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Tendons feature the crucial role to transmit the forces exerted by the muscles to the

skeleton. Thus, an increase of the force generating capacity of a muscle needs to go in

line with a corresponding modulation of the mechanical properties of the associated

tendon to avoid potential harm to the integrity of the tendinous tissue. However, as

summarized in the present narrative review, muscle and tendon differ with regard to

both the time course of adaptation to mechanical loading as well as the responsiveness

to certain types of mechanical stimulation. Plyometric loading, for example, seems to

be a more potent stimulus for muscle compared to tendon adaptation. In growing

athletes, the increased levels of circulating sex hormones might additionally augment

an imbalanced development of muscle strength and tendon mechanical properties,

which could potentially relate to the increasing incidence of tendon overload injuries

that has been indicated for adolescence. In fact, increased tendon stress and strain

due to a non-uniform musculotendinous development has been observed recently in

adolescent volleyball athletes, a high-risk group for tendinopathy. These findings highlight

the importance to deepen the current understanding of the interaction of loading and

maturation and demonstrate the need for the development of preventive strategies.

Therefore, this review concludes with an evidence-based concept for a specific loading

program for increasing tendon stiffness, which could be implemented in the training

regimen of young athletes at risk for tendinopathy. This program incorporates five sets of

four contractions with an intensity of 85–90% of the isometric voluntary maximum and a

movement/contraction duration that provides 3 s of high magnitude tendon strain.

Keywords: muscle, tendon, adaptation, athletes, adolescence, tendinopathy, imbalance

INTRODUCTION

Tendinopathy is a clinical condition that is associated with pathological processes within the
tendon and pain (Fredberg and Stengaard-Pedersen, 2008). In specific sport disciplines (i.e., jump
disciplines) about every second athlete develops a tendinopathy during the athletic career and most
individuals suffer from chronic symptoms (Lian et al., 2005). Until recently, only few information
was available on the prevalence of tendinopathy in children and adolescents. However, the available
literature indicates that tendon overload injury is a common issue in youth sports and that the
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prevalence increases during maturation (Simpson et al., 2016).
Some reports indicate that tendinopathy is the most frequent
overuse injury in adolescent athletes (Le Gall et al., 2006).
The present narrative review explores the hypothesis that an
imbalanced adaptation of muscle and tendon might contribute
to the etiology of tendinopathies in youth sports.

In the production of movement, muscles and tendons work
as a unit, in which the tendon transmits the forces generated
by the muscle to the skeleton (Józsa and Kannus, 1997; Nigg
and Herzog, 2007). The resultant stress that is applied to the
tendon (i.e., force normalized to tendon cross-sectional area)
is a measure of absolute load on the tissue irrespective of its
dimensions. Yet, ultimate stress (i.e., stress at tendon failure)
varies markedly across different tendons and species (LaCroix
et al., 2013). In contrast, the ultimate strain of tendons is
remarkably constant (Abrahams, 1967; Loitz et al., 1989; LaCroix
et al., 2013; Shepherd and Screen, 2013). This means that,
from a mechanobiological perspective, tendon strain is the most
adequate indicator of the mechanical demand for the tendon
as a result of loading. Though it has been argued that an
increase of stress might still contribute to either physiological
adaptation (Wiesinger et al., 2015) or pathological changes
(Couppé et al., 2013), experimental evidence clearly highlights
habitual tendon strain as the most crucial parameter for the
risk of injury (Wren et al., 2003; LaCroix et al., 2013; Veres
et al., 2013). Therefore, an increase of the strength-generating
capacity of a muscle needs to go in line with a corresponding
modulation of the mechanical properties of the respective
tendon. The increase of tendon stiffness (i.e., the slope of the
force-elongation relationship) serves as a protective mechanism
for integrity of the tendinous tissue and has been frequently
observed in humans to accompany strength gains due to both
mechanical loading (Kubo et al., 2001a; Arampatzis et al.,
2007; Kongsgaard et al., 2007) as well as maturation (Kubo
et al., 2001b, 2014; O’Brien et al., 2010b; Waugh et al., 2012;
Mersmann et al., 2016). Yet, there is now growing evidence
that the adaptation of muscle and tendon does not necessarily
proceed in a uniform manner during a training process.
In young athletes, maturation acts as an additional stimulus
on the development of the muscle-tendon unit, which could
potentially further challenge the uniformity of muscle strength
and tendon stiffness changes. In the following chapters, we
will summarize potentially influential factors for an imbalanced
musculotendinous development during training and maturation.
We discuss evidence of non-uniform muscle and tendon
adaptation in adults and adolescent athletes and the potential
implications. The review concludes with proposing a concept for
prevention, which targets the increase of tendon stiffness and is
based on recent advancements in our understanding of tendon
adaptation.

INFLUENTIAL FACTORS OF IMBALANCED
MUSCLE-TENDON ADAPTATION AND
DEVELOPMENT

The following sections will briefly review the basic mechanisms
of muscle and tendon adaptation and mechanotransduction. We

will emphasize differences in the temporal dynamics of adaptive
changes and the mechanical stimuli that effectively elicit changes
of the respective tissue properties, structure andmorphology. For
a more comprehensive overview on muscle or tendon adaptation
the reader is referred, for instance, to the reviews by Toigo and
Boutellier (2006), Folland and Williams (2007), and Gonzalez
et al. (2016), orWang (2006), Magnusson et al. (2007), and Bohm
et al. (2015), respectively.

Differences in the Temporal Dynamics of
Muscle and Tendon Adaptation
Muscle and tendon tissue both adapt to increased mechanical
loading from the subcellular to the macroscopic level. Here we
give a synopsis about the changes that can be observed in the
musculotendinous system that are most relevant for strength and
power production. With regard to the scope of this review, we
will specifically address the time course of these changes and the
features of muscles and tendons that might be responsible for
differences in the temporal dynamics of adaptation.

Basic Mechanisms of Muscle Adaptation
The adaptive changes that affect the strength generating capacity
of a muscle can be categorized into (a) radial adaptation, (b)
longitudinal adaptation and (c) adaptation of specific tension
(Goldspink, 1985; Bottinelli, 2001). Radial adaptation describes
the modulation of the number of sarcomeres in parallel and
is best reflected by changes of the physiological cross-sectional
area (PCSA) of a muscle (Haxton, 1944), which is the area
of the muscle cross-section perpendicular to the orientation of
the fibers. In humans, an increase in muscle PCSA following
strength training has been demonstrated for the elbow flexors
(Kawakami et al., 1995) and knee extensors (Kawakami et al.,
1995; Seynnes et al., 2009; Erskine et al., 2010). Moreover,
several authors reported an increase of pennation angle after
applying interventions that promote muscle strength (Aagaard
et al., 2001; Blazevich et al., 2007; Seynnes et al., 2007; Farup
et al., 2012). An increase of pennation angle is considered to
be a modulating factor of the PCSA (Alexander and Vernon,
1975) that enables fiber hypertrophy and hence radial muscle
growth to exceed the changes of the whole muscle anatomical
cross-sectional area (ACSA; Häkkinen et al., 1998; Aagaard et al.,
2001). The increase in singlemuscle fiber cross-sectional area that
governs the radial muscle adaptation is the main contributor to
the increasing force generating potential of the muscle (Johnson
and Klueber, 1991; Aagaard et al., 2001; Farup et al., 2012) and is
in turn attributed to increased myofibrillar growth (McDougall
et al., 1980) and proliferation (Goldspink, 1970). Longitudinal
muscle adaptation refers to the modulation of the number of
sarcomeres in series, which is positively associated with the
maximum shortening velocity and mechanical power of muscle
fibers (Goldspink, 1985). Animal models (Lynn and Morgan,
1994; Butterfield et al., 2005) and indirect evidence from human
in vivo studies (Blazevich et al., 2007; Duclay et al., 2009; Potier
et al., 2009; Reeves et al., 2009; Franchi et al., 2014; Sharifnezhad
et al., 2014) both support the notion that eccentric loading can
induce longitudinal muscle plasticity. Specific tension (or force)
refers to the intrinsic strength generating capacity of the muscle
tissue (i.e., active force normalized to PCSA upon maximum

