracting significant disease similarities from 20 diseases affecting muscle. (A) shows the workflow involved in calculating the differential gene activity

(DGA) score and hierarchical clustering of the scores to extract disease clusters based on DGA. (B) shows the hierarchical clustering dendrogram (method- complete)

of disease correlations. Tree cut height (red line) corresponds to a p-value of 0.05 and disease clusters identified below this line were identified to be significantly

correlated. (C) This network represent the 190 possible associations between the 20 diseases. Edges highlighted in red indicate the associations identified as being

highly significant through permutation testing. The various node colors indicate the clusters the diseases belong to as identified through hierarchical clustering. The

nodes colored in gray were not clustered.
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TABLE 3 | Disease association overlap.

A.

Disease 1 Disease 2 Hypergeometric p-value

DM JDM 3.54E-12

DMD JDM 2.08E-02

DMD LGMD2A 9.09E-03

BMD LGMD2I 5.38E-03

MELAS PEO 6.95E-04

IBM PM 7.26E-10

B.

Correlations based on DGA scores

Significant Not significant Total

Correlations

based on

knowndisease

genes

Significant 6 20 26

Not Significant 14 150 164

Total 20 170 190

A. This table provides associations that overlap between associations calculated based

on the DGA scores and associations that share a genetic basis (disease-gene list based).

Hypergeometric p-values of the overlap are also presented. B. Contingency table to

evaluate the hypothesis that significant disease associations also significantly shared

disease genes.

identified per disease as the mean of component protein
DGA scores. The common underlying program of regulation
or “signature” protein modules were identified utilizing a 2-
fold approach-first, all modules with absolute PMA values
significantly higher than random (p < 0.05) in more than
half the diseases (n > 10) were extracted (35 modules
passed this selection criterion). Next, using the threshold
for module expression (see Methods), 17/35 modules were
identified as the underlying protein signature (Figure 2, Table
S5). The complete list of signature modules identified and
their top three enrichment terms are provided in Table
S6.

A “Functional Module” Framework to
Identify Muscle-Specific Mechanistic
Changes
Utilizing the human PPIN allowed us to infer a common program
of dysregulation underlying muscle diseases. We next sought
to elucidate mechanistic similarities between significant disease
pairs, in a more skeletal muscle-specific context. We developed
a framework of FM that represented significant units required
for normal muscle activity (Table 2, see Methods). The set of 23
“FM” captured key biomarkers associated with major processes
in skeletal muscle. We calculated a functional module activity
(FMA) score that reflected the collective behavior of genes in each
functional module, for a given disease state (Table S2). We also
computed an associated p-value for each functional module via
permutation testing.

The FM framework was utilized to assess common functional
mechanisms underlying 20 significant disease-pairs (with p <

0.05). Table 4 presents a subset of significant disease-pairs, which
shared four or more significant FM between them. For instance,
JDM and DMD had 15/23 FM overrepresented (p < 0.05). These
included modules associated with atrophy, inflammation, ECM

and cytoskeleton, all members of the excitation contraction
coupling family (FM IDs-3,4,5), members of contraction
(7,8), mitochondrial energy metabolism (11,12,13,14,15),
inflammation, and fiber type maintenance (19 and 21).

Drug Targets Over-Representation in
Disease-Associated Protein Modules
We ascertained if druggable targets were over-represented in the
common protein signature modules to support the hypothesis
that drugs targeting common targets can treat a variety of muscle
diseases. We identified 54/156 proteins in the signature modules
belonged to at least one druggable category, with at least one
interaction as categorized in the drug gene interaction database
(Wagner et al., 2015). We identified 41 of these proteins as targets
for 81 approved drugs used in treating a variety of diseases and
provided possible avenues for exploration of therapeutic options
(Figure 3, top panel; Table S7).

We next hypothesized that protein modules exclusively
regulated in each disease cluster might be enriched for
drug targets. For instance, we identified protein modules
associated with 3 disease clusters (DM/JDM, IBM/PM and
DMD/BMD/LGMD) using an approach similar to section
Identifying Protein Modules Underlying Muscle Diseases. We
identified −20 approved drugs to be targeting proteins regulated
in modules unique to the IBM/PM cluster, 26 drugs targeting
proteins unique to the DMD/BMD/LGMD cluster and 203 in the
DM/JDM cluster (Table S8).