Frontiers in Physiology | www.frontiersin.org 2 December 2017 | Volume 8 | Article 987

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mersmann et al. Imbalanced Musculotendinous Adaptation in Youth

activation). However, in light of the conflicting results on
loading-induced changes of single-fiber specific tension (Widrick
et al., 2002; D’Antona et al., 2006; Pansarasa et al., 2009) it is
still unclear if the modulation of specific tension is a relevant
contributor to strength gains in response to exercise (Folland and
Williams, 2007).

Basic Mechanisms of Tendon Adaptation
The early work of Ingelmark (1945, 1948) already suggested that
tendons adapt to their mechanical environment. When a muscle-
tendon unit is repeatedly exposed to increased mechanical
loading, for instance by means of resistance exercise, it is
commonly observed that the associated gains of muscle strength
are accompanied by an increase of tendon stiffness (Kubo
et al., 2001a; Arampatzis et al., 2007; Kongsgaard et al.,
2007). When a shortening of the tendon is ruled out as a
potential contributor, two candidate mechanisms can account
for exercise-induced increases of tendon stiffness: (a) changes
of the material properties (i.e., elastic modulus) and (b) radial
tendon hypertrophy. Exercise intervention studies on human
adults that reported an increase of tendon stiffness almost
exclusively (with the exception of Kongsgaard et al., 2007)
also found the tendon elastic modulus increasing by 17–77%
(Kubo et al., 2001a; Arampatzis et al., 2007, 2010; Seynnes
et al., 2009; Carroll et al., 2011; Malliaras et al., 2013b; Bohm
et al., 2014). In comparison, indications of tendon hypertrophy
were documented less consistently, with some evidence of
moderate increases of tendon cross-sectional area (CSA; 4–
10%) in response to increased mechanical loading (Arampatzis
et al., 2007; Kongsgaard et al., 2007; Seynnes et al., 2009;
Bohm et al., 2014), and several reports of increased tendon
stiffness without concomitant radial tendon growth (Kubo et al.,
2001a, 2002, 2007, 2010a; Arampatzis et al., 2010; Carroll
et al., 2011; Malliaras et al., 2013b). However, cross-sectional
comparisons between athletes and untrained adults suggest that
tendon hypertrophy of 20–35% is well possible (Rosager et al.,
2002; Magnusson and Kjaer, 2003; Kongsgaard et al., 2005;
Seynnes et al., 2013). Negating potential selection bias and
intersubject variations by comparing the dominant with the
nondominant leg of badminton players and fencers, Couppé
et al. (2008) found habitually increased loading to result in
an average increase of tendon CSA of about 20%. Therefore,
tendon hypertrophy is currently considered to contribute
to increased tendon stiffness following long-term mechanical
loading.

Temporal Dynamics of Adaptation
It is evident that both muscle and tendon are responsive to
mechanical loading. However, the metabolism of tendons is
designed to meet the functional demand of bearing loads over
long durations and, thus, tendon tissue needs to tolerate low
oxygen tension (Józsa and Kannus, 1997). Therefore, tendon
tissue is characterized by a lower cell to overall dry mass
ratio, vascularization, and metabolism compared to muscle
tissue (Peacock, 1959; Smith, 1965; Laitinen, 1967; Ippolito
et al., 1980). The half-life of tendon collagen is estimated to

be almost tenfold higher compared to the muscle proteins
actin and myosin (Lundholm et al., 1981; Thorpe et al., 2010).
A recent study that investigated tissue renewal by means of
comparing nuclear bomb 14C residues in forensic muscle and
tendon samples provided strong support for the hypothesis of a
lower rate of tissue remodeling in tendon, especially following
the formation of the tendon core tissue during adolescence
(Heinemeier et al., 2013). Though similar to muscle proteins,
collagen synthesis increases rapidly following exercise (Miller
et al., 2005), effective tissue turnover is markedly lower, leading
to the suggestion that a considerable amount of the synthesized
collagen molecules is not permanently incorporated in the tissue
structure but broken down relatively quickly (Heinemeier et al.,
2013). In accordance with this notion, it has been demonstrated
in adults that changes of muscle morphology and architecture
can occur as early as after 3 to 4 weeks in a heavy resistance
training intervention (Seynnes et al., 2007; DeFreitas et al.,
2011), while there are no reports of such rapid adaptations
of tendon morphological or mechanical properties. Moreover,
neuronal adaptation enables muscle strength to increase
markedly even before major morphological changes occur
(Folland and Williams, 2007). An increase of tendon stiffness
on the other hand relies on a modulation of tissue metabolism
and subsequent adaptive changes of tissue structure and tendon
morphology.

Kubo and colleagues investigated the time course of muscle
and tendon adaptation in two separate 3-month exercise
intervention studies on the patellar (Kubo et al., 2010b) and the
Achilles tendon (Kubo et al., 2012), respectively. In both studies, a
marked increase of muscle strength preceded significant changes
of tendon stiffness by 1–2 month and morphological (CSA)
changes occurred at the muscle level only. In contrast, Urlando
and Hawkins (2007) reported no significant changes of Achilles
tendon strain during maximum voluntary contractions despite
an increase of tendon force determined at six time-points over
an 8-week strength training intervention. This finding indicates
a uniform adaptation of muscle strength and tendon stiffness.
However, it is interesting to note that the individual tendon
strain values showed great fluctuations between themeasurement
sessions. The highest single values of tendon strain measured
in each session, for example, ranged from 8.6 to 13.5%. This
substantial variation indicates that the time course of muscle and
tendon adaptation might show an individual development and
that imbalances of muscle strength and tendon stiffness might
have remained undetected in the study by Urlando and Hawkins
(2007) due to the analysis of group mean values only.

In conclusion, both muscle and tendon are able to adapt to
a change of their mechanical environment. Though information
on the time course of muscle and tendon adaptation in vivo is
still rare, the metabolic features and adaptive mechanisms differ
between muscle and tendon. Muscle seems to be characterized
by a greater rate of effective tissue renewal compared to tendon,
and neural adaptation further increases the plasticity of the force
generating capacity of the neuromuscular system. Thus, it is
possible that imbalances of muscle strength and tendon stiffness
can develop during a training process.
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Differences of Muscle and Tendon in the
Responsiveness to Certain Mechanical
Stimuli
Besides the potentially different time course of adaptive changes
reviewed above, substantial evidence suggest that muscle and
tendon feature significant differences regarding the mechanical
stimuli that effectively elicit adaptive changes. This section gives
a short overview about the processes of mechanotransduction
and the stimuli that seem to successfully activate the respective
signaling pathways for both muscle and tendon, and then closes
with a comparative discussion.

Mechanotransduction in Muscle
It is now well known that both mechanical and metabolic stress
are important, separate but interacting stimuli that triggermuscle
adaptation and growth (Goldberg et al., 1975; Vandenburgh and
Kaufman, 1979; Rooney et al., 1994; Schott et al., 1995; Smith
and Rutherford, 1995). Briefly, mechanical stress subjected to
muscle tissue leads to the activation of mechanosensitive calcium
channels (Kameyama and Etlinger, 1979), intracellular enzymes
and second messengers (Hornberger et al., 2006) and stimulates
insulin-like growth factor I (IGF-I) release from the muscle cells
(Perrone et al., 1995). These events trigger a signaling cascade
via autocrine and direct intracellular pathways that results in an
increase of protein synthesis (Tidball, 2005; Toigo and Boutellier,
2006; Gonzalez et al., 2016). It has been demonstrated that
the increase of muscle protein synthesis following an acute
bout of resistance exercise exceeds the increase of protein
breakdown, given a sufficient amino acid availability provided by
appropriate feeding (Rennie et al., 1982; Biolo et al., 1995; Phillips
et al., 1997). The positive net muscle protein balance remains
elevated for several days and contributes to the remodeling of
the contractile machinery and, subsequently, to hypertrophy
(Kumar et al., 2009; McGlory et al., 2017 for reviews). The
increase of protein synthetic capability is mediated by an increase
of myonuclear number (Allen et al., 1999). Satellite cells are
activated by nitric oxide efflux of stressed myofibers (Anderson,
2000) and proliferate under the regulatory influence of IGF-I
(Barton-Davis et al., 1999). The proliferated satellite cells then
fuse with existing myofibers as new myonuclei (Allen et al.,
1999).

Metabolic stress refers to the exercise-related accumulation
of metabolites (specifically lactate and hydrogen ions). The
role of metabolic stress for muscle growth in response to
exercise has been attributed to the associated systemic growth-
related hormone and local myokine up-regulation and/or the
increased fiber recruitment with muscle fatigue (Schoenfeld,
2013; Ozaki et al., 2016). Muscle hypertrophy was consequently
suggested to be driven by the interaction of mechanical and
metabolic stress, and that the degree of contribution depends
on the exercise modality (i.e., greater mechanical stress at high
intensities and greater metabolic stress at moderate intensities;
Ozaki et al., 2016). It can be concluded from this assumption
that, given a sufficient overall training volume, a wide range of
exercise intensities effectively elicits muscle hypertrophy, which
is convincingly supported by experimental evidence (Campos

et al., 2002; Tanimoto and Ishii, 2006; Mitchell et al., 2012;
Schoenfeld et al., 2015, 2016).

Mechanotransduction in Tendon
In tendon tissue, the load-induced strain of the extracellular
matrix is transmitted to the cytoskeleton of the embedded
fibroblast via specific transmembrane proteins (Wang, 2006;
Heinemeier and Kjaer, 2011). The conformational changes of
these transmembrane proteins upon load application and the
activation of stretch-sensitive ion channels in the cell membrane
activate intracellular signaling cascades of gene and growth factor
expression for the up-regulation of collagen and matrix protein
synthesis (Sackin, 1995; Chiquet, 1999; Wang, 2006; Lavagnino
et al., 2015). Accordingly, studies demonstrate an increased
concentration of both interstitial growth factors and binding
proteins (Heinemeier et al., 2003; Olesen et al., 2006; Jones et al.,
2013) as well as elevated collagen synthesis (Langberg et al.,
1999, 2001; Miller et al., 2005) in mechanically loaded tendon
tissue. The load-induced proliferation and collagen synthesis of
tendon stem cells seems to contribute to this anabolic response
of tendons to mechanical loading as well (Bi et al., 2007; Zhang
et al., 2010). Further, it has been demonstrated in a rat model
that mechanical loading leads to an increased production of
enzymes that mediate collagen cross-linking (Heinemeier et al.,
2007a), which is thought to be involved in the modulation
of collagen cross-link profile in humans following resistance
exercise (Kongsgaard et al., 2009).

From a mechanobiological point of view, fibroblast cell
deformation and fluid flow-induced shear stress are important
determinants of mechanotransduction and, thus, the adaptive
response of tendons (Lavagnino et al., 2008). In vitro testing
on the effects of cyclic load-application demonstrated that high-
level magnitude strains are associated with greater tenocyte cell
deformation (Arnoczky et al., 2002), collagen fiber recruitment
(Kastelic et al., 1980; Hansen et al., 2002), and greater inhibition
of catabolic activity (Lavagnino et al., 2003; Arnoczky et al.,
2004) in comparison to lower levels of cyclic strain. These
results correspond well to observations from human in vivo
exercise intervention studies. Arampatzis et al. (2007, 2010)
compared the effects of two equivolume loading regimen and
found significant changes of tendon stiffness and elastic modulus
of the Achilles tendon only in response to the high-strain
protocols [i.e., 90% isometric maximum voluntary contraction
(iMVC), corresponding to 4.6% of tendon strain], while no
significant changes were induced by moderate-strain training
(i.e., 55% iMVC, 2.9% tendon strain). Similar results from
experimental studies on the patellar tendon (Kongsgaard et al.,
2007; Malliaras et al., 2013b) and two recent meta-analyses
(Bohm et al., 2015; Wiesinger et al., 2015) strengthened the
conclusion that high-intensity loading is a crucial stimulus for
in vivo tendon adaptation. The muscle contraction type (i.e.,
isometric, concentric, eccentric) for load application does on the
other hand not seem to be of particular relevance for the adaptive
response (Kjaer and Heinemeier, 2014; Bohm et al., 2015).