DISCUSSION

Clustering Diseases Based on Differential
Gene Activity Identifies Both Well and Less
Characterized Disease Associations
The seven disease clusters identified included several well-
characterized clusters such as muscular dystrophies (BMD,
DMD, LGMD2I, and LGMD2A), mitochondrial disorders
(MELAS and PEO); and a few less characterized clusters such as
Sarcopenia, EDMD, LGMD2B and FSHD. Fisher’s exact test was
performed to capture the significance of overlap between disease
pairs identified using DGA scores and those with shared genetic
basis (using disease-gene lists). The Fisher’s exact p-value of
0.036 implied that the genetic disease similarity was significantly
captured by DGA based correlations in this study. A relatively
low, albeit, significant p-value of fisher’s exact test reflected the
possibility that certain disease associations did not pass our
significance threshold or were not captured using disease-gene
lists. This could also be attributed to certain diseases being better
studied than others. For example, genes associated with ALS (895
genes) where far greater than those associated with AQM (26
genes).

Deficient Bioenergetics and Calcium
Homeostasis–A Common Program of
Dysregulation Underlying Diseases
Affecting the Muscle
Enrichment analysis of 17 signature modules, identified from
the protein interaction network indicated an over-representation
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FIGURE 2 | Combined functional enrichment of protein signature underlying diseases affecting the muscle. This figure provides a graphical representation of the top

enrichment terms identified in the 17 signature protein modules (combined). The signature modules represent a set of modules that were identified as underlying a

majority of the diseases considered in this study Size of each section of the pie is proportional to the number of genes identified in each category.

TABLE 4 | A representative set of functional modules shared between significant

disease pairs.

Significant disease association Overlapping functional modules

ALS-CP 2,5,12,13,14,15

DMD-BMD 5,7,10,12

DM-JDM 5,6,7,8,9,11,12,13,14,15,19,21

EDMD-FSHD 5,6,11,13

IBM-PM 5,9,10,11,12,15,16,21,23

JDM-DMD 3,4,5,7,8,9,10,11,12,13,14,15,18,19,21

This table represents the functional modules identified as overlapping (p < 0.05) between

the significant diseases associations identified on the left. The overlapping functional

modules are identified using the IDs presented in Table 2.

of modules associated with immune response (e.g., module 14),
mitochondrial function (e.g., modules 41, 168, 271, 355, and
340), mitochondrial structure (e.g., 537), metabolism (e.g., 426),
calcium homeostasis in muscle (e.g., 334), and the extracellular
matrix (e.g., 153, 416) (Figure 2, Table S3).

Early mitochondrial research in muscle disorders have
suggested that a widespread occurrence of mitochondrial
anomalies did not necessarily imply a primary deficiency in
efficacy of mitochondrial function (muscle meeting its energy
requirements) (Stadhouders and Sengers, 1987). However, more
recent research has repeatedly suggested deficient bioenergetics
underlie the pathology of several muscular and neuromuscular
diseases in mammalian models (Wallace, 2000, 2013; Pieczenik

and Neustadt, 2007; Ramadasan-Nair et al., 2014). Pathology of
neuromuscular diseases such as ALS also exhibits mitochondrial
dysfunction as a major event in its progression (Dupuis and
Loeffler, 2009; Cozzolino and Carrì, 2012). Reduced efficiency
in the action of the tricarboxylic acid (TCA) cycle has been
also assessed in diseased muscle associated with inflammatory
myopathies (Coley et al., 2012), dystrophy (Even et al., 1994),
and mitochondrial diseases such as MELAS, PEO (Wallace,
1999). Mounting evidence has suggested that the pathological
muscle wasting observed in dystrophies (e.g., DMD) might
be due to reduced ATP availability required for maintenance
of Ca2+ homeostasis and fiber regeneration (Timpani et al.,
2015). Bioenergetic pathway enzymes have recently shown to
be relevant biomarkers of muscular and neuromuscular disease
progression (Santacatterina et al., 2015).