Interestingly, against the assumptions of finite-element
modeling (Lavagnino et al., 2008), the main body of experimental
in vivo evidence suggests that the induction of high strain
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rates and associated increased fluid flow-related shear stress by
means of plyometric exercise fails to elicit significant adaptive
changes of human tendons (Kubo et al., 2007; Fouré et al.,
2009, 2010; Houghton et al., 2013), even at high-intensity
loading magnitudes (Bohm et al., 2014). Though it needs to
be acknowledged that there are also reports of an increase of
tendon stiffness in response to plyometric loading (Burgess et al.,
2007; Wu et al., 2010; Hirayama et al., 2017), some of these
findings might have been biased by the lack of consideration
of the contribution of antagonistic activity in the calculation
of tendon forces (Wu et al., 2010; Hirayama et al., 2017),
which leads to an overestimation of the increase of tendon
stiffness upon a training-induced reduction of antagonistic
coactivation. Yet, more importantly, the few existing studies
directly comparing the effects of plyometric training to low-
strain-rate loading regimen consistently show lower adaptive
responses in the plyometric training groups (Burgess et al.,
2007; Kubo et al., 2007; Bohm et al., 2014). It has been argued
that a short duration of strain-application (e.g., high-frequency
load-relaxation cycles or plyometric loading) might reduce
the effectiveness of mechanotransduction processes (Arampatzis
et al., 2010; Bohm et al., 2014). In a systematic experimental
modulation of strain duration at high strain magnitude in vivo,
an increase by up to 3 s facilitated tendon adaptation (Arampatzis
et al., 2010; Bohm et al., 2014). However, a further increase of
strain duration to 12 s per cycle did not further promote adaptive
effects. It seems possible that longer sustained tendon strains
become less effective if the strain duration is increased at the
expense of the number of loading cycles (Bohm et al., 2014).

Collectively, current in vivo evidence on human tendon
adaptation suggests that tendons can be most effectively
strengthened if loading regimen incorporate slow repetitive
high-magnitude tendon strain application. High strain rate and
frequency modes of loading as, for instance, plyometric exercise,
do not seem to consistently stimulate tendon adaptation.

Comparison of Muscle and Tendon Mechanical

Stimulation
Comparing the types of mechanical stimulation that effectively
elicit muscle compared to tendon adaptation, it seems that
fatiguing training with moderate loads can trigger increases of
muscle strength and size (Moss et al., 1997; Wernbom et al.,
2007; Mitchell et al., 2012; Schoenfeld et al., 2016), but do not
provide a sufficient stimulus for tendon adaptation (Arampatzis
et al., 2007, 2010; Kongsgaard et al., 2007). This way, an increase
of muscle strength without a concomitant modulation of tendon
stiffness followingmoderate intensity loading can result in higher
tendon strain during maximal voluntary contractions, which
implies an increase of the mechanical demand placed upon
the tendon by the working muscle (Arampatzis et al., 2007,
2010; Figure 1). Furthermore, numerous studies demonstrated
that plyometric loading effectively promotes muscle strength
development, also in trained athletes (Sáez-Sáez de Villarreal
et al., 2010 for review), while evidence suggests that plyometric
loading does not consistently increase tendon stiffness (Kubo
et al., 2007; Fouré et al., 2009, 2010; Houghton et al., 2013).
Accordingly, Kubo et al. (2007) reported increased tendon

elongation (and, thus, tendon strain, given that the rest length
did not change) during maximummuscle contractions following
their plyometric training intervention. Such differences in the
responsiveness of muscles and tendons to plyometric loading and
its mechanical implications could be of particular significance in
light of the high prevalence of tendon overuse injuries in sports
with a plyometric loading profile like volleyball, basketball or
athletic jump disciplines (Lian et al., 2005). Studies on growth
factor transcription following loading also support the idea of
differently graded responses of muscle and tendon to specific
types of loading. For example, Heinemeier et al. (2007a,b) found a
contraction type-specific expression of growth factors in muscle
but not tendon tissue using a rat model. More recently, it was
also demonstrated in humans that following a fatiguing one-leg
kicking exercise with moderate loads the expression of tissue-
specific growth factors increased only at the muscle but not
tendon level (Heinemeier et al., 2011). This observation led the
authors to conclude that an imbalanced adaptation of muscle
and tendon might develop under specific loading conditions
(Heinemeier et al., 2007a, 2011).

In summary, muscle responds well to a wide range of exercise
modalities with an increase of strength. Tendon tissue on the
other hand seems only to be responsive to high magnitude
loading and repetitive loading cycles featuring long tendon strain
durations show greater effects compared to modes of loading
where single-cycle strain duration is short. Those differences
in the responsiveness to certain stimuli might promote the
development of imbalances of muscle strength and tendon
stiffness in the training process in specific sport disciplines (e.g.,
jump disciplines).

The Effects of Maturation on Muscle and
Tendon Development and Plasticity
Aside from mechanical loading, maturation induces profound
changes of the skeletal, neuromuscular and tendinous system
in young athletes. The following section briefly reviews muscle
and tendon development from child to adulthood, then focuses
on somatic and hormonal changes that might challenge the
balance of the development of muscle and tendon properties. The
section closes with a synopsis of recent experimental evidence
of an imbalanced muscle and tendon development in adolescent
athletes.

Maturation and Muscle Development
Whole body muscle mass increases progressively from childhood
to adulthood, with a pronounced rise during adolescence,
especially in boys (Malina et al., 2004; McCarthy et al., 2014;
Kim et al., 2016). Even when normalized to body mass, these
changes are still marked in boys yet modest in girls (McCarthy
et al., 2014; Kim et al., 2016). Studies investigating single muscle
development consequently reported an increase in length, ACSA
and volume (Kanehisa et al., 1995a,b; Kubo et al., 2001b; Neu
et al., 2002; Tonson et al., 2008; O’Brien et al., 2010c). It
seems that the gain of muscle volume is governed by both an
increase in PCSA and fascicle length, yet the gains in PCSA
exceed those of fascicle length in pennate muscles, which is
an indication of a remodeling in favor of force production
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FIGURE 1 | Achilles tendon-aponeurosis force-strain relationship before and after two isometric exercise protocols. The two legs of eleven adults were subjected to

either moderate [i.e., 55% maximum voluntary contraction (MVC); low strain] or high loading (90% MVC; high strain) for 14 weeks, respectively. Both protocols

induced an increase of tendon force. However, following moderate loading (i.e., low strain protocol) tendon stiffness did not change significantly and, thus, there was a

significant increase of tendon strain during maximum muscle contractions. This implies an increase of the mechanical demand placed upon the tendon. No change

was observed in a control group (data not shown). *Significant difference between pre- and post-exercise values (Arampatzis et al., 2007, adapted with permission

from The Company of Biologists Limited).

(Morse et al., 2008; O’Brien et al., 2010c; Bénard et al., 2011).
Together with an increase of moment arm lengths (O’Brien
et al., 2009; Waugh et al., 2012) and muscle activation (Dotan
et al., 2012), this leads to a disproportionate increase of muscle
strength (O’Brien et al., 2010a). The development of muscle
PCSA from childhood to adulthood is most likely based on
single fiber hypertrophy and not hyperplasia (Bowden andGoyer,
1960; Aherne et al., 1971; Oertel, 1988; Lexell et al., 1992).
The growth hormone-IGF-I axis, which is markedly activated
during adolescence for the regulation of overall body growth,
stimulates fiber hypertrophy and protein synthesis (Grohmann
et al., 2005). For example, myoblast proliferation and fusion
with myotubes—a prerequisite for radial and longitudinal fiber
growth—depends on growth hormone and IGF-I secretion
(Cheek et al., 1971; Allen et al., 1999; Grohmann et al., 2005).
Consequently, there is a close association between single fiber
CSA and body height (Aherne et al., 1971). The alteration
of the endocrine environment during adolescence, specifically
the increasing systemic levels of sex steroid hormones, further
initiate the development of the muscle functional, morphological
and structural differences between boys and girls (Oertel, 1988;
Round et al., 1999).

Maturation and Tendon Development
First information on the development of the mechanical
properties of human tendinous tissue in vivo was provided
by Kubo et al. (2001b). Their comparison of vastus lateralis
tendon-aponeurosis compliance between children, adolescents
and adults indicated a progressive increase of tendinous stiffness
(i.e., the inverse of compliance) from childhood to adulthood,
despite the longitudinal growth of the muscle-tendon unit.
Theoretically, an increase in length of the series elastic elements
would reduce their stiffness (given similar material properties
and CSA; Butler et al., 1978). However, O’Brien et al. (2010b)
found greater stiffness of the patellar tendon in adults compared
to pre-pubertal children as well, and Mersmann et al. (2016)
recently demonstrated an increase of patellar tendon stiffness

in a longitudinal study over 1 year throughout adolescence.
More detailed information on the time course of human tendon
development in vivo is strongly limited. Kubo et al. (2014)
compared the mechanical and morphological properties of the
patellar tendon of elementary and high school boys to adult
men. The results indicated that the major developmental increase
of tendon elastic modulus from childhood to adulthood occurs
until early-adolescence. This corresponds to the observations on
the Achilles tendon by Waugh et al. (2012), who found that
the differences in Achilles tendon material properties between
younger (5–7 years) and older pre-pubertal children (aged 8–
10 years) were of similar order as the differences between the
latter group and the notably older adults (∼26 years). Thus, the
material properties of tendons might demonstrate their most
pronounced development early in youth (i.e., before the growth
spurt at the onset of adolescence), while it seems that tendon
hypertrophy progresses further throughout adolescence (Kubo
et al., 2014). This assumption also parallels observations in
rodent models (Ansorge et al., 2011; Miller et al., 2012). The
development can probably be attributed to a great extent to
the increase of mechanical loading due to gains in body mass
and muscle strength, as predicted by Waugh et al. (2012) using
a stepwise multiple regression model and data of the Achilles
tendon properties of children and adults. Interestingly, age was
shown to be an additional significant predictor of elastic modulus
in the regression model, independent of body mass and tendon
stress, explaining 31 and 52% of the variance of the elastic
modulus in children and both age groups combined, respectively.
Thus, it seems very likely that maturation is a separate factor for
tendon development, besides the effects of increased mechanical
loading. Indeed, several hormones and growth factors that are
involved in the regulation of somatic growth (see Murray and
Clayton, 2013 for review) have been shown to mediate tendon
metabolism as well. For instance, growth hormone and IGF-I
stimulate gene expression, collagen synthesis and cross-linking
(Abrahamsson et al., 1991; Choy et al., 2005; Doessing et al.,
2010; Nielsen et al., 2014) and thyroid hormones are involved
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in the regulation of tenocyte proliferation, growth and collagen
synthesis (Oliva et al., 2013; Berardi et al., 2014).

Challenges to the Musculotendinous System Induced

by Maturation
Neugebauer and Hawkins (2012) reported that the longitudinal
growth of the muscle-tendon unit during adolescence can
go in line with a temporary reduction of tendon CSA. At
given tendon material properties, the resultant increase of
tendon stress would lead to higher tendon strain. However, as
Neugebauer and Hawkins (2012) found both elastic modulus
and maximum tendon strain to increase only in tendency,
the implications of the observed morphological development
of tendons during the adolescent growth spurt still need to
be elucidated. Similarly, little information is available on the
effects of the rapid increase of circulating sex hormones (i.e.,
testosterone in boys and estrogens in girls) during puberty
on the muscle-tendon unit. Yet, it seems possible that the
change of the endocrine milieu could affect the uniformity of
the development of muscle strength and tendon stiffness. It
is well established that testosterone is one of the most potent
hormones promoting muscle hypertrophy and thus increasing
muscle strength (see Vingren et al., 2010 for review). Its role
in the development of tendinous tissue on the other hand
is basically unknown to date (Hansen and Kjaer, 2014). In
adults it has been shown that anabolic-androgenic steroid
supplementation stimulates collagen synthesis (Pärssinen et al.,
2000) and increases tendon stiffness (Inhofe et al., 1995; Marqueti
et al., 2011; Seynnes et al., 2013), but impairs tissue remodeling
(Marqueti et al., 2006) and reduces ultimate stress and strain
(Inhofe et al., 1995; Marqueti et al., 2011; Tsitsilonis et al.,
2014). Though it seems likely that steroid supplementation is
not necessarily representative of the physiological mechanisms
of testosterone action, it can at least be concluded that
the anabolic and strength-promoting effects of testosterone
are more clearly established for muscle than tendon tissue.
The effects of estrogens on muscle and tendon metabolism
have been studied more extensively. In a recent review,
Hansen and Kjaer (2014) concluded that current scientific
evidence from studies on humans renders estrogens as muscle-
anabolic, since they decrease protein turnover and increase
the responsiveness to mechanical loading. Conversely, estrogens
seem to reduce tendon collagen synthesis and the plasticity of
tendon mechanical properties in response to exercise (Miller
et al., 2007; Hansen et al., 2009). While it must be stated
clearly that our current understanding of the effects of sex
hormones on the muscle-tendon unit is based primarily on
studies administering exogenous hormones to adults, these
findings allow the hypothesis that the change of endogenous
sex hormone levels in child to adulthood development could
contribute to an imbalanced adaptation of muscle and tendon in
youth athletes.

Evidence of Imbalanced Muscle and Tendon

Development in Adolescent Athletes
A first series of studies that explicitly investigated the uniformity
of muscle and tendon development and adaptation during

adolescence supports the idea that the two-fold stimulus of
(a) maturation and (b) a predominantly plyometric loading
profile can lead to a musculotendinous imbalance that increases
the load (i.e., stress) and internal demand (i.e., strain) for
the tendon. Mersmann et al. (2014) compared mid-adolescent
to middle-aged elite volleyball athletes, which were subjected
to many years of sport-specific loading. While there were
no significant differences in vastus lateralis PCSA and in
the force applied to the patellar tendon during maximum
isometric knee extension contractions, the adolescents had a
deficit with regard to patellar tendon CSA compared to the
adult counterparts and, as a consequence, were subjected to
increased levels of tendon stress and strain. The conclusion
that the morphological plasticity of the tendon unfolds at
later stages during development was supported by the results
of a subsequent 2-year longitudinal study. The observations
suggested that the muscular development was already far
progressed in the mid-adolescent athletes, demonstrating only
minor changes until the end of adolescence, while the tendon
still showed remarkable radial growth and an associated increase
of stiffness (Mersmann et al., 2017a). Finally, the time course
of muscle and tendon development in mid-adolescent athletes
was investigated in five measurement sessions over 1 year in
more detail and the effects of maturation and mechanical loading
were differentiated by including a similar-aged control group
of non-athletes (Mersmann et al., 2016). It was found that
the development in elite volleyball athletes was characterized
by significantly greater fluctuations in muscle strength and a
non-uniformity of muscle and tendon adaptation. Consequently,
tendon strain during maximum contractions was not only
increased chronically in comparison to controls, but also
demonstrated significantly greater fluctuations during the period
of investigation (Figure 2). In addition to the discordant changes
of muscle strength and tendon stiffness that occur during a
training process, results of a very recent study indicate that also
the adaptive potential, at least in response to predominantly
plyometric long-term loading, is lower with regard to tendon
stiffness compared to muscle strength in both adolescent boys
and girls (Mersmann et al., 2017b). Though from this study
it still remains an assumption that maturation contributed
to the development musculotendinous imbalance in addition
to the unfavorable type of loading, the increased stress and
strain observed in the earlier study (Mersmann et al., 2014)
in adolescent athletes compared to the adults, which were
habitually subjected to intense plyometric loading as well,
carefully suggest that the risk might be increased during
adolescence.