Ca2+ homeostasis in muscle largely determines its contraction
and relaxation properties. This is tightly regulated by the
Ca2+ signaling apparatus within muscle comprising of the
ryanodine receptors, sarcoplasmic endoplasmic reticulum
calcium pumps (SERCA), troponin complex, calsequestrin;
in addition to Ca2+ binding proteins such as parvalbumin,
sarcolipin, phospholamban and calpains. We observed a
strong dysregulation of several of these proteins- ATP2A1
(SERCA pump), sarcolipin (SLN, which inhibits SERCA)
and calsequestrin [CASQ, restrains Ca2+ to the sarcoplasmic
reticulum (SR)], in ALS and DMD (Wang et al., 2012; Mukund
and Subramaniam, 2015). Likewise, regulation of ASPH
(regulator of ryanodine receptors) and SLN have also been
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observed in muscle from diseases such as CP (Smith et al., 2011).
Figure 3 provides a representative sample of 4/23 signature
modules and their enrichment.

Although existing research on several muscle diseases (such
as ALS, DMD, BMD, and CP) has shown varying extents
of mitochondrial dysfunction and calcium dysregulation in
their pathomechanism, our approach points to widespread,
statistically non-random dysregulation of mitochondrial
function and calcium homeostasis associated with most muscle
diseases including relatively less characterized diseases such
as AQM and CFS. Further, the absence of modules associated
with structural sarcomeric proteins (myosins, z–disc proteins,
dystroglycan) at our significance threshold emphasizes the vital
role of muscle bioenergetics, calcium signaling and homeostasis
pathways in the pathogenesis of diseases affecting muscle.

Muscle Specific Mechanistic Changes
Underlie Disease Pairs
The functional module framework utilized, allowed us to
capture common functional mechanisms underlying disease
pairs. Table 4 represented a subset of significant disease-pairs,
which shared four or more significant FM between them (e.g.,
JDM and DMD having 15/23 FM overrepresented; p < 0.05).
DMD and JDM represent myopathies, where the primary insult
is on the skeletal muscle however, JDM is a systemic autoimmune
vasculopathy characterized by weakness of proximal muscles and
skin rashes with its histopathology showing evidence for necrosis,

fiber size variation, and a muscle degeneration/regeneration
phenotype (Peloro et al., 2001). JDM shares many pathologic
similarities with muscle of children affected by DMD. A
comparison of the expression profiles of children with DMD
and JDM have revealed similarities in gene cascades involving
muscular atrophy, deficits in mitochondrial metabolism and
contraction, along with upregulation of extracellular matrix and
cytoskeletal cascades (Tezak et al., 2002) consistent with the
functional overlap observed in our study (see Results).

Finding relevant FM consistent with the current
understanding of similarities between JDM and DMD further
justified the efficacy of the adopted approach in identifying FM
affected in more than one diseases state, in a context specific
manner. To further elucidate disease associations much less
explored, we focused on two diseases ALS and CP and their
overlapping FM and associated FMA scores.

Calcium Dysregulation in Patients with ALS and CP
ALS and CP, both represent neurological diseases with their
primary insult on upper and/or lower motor neurons. While
ALS is a neurologically progressive disease, CP is not, with
both disorders exhibiting progressive musculoskeletal weakness
and increased spasticity. While ALS muscle is additionally
characterized by denervation atrophy and spasticity, there is
distinctive shortening and subsequent weakness of CP muscle
(Graham and Selber, 2003; Kiernan et al., 2011). We identified
6 FM as being significantly dysregulated in both ALS and CP

FIGURE 3 | Representative set of the protein signature modules underlying diseases affecting the muscle. Top panel (i–iv) represents 4/17 protein signature modules

identified. The green nodes represent proteins that contain at least one interaction as defined in the Drug-gene interaction database (DGIdb). Number shown in the

nodes represent the number of approved drugs targeting the proteins. Lower panel (i–iv) represents functional enrichment (top group terms) identified for the

corresponding modules panel (i–iv) in the top panel, using ClueGO (see Methods). All 17 modules identified are presented in Figure S2.
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(Table 4). The associated FMA scores reflected the state of FM
in disease, specifically a negative FMA scores reflected a general
downregulation of genes associated with the functional module
in the particular disease.