Summary
Collectively, the evidence reviewed in this chapter strongly
suggests that muscle and tendon show differences in the
time course of adaptation to mechanical loading and in
the types of mechanical stimulation that effectively elicits
adaptive processes. Maturation acts as an additional stimulus
on the muscle-tendon unit of young athletes and could
further contribute to a development of an imbalance of
muscle strength and tendon stiffness. Adolescence could
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FIGURE 2 | On-year development (in 3-month intervals) of knee extensor muscle strength (MVC; A,B), patellar tendon stiffness (C,D) and tendon strain during

maximum contractions (E,F) in adolescent volleyball athletes (n = 12; A,C,E; white symbols show mean values) and controls (n = 8; B,D,F; black symbols show

mean values), including individual data of female (light gray) and male participants (dark gray) in both groups. *Significant difference between groups (i.e., intercept;

p < 0.05); #significant change over time (i.e., slope; p < 0.05). Note that differences between groups were not tested for MVC and stiffness. The data shows greater

fluctuations of muscle strength in the athletes and, as a result of an imbalanced adaptation of muscle and tendon, both greater average tendon strain during maximum

contractions as well as greater fluctuations of strain over time (Mersmann et al., 2016, with permission from American Physiological Society).

be a critical phase in that context due to the associated
increase of sex hormones. However, the interplay of
mechanical loading and changes of the hormonal milieu on
muscle and tendon plasticity in general, and with regard to
adolescence in particular, is still largely unknown. Similarly,
though recent evidence demonstrated that an imbalanced
musculotendinous adaptation can occur during adolescence
(Mersmann et al., 2014, 2016, 2017a,b), it is yet unclear how
the likelihood of an imbalanced adaptation develops as a
function of maturation and how it relates to specific types of
loading.

IMPLICATIONS AND CONCEPTS FOR
PREVENTION

It has been described above that muscle and tendon properties
might not develop homogeneously during a training process.
The following chapter provides an overview about the
potential implications for the risk of tendon injury based
on experimental and epidemiological observations. Finally, we
give recommendations for the design of preventive interventions
and critically discuss the current lack of knowledge with regard
to the efficacy and timing of such preventive measures.

Frontiers in Physiology | www.frontiersin.org 8 December 2017 | Volume 8 | Article 987

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mersmann et al. Imbalanced Musculotendinous Adaptation in Youth

Potential Implications for the Risk of
Tendinopathy
Experimental Observations
An imbalanced adaptation of muscle and tendon—when the
development of the force generating capacity of a muscle
is not paralleled by an adequate change of the properties
of the associated tendon—increases the mechanical demand
placed upon the tendon at a given activation of the muscle
and, therefore, might impose a challenge for the integrity
of the tendinous tissue (especially during maximum efforts).
Though tendinopathy has certainly a multifactorial etiology,
the mechanical strain theory is currently considered the most
probable injury mechanism and attributes the histological,
molecular and functional changes of the affected tissue to
mechanical overload (Archambault et al., 1995; Fredberg and
Stengaard-Pedersen, 2008; Magnusson et al., 2010; Legerlotz,
2013). There is convincing evidence that repetitive loading
of tendon tissue at high strain magnitudes (Butler et al.,
1978; Lavagnino et al., 2006; Legerlotz et al., 2013) leads to
cumulative damage in the extracellular matrix by successive
collagen denaturation and fibril tears (Woo, 1982; Veres et al.,
2013). The subsequent load redistribution among intact fibrils
probably increases the risk of damage upon further loading cycles
(Neviaser et al., 2012) and might explain the associated decrease
of stiffness and ultimate stress (Schechtman and Bader, 2002;
Fung et al., 2009, 2010; Legerlotz et al., 2013). The manifestation
of tendinopathy is commonly ascribed to the progression of
cumulative microtrauma to higher structural levels of the tissue
and successive matrix breakdown (Kannus, 1997; Cook and
Purdam, 2009). The degenerative cascade might also be related
to the discontinued mechanotransduction of ruptured fibrils
(Knörzer et al., 1986) and the associated catabolic responses of
under-stimulated fibroblasts (Arnoczky et al., 2007). As both
scenarios (i.e., mechanical over- or understimulation) are based
on initial strain-induced damage, it seems plausible that an
imbalanced adaptation of muscle and tendon could increase
the risk of overload-induced tendinopathy. Wren et al. (2003)
performed static and cyclic loading experiments on human
Achilles tendons and demonstrated that the initial level of
strain induced by a given load was inversely correlated with
time or loading cycles until failure (Figure 3). This suggests
that if tendon strain increases during muscle contractions
due to an imbalanced musculotendinous adaptation, repetitive
loading could induce significant sub-rupture fatigue and trigger
pathological processes. Indeed, there are in vivo studies on
patients and athletes with tendinopathy, which report increased
levels of tendon strain during maximum voluntary contractions
(Arya and Kulig, 2010; Child et al., 2010). Though other
studies did not identify increased levels of strain—which
might be a methodological issue as pain reduces the level
of muscle activation (Hart et al., 2010; Palmieri-Smith et al.,
2013) and, thus, the tendon strain measured during voluntary
contraction—they found other indications of a mechanical
weakening of the tendon, like a decrease of stiffness (Helland
et al., 2013) or increase of tendon stress (Couppé et al.,
2013).

FIGURE 3 | Cyclic loading lifetime results of human oder AT specimen Achilles

tendons as a function of initial (peak) tendon strain during loading and

associated coefficients of determination (R2). These data demonstrate that the

tendon strain magnitude determines the challenge for the tissue integrity.

Greater tendon strain at a given load reduces the lifetime of the tendon during

cyclic loading (Wren et al., 2003, with permission from Springer).

Epidemiological Observations
The assumption that an imbalanced adaptation of the muscle-
tendon unit could contribute to the development of overuse
injuries with increasing risk during adolescence also finds
support from several epidemiological observations. First, it is
interesting to note that the probability of non-contact soft-
tissue injury rises when training loads are increased rapidly
(Gabbett, 2016). Though this increase clearly could also have
different origins, it still indicates that the differing time course
of muscle and tendon adaption (i.e., delayed tendon adaptation
compared to the increase of muscle strength) might potentially
be of clinical relevance. Second, the prevalence of tendinopathy
in both elite and recreational athletes is particularly high in
sports with predominantly plyometric loading (Lian et al.,
2005; Zwerver et al., 2011). In adolescent volleyball players,
it was found that jumping ability and the weekly hours of
volleyball training (and not strength training) increase the risk
of tendinopathy (Visnes et al., 2013). It seems that especially
the frequency of jumps during training and competition could
be a major determinant of the risk of tendon overload
(Bahr and Bahr, 2014). These observations could well be
related to the different responsiveness of muscle and tendon
to plyometric loading and increased risk of tendon fatigue
damage upon repetitive loading with high magnitude strains.
Third, a recent epidemiological meta-analysis on tendinopathy
in children and adolescents regularly participating in sports
indicated an increasing risk with age (Simpson et al., 2016),
which corresponds to the incidence of general soft-tissue
overuse injuries reported earlier (Stracciolini et al., 2014). These
findings underline the potential influence of maturation on the
balance of muscle and tendon adaptation and the necessity to
deepen our understanding of the interaction of maturation and
loading.
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Summary
In summary, the pathogenesis and epidemiology of tendinopathy
provides a solid theoretical background for the hypothesis that
an imbalanced adaptation of muscle and tendon could have
consequences for the risk of tendon injury as (a) the resultant
increased mechanical demand is a candidate mechanism to
induce overload, (b) the prevalence of soft-tissue overuse
injuries is high at time-points in the training process (i.e.,
sudden increase of loading) and in sport disciplines that
favor the development of a muscle-tendon imbalance from a
mechanobiological point of view, and (c) maturation seems to be
a potential risk factor for the development of both tendinopathy
and musculotendinous imbalances in young athletes. There
certainly is a need to provide more direct support for an
association between imbalanced muscle and tendon adaptation
and overuse. Yet, it appears that the interaction of maturation
with mechanical loading could potentially increase the likelihood
of the occurrence of such imbalances, which in turn might be
related to the increasing risk of tendon overuse in adolescence.
However, these assumptions need to be supported by further
research.

Concepts for Prevention
Following the hypothesis that an imbalanced development of
muscle strength and tendon stiffness could increase the risk
for tendon overuse injury, it might be promising to target the
increase of tendon stiffness in groups at risk (e.g., athletes of jump
disciplines, adolescents commencing with resistance exercise).
The following chapter provides evidence-based suggestions for
an effective tendon training and comments on open issues.
The chapter concludes with a critical discussion of the current
evidence on the effects of preventive interventions outlines the
anticipated effects of an intervention-induced increase of tendon
stiffness on athletic performance.

Effective Tendon Training
Current evidence on human tendon adaptation in vivo (see
section Mechanotransduction in Tendon) suggests that both
contraction intensity and contraction duration need to exceed a
certain threshold to provide an efficient training stimulus. The
training intensity is considered to be optimal around 85–90%
of iMVC and the contraction duration around 3 s (Arampatzis
et al., 2010; Bohm et al., 2014, 2015; Wiesinger et al., 2015).
The contraction mode (i.e., isometric, concentric, eccentric) does
not seem to be relevant (Kjaer and Heinemeier, 2014; Bohm
et al., 2015), however, it needs to be considered that during
classic dynamic training (i.e., eccentric-concentric exercises) the
necessary high tendon forces occur only in specific ranges of
joint angles due to the change of gear ratios during movement
(e.g., between 60◦ and 100◦ of knee flexion in a parallel squat;
0◦ = full extension) (Flanagan et al., 2003; Peñailillo et al.,
2015). Therefore, it is recommendable to increase the movement
duration (e.g., to ∼6 s) when a large range of motion is used
during the exercise. Isometric training should be performed in
joint angles close to the optimum for force generation (i.e.,
∼60◦ knee flexion for patellar tendon training or ∼10◦ ankle
dorsiflexion and extended knee for the training the Achilles

tendon) and has the advantage that the training stimulus in
terms of intensity and duration can be controlled quite easily.
Moreover, it does not require the complex technical skills of
free weight training for a safe execution and can be performed
without expensive equipment (e.g., using non-elastic slings).
Figure 4 illustrates a training stimulus for increasing tendon
stiffness based on the most effective training protocol of a series
investigations that systematically modulated mechanical strain
parameters (Arampatzis et al., 2007, 2010; Bohm et al., 2014). We
suggest to apply the training protocol three times a week for at
least 12 weeks. These recommendations also correspond to the
conclusions of two recent meta-analyses on tendon adaptation
(Bohm et al., 2015; Wiesinger et al., 2015). Suggestions for
specific exercises are provided as Supplementary Material to this
review.

There are several important, but currently open issues
that need to be elucidated with regard to the stimulation
of tendon adaptation in general, its implementation in elite
athletic training as a preventive measure in particular and with
regard to its application in youth sports. There have been
experimental investigations systematically modulating strain
magnitude, rate, duration and frequency (Arampatzis et al., 2007,
2010; Kongsgaard et al., 2007; Bohm et al., 2014), however,
the effects of overall training volume, number of sessions per
week or rest between sets are basically unexplored thus far,
and meta-analyses are limited in their potential to improve
our understanding in this regard (Gentil et al., 2017) due to
the heterogeneity of intervention studies (Bohm et al., 2015).
In a recent study, Waugh et al. (2017) modulated inter-
cycle rest duration (i.e., 3 and 10 s) between two equivolume
isometric loading protocols. While the improvements of stiffness
and material properties were similar between protocols, some
potentially unfavorable structural changes were detected by
means of ultrasound tissue characterization (UTC) following the
short rest loading. It should be noted that it is still unclear if such
changes of UTC-parameters indicate overload and the overall
loading volume in the study by Waugh and colleagues was 2.5
times the volume of the program that we recommend based
on our experience. Nevertheless, these findings highlight the
necessity to deepen our understanding of tendon tissue recovery

FIGURE 4 | Evidence-based recommendations for an effective stimulus for

tendon adaptation. High intensity loading to the tendon (85–90% iMVC) should

be applied in five sets of four repetitions with a contraction and relaxation

duration of 3 s each, and an inter-set rest of 2min. We suggest the training to

be applied three times a week for at least 12 weeks.
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during cyclic loading, especially with regard to injury prevention
and rehabilitation.

It is currently a matter of speculation when to implement the
preventive intervention during the course of athletic training,
if the training stimulus should be applied continuously or in
periods, and how a specific tendon training interferes with
training regimen that target other determinants of athletic
performance. Given the moderate overall loading volume of
the program recommended in this review, it seems realistic to
implement the tendon exercises without any major reductions of
other training contents. It can be considered that the program
increases muscle strength as well (Arampatzis et al., 2007, 2010)
and, therefore, could complement or replace some routines used
for muscle strength development. We are currently applying a
preventive tendon training in adolescent athletes to investigate
its efficacy. The overall duration of exercises implemented in
the regular training schedule that target the increase of tendon
stiffness is around 15min. Considering this low time-effort and
the uncertainty if training at specific time-points during a season
would be equally effective, we are applying this intervention over
the whole season. Future research might help to further develop
this approach and investigate if scheduling tendon training in
advance of marked increases of loading that is assumed to
provide a more potent stimulus for muscle strength compared
to tendon stiffness development (i.e., plyometric loading or
fatiguing moderate intensity loading) yields similar results.