We observed that 5/6 FM identified above were similarly
regulated in both ALS and CP (Table 5), mainly associated with
mitochondrial metabolism (FM IDs 12–15). There is abundant
evidence in literature for mitochondrial dysfunction particularly
electron transport chain dysregulation and its role in ALS
(Borthwick et al., 1999; Crugnola et al., 2010) in neurons.
Our results indicated similar programs of mitochondrial
dysregulation to be associated with muscle in patients with
ALS and CP. Though no detailed studies in muscle exist to
corroborate mitochondrial dysfunction in CP, Smith et al. (Smith
et al., 2009, 2011) also show a general downregulation of
mitochondrial transcripts. Comparison of the expression values
for genes associated with these FM showed an R2 of 0.9.

Cellular dysregulation of Ca2+ dysregulation in ALS within
affected neurons is well-characterized (Grosskreutz et al., 2010);
likewise, dramatic Ca2+ dysregulation within muscle from CP
patients has also been suggested to occur (Smith et al., 2009,
2011). Interestingly, the FMA scores indicated a differential
regulation of calcium dynamics/homeostasis inmuscle from ALS
and CP (Table 5). A few notable differences identified in the
differential regulation of ALS and CP FM were as follows-
ATP2A1 and ATP2A2, two-muscle specific, energy demanding
fast fiber SERCA pumps (sarco (endo) plasmic reticulum Ca2+

ATPase) were very strongly downregulated in ALS, suggesting
a reduced efficacy in sequestering Ca2+ to the SR from the
cytosol (Periasamy and Kalyanasundaram, 2007). The reduced
need for regulation of SERCA pumps was reflected in the
downregulation of its two strong regulators- SLN and PLN.
Upregulation of ryanodine receptors (RYR3) further emphasized
leakage of SR Ca2+ into the cytosol (Perez et al., 2005).
Activation of non-skeletal muscle isoforms pointed to a shift
in fiber composition toward a slower/more mixed phenotype
in ALS.

In CP, increased Ca2+ was inferred from the massive
upregulation of PVALB, which selectively binds to free Ca2+

TABLE 5 | Overlapping functional modules between ALS and CP.

ID Functional module ALS FMA score CP FMA score

2 Synaptic basal lamina 1.42 1.53

5 Calcium

dynamics/homeostasis

required for ECC

−2.02 1.72

12 Oxidative metabolism −2.62 −2.09

13 Mitochondrial electron

transporters

−3.17 −2.14

14 Small molecule transporters −2.99 −1.94

15 Members of outer and inner

mitochondrial membrane

−1.18 −1.34

This table provides a list of functional modules that were identified as being significantly

shared between two diseases ALS and CP along with their computed functional activity

scores.

to reduce free intracellular Ca2+ (subsequently, bringing about
muscle relaxation). Though no significant changes were observed
with respect the SERCA pumps or ryanodine receptors, FKBP1A
and PDE4D that prevent channel leaking were significantly
downregulated and PLN that controls the Ca2+ intake by
the SERCA pumps was significantly upregulated in CP. On
the other hand, upregulation of ASPH, TRDN, and CASQ1
indicated thatmuscle was actively trying to sequester intracellular
Ca2+ to the stores. Figure 4 represents associated fold changes
for select genes from the calcium homeostasis functional
module.

Taken together this indicates increased cytosolic Ca2+ in both
diseases, however, in ALS- the Ca2+ homeostasis machinery
associated with SR appears to be severely challenged by the
disease with increased leakage of Ca2+ from the intracellular
stores and a constrained uptake of Ca2+ back into SR. In contrast,
CP displays a use-dependent decrease in capacity of the SR albeit
muscle’s efforts to actively recover its Ca2+ stores. This dramatic
adaptation in both ALS and CP muscle might additionally
lead to altered muscle contractile properties and mitochondrial
functions.

Exploring Opportunities for
Drug-Repositioning
Current advancements in understanding muscular/
neuromuscular disease pathophysiology have allowed for
drastic improvements in drug therapy, however, several of the
diseases discussed here are as yet untreatable with high rates
of morbidity and mortality with limited therapeutic options.
Gene therapy and precision medicine are yet to be realized in
their full potential for several of the diseases considered here
(Nightingale et al., 2016; Dalakas, 2017). Given this shortage
of drug/therapeutic availability for muscle diseases, we aimed
to identify if drug-repurposing opportunities could be inferred
from our quantitative framework across the 20 diseases. We
identified 81 approved drugs to be targeting proteins contained
within the signature modules (Table S7) warranting further
analysis.

Further, several of the available treatments for muscle
diseases currently only offer symptomatic relief, for instance,
no specific therapeutic treatments exist for dystrophies such
as DMD, BMD LGMD, or EDMD, with patients requiring
aggressive supportive care. These patients are only often treated
for associated conditions of the heart and lung. Likewise
for neurological diseases which are multi-symptomatic such
as ALS and CP, patients are mostly provided symptomatic
relief with a multitude of agents such as antiparkinsonian,
anticonvulsant, antidopaminergic, antispasticity, anti-sialorrhea,
or antidepressants. This prompted us to further explore if there
were drugs uniquely shared by disease clusters that could provide
opportunities for drug repositioning within disease clusters.

Our results from three associated disease clusters (DM/JDM,
IBM/PM and DMD/BMD/LGMD clusters) supported this
hypothesis (Figure 5, Table S8), for example, several drugs such
as diltiazem, cyclophosphamide, cyclosporine—prescribed for
management of DM and JDM were identified associated within
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FIGURE 4 | The Ca2+ homeostasis associated functional module in ALS and CP. This figure captures the calcium dysregulation mechanisms (and difference between

ALS and CP) via the fold changes associated with select genes of the Ca2+ homeostasis functional module. The left half indicates the fold change associated with

ALS while the right half indicates the fold change associated with CP.

FIGURE 5 | Drug disease network for 3 disease clusters. (A) shows the number of protein modules associated with each disease cluster considered e.g., 13 protein

modules were shared among all clusters, 14 modules were uniquely regulated in the DMD/BMD/LGMD cluster, 30 in the IBM/PM cluster and 42 in the DM/JDM

cluster. (B) represents the approved drugs (Table S8) associated with the protein modules uniquely regulated in each disease cluster. Nodes in yellow are drugs

currently utilized for treatment in the diseases associated with the cluster. Sirolimus and Ruxolitinib, investigational therapeutics currently used in DM/JDM were also

identified within the DM_JDM cluster.

the DM/JDM cluster (“UpToDate” 2017)3. We also observed in
the cluster presence of Ruxolitinib- a JAK inhibitor developed
to treat neoplastic diseases but suggested as investigational

3https://www.uptodate.com/contents/search

therapy for DM (Hornung et al., 2014). Interestingly, Sirolimus
a FDA approved drug for prophylaxis against organ rejection,
is currently suggested for symptomatic relief in patients with
DM (Nadiminti and Arbiser, 2005). Sirolimus appears to
also target proteins associated in the DMD/BMD/LGMD
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clusters suggesting possible therapeutic opportunities in
different muscle disease categories for Sirolimus (and
possibly other shared drugs identified in Figure 5). These
results further emphasized opportunities and a need for
exploring repurposing of therapeutics in diseases affecting the
muscle.

CONCLUSIONS

Our study demonstrated the value of an integrated approach in
revealing disease relationships and highlighted opportunities for
therapeutic advancements in treating muscle diseases. Clustering
of the co-expression network based on the differential gene
activity-scoring scheme allowed us to identify disease clusters,
not based on clinical or pathological similarity, but on the
similarity of the expression profiles. A “FM” framework of 23
modules was developed to provide a muscle-context specific view
of the mechanistic similarities. Integrating this with our data
allowed for understanding less explored disease associations such
as ALS and CP.

Incorporating protein information with the diseases similarity
network allowed for identification of a “common signature”—a
set of pathways underlying a majority of the diseases considered
here. The common signature included pathways contributing to
deficient bioenergetics and calcium dysregulation within affected

muscle. An observed overrepresentation of druggable targets
within these signature modules, in addition to subset of drugs
uniquely associated with three disease clusters (DM/JDM cluster,
IBM/PM cluster andDMD/BMD/LGMD cluster) further allowed
us to recognize possible avenues for drug repurposing in treating
diseases of the muscle.
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