The recommendations given in this chapter are based on
our current knowledge on tendon adaptation, which is derived
from studies on adults. Though it is known that the tendons
of pre-pubertal children and adolescents are able to adapt
to mechanical loading (Waugh et al., 2014; Mersmann et al.,
2017b), dose-response relationships specific for the immature
tendinous system still need to be established in the future.
However, as we are convinced that the basic mechanisms of
mechanotransduction should not be profoundly different in
children and adults, we can argue that it is likely that the
characteristics of an effective stimulus for tendon adaptation (i.e.,
high strain magnitude and ∼3 s strain duration applied with
low frequency) is widely independent of age. Nevertheless, there
might be restrictions with regard to overall mechanical loading
and intensity control. The number of sets and repetitions could
then be used to adjust the overall training volume to the loading
capacity of the young athletes. Moreover, in age groups where
maximum strength testing is contraindicated, perceived exertion
scales can be used to estimate training intensity (Waugh et al.,
2014).

In conclusion, adult tendons, and likely immature tendons as
well, receive effective mechanical stimulation upon high strain
magnitude loading with an appropriate strain duration. Though
the role of recovery is widely unexplored, the recommendations
outlined above could have the potential to decrease the likelihood
of an imbalanced muscle and tendon development in a training
process. However, it needs to be stated clearly that specific
considerations for the implementation in athletic training
schedules of different sports and for the application in youth
athletes need to be elucidated in future research.

Potential Effects on Risk of Injury and Athletic

Performance
The prevention or reduction of musculotendinous imbalances
could, in our view, have beneficial effects on (a) the risk of
tendon injury and (b) athletic performance. A recent systematic
review on the effects of preventive interventions for tendinopathy
concluded that evidence for their efficacy is only limited (Peters
et al., 2016). However, the exercise interventions examined
were either not targeting the improvement of the mechanical
properties of the tendon (e.g., balance training, stretching) or
did not apply training stimuli that are in accordance with
the current view on the mechanobiological basis of human
tendon adaptation in vivo (e.g., Alfredson eccentric training or
Silbernagel’s combined concentric-eccentric exercise; Malliaras
et al., 2013a for a discussion). Conventional eccentric training
approaches, for example, are characterized by high training
volume but only moderate load intensity (i.e., body weight),
which might even increase discrepancies between muscle
strength and tendon stiffness (Arampatzis et al., 2007, 2010).
Though conventional eccentric training is associated with pain
relief in patients with tendinopathy, its application as a preventive
measure can also increase injury risk of tendons that already
feature structural abnormalities (Fredberg et al., 2008). A load-
based intervention with scientific evidence supporting its efficacy
on promoting tendon stiffness is likely to be a more effective
preventive strategy following the hypothesis that an imbalance
of muscle and tendon predispose for tendinopathy. An increase
of stiffness that parallels the increase of the force generating
capacity of the neuromuscular system would serve as a protective
mechanism against increased strain during maximum muscle
contractions. Moreover, if the increase of stiffness is governed
by radial hypertrophy upon long-term training, this would also
reduce tendon stress.

Aside from the potentially beneficial effects for the health of
young athletes, tendon stiffness and the interaction of muscle
and tendon during movement are important contributors to
movement performance. For example, increased tendon stiffness
is associated with a lower electromechanical delay, a greater rate
of force development and jump height (Bojsen-Møller et al., 2005;
Waugh et al., 2013). Certainly, the elasticity of the tendon and
the associated storage and release of mechanical strain energy are
important contributors to sportive performance as well (Roberts,
1997; Kawakami et al., 2002). Greater elongation at a given
force allows more energy to be stored in the tendon and has
been positively associated, for example, with sprint performance
(Stafilidis and Arampatzis, 2007; Kubo et al., 2011). However,
a greater muscle force output combined with higher tendon
stiffness increases the potential exchange of mechanical energy
betweenmuscle and tendon as well (Wu et al., 2010). Moreover, if
the force production during a movement task increases due to an
increase of the muscular capacity, an increase of stiffness of the
series elastic elements is necessary to maintain fascicle kinetics
within an optimal working range (Lichtwark and Wilson, 2007).
For example, it has been recently shown that vastus lateralis
fascicles operate around optimum length and close to optimum
velocity for power production (Nikolaidou et al., 2017) during
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vertical jumping. A change of the balance of muscle strength
and series elastic stiffness could lead to a distortion of the
musculotendinous interaction and in turn increase the demand
for neuromuscular control (i.e., due to a change of fascicle
kinetics), which could reduce the extent to which the increased
muscular capacity can be exploited. Therefore, it is likely that
a facilitation of tendon stiffness in line with muscle strength
would lead to greater improvements of movement performance
as opposed to a sole increase of muscle strength.

CONCLUSIONS AND FUTURE
DIRECTIONS

Current scientific evidence strongly supports the idea that the
development of muscle strength during a training process is not
necessarily accompanied by an adequate modulation of tendon
stiffness. The differences in the time course of adaptation and
in the mechanical stimuli that trigger adaptive processes provide
two mechanisms that can account for a dissociation of the
muscular and tendinous development. Though the additional
influence of maturation is still a heavily under-investigated
topic, it is likely that an imbalanced development of muscle
strength and tendon stiffness is a relevant issue for youth
sports and it seems that the risk might even be increased
compared to adults. Adolescence, with its associated somatic
and endocrine processes, could be a critical phase in that
regard. Due to the mechanical loading profile, musculotendinous
imbalances especially concern athletes from jump disciplines
and the high prevalence of tendinopathy in those sports as
well as the increasing incidence during adolescence support
the hypothesis that imbalances of muscle strength and tendon
stiffness could have implications for the health of young athletes.
The implementation of interventions targeting the improvement
of tendon mechanical properties could be a promising approach
to prevent such imbalances, promote athletic performance and
reduce the risk of tendon injury. However, there is still a
clear lack of information on the time course of changes of
the musculotendinous system during premature development

and the interaction of maturation and mechanical loading. The
effects of changing sex hormone levels on tendon properties
and plasticity is also widely unknown. Similarly, the association
of musculotendinous imbalances with tendon overuse injury
as well as the preventive value of interventions that promote
the development of tendon mechanical properties has not been
established thus far. The effects of recovery for tendon adaptation
in general are largely unexplored and a future challenge with
regard to the application of preventive tendon training in
youth sports is the determination of age-specific dose-response
relationships and the implementation in the training schedule
in elite sports. The increasing prevalence of tendinopathy in
athletic adolescents certainly calls for further research on these
issues.
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