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Introduction: In the initial phase of hypovolemic shock, mean blood pressure (BP)

is maintained by sympathetically mediated vasoconstriction rendering BP monitoring

insensitive to detect blood loss early. Late detection can result in reduced tissue

oxygenation and eventually cellular death. We hypothesized that a machine learning

algorithm that interprets currently used and new hemodynamic parameters could

facilitate in the detection of impending hypovolemic shock.

Method: In 42 (27 female) young [mean (sd): 24 (4) years], healthy subjects central

blood volume (CBV) was progressively reduced by application of−50 mmHg lower body

negative pressure until the onset of pre-syncope. A support vector machine was trained

to classify samples into normovolemia (class 0), initial phase of CBV reduction (class 1)

or advanced CBV reduction (class 2). Nine models making use of different features were

computed to compare sensitivity and specificity of different non-invasive hemodynamic

derived signals. Model features included: volumetric hemodynamic parameters (stroke

volume and cardiac output), BP curve dynamics, near-infrared spectroscopy determined

cortical brain oxygenation, end-tidal carbon dioxide pressure, thoracic bio-impedance,

and middle cerebral artery transcranial Doppler (TCD) blood flow velocity. Model

performance was tested by quantifying the predictions with three methods: sensitivity

and specificity, absolute error, and quantification of the log odds ratio of class 2 vs. class

0 probability estimates.

Results: The combination with maximal sensitivity and specificity for classes 1 and 2

was found for the model comprising volumetric features (class 1: 0.73–0.98 and class 2:

0.56–0.96). Overall lowest model error was found for the models comprising TCD curve

hemodynamics. Using probability estimates the best combination of sensitivity for class

1 (0.67) and specificity (0.87) was found for the model that contained the TCD cerebral
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blood flow velocity derived pulse height. The highest combination for class 2 was found

for the model with the volumetric features (0.72 and 0.91).

Conclusion: The most sensitive models for the detection of advanced CBV reduction

comprised data that describe features from volumetric parameters and from cerebral

blood flow velocity hemodynamics. In a validated model of hemorrhage in humans these

parameters provide the best indication of the progression of central hypovolemia.

Keywords: cardiovascular modeling, cerebrovascular, hypovolemia, lower body negative pressure, machine

learning, support vector machine

INTRODUCTION

Hypovolemic shock is the hemodynamic response to a critically
reduced central blood volume (CBV) and its diagnosis has
challenged clinicians since the Second World War (Grant and
Reeve, 1941; Secher andVan Lieshout, 2016). Themain treatment
consists of intravenous volume administration (Secher and Van
Lieshout, 2005) to raise cardiac output (CO) and improve
microvascular blood flow (Vincent and De Backer, 2013; Perner
and De Backer, 2014; Secher and Van Lieshout, 2016) and
tissue oxygen delivery (Zollei et al., 2013; Simon et al., 2015).
However, detection of a clinically relevant blood volume deficit
remains difficult (Marik et al., 2011; Vincent and De Backer,
2013; Bronzwaer et al., 2015; Secher and Van Lieshout, 2016)
because the blood volume is not only characterized by its
magnitude but also by its function as preload to the heart
(Marik et al., 2011; Bronzwaer et al., 2015; Secher and Van
Lieshout, 2016). From that perspective, a functional definition
of “normovolemia” is by its ability to provide the heart with
an adequate CBV i.e., cardiac preload that maintains stroke
volume, cardiac output, and oxygen delivery (Harms et al., 2007;
Truijen et al., 2010). Direct measures of CBV are not routinely
available in the clinical environments of intensive care and
operating room. As a result, volume treatment during anesthesia
is generally planned according to a somewhat arbitrary fixed
volume regime (Bundgaard-Nielsen et al., 2009) or guided by
blood pressure (BP) and heart rate (HR). However, interpretation
of BP and HR changes in response to a reduction in CBV is
not straightforward since loss of 1 l of blood or fluid is not
reflected in changes in BP (Harms et al., 2003). Therefore,
optimization of tissue oxygen delivery cannot be conducted
by monitoring arterial pressure alone (Michard and Teboul,
2002; Convertino, 2012; Secher, 2015; Cannesson, 2016). It is
problematic that present hemodynamic monitoring techniques
do not allow detection and therefore early treatment of a
volume deficit before worsening of the cardio-cerebrovascular
condition compromising oxygenation of the brain (Secher and
Van Lieshout, 2005).

We hypothesized that the arterial pressure and transcranial
cerebral blood flow velocity waveforms contain subtle
information on the actual cardio-cerebrovascular condition
that is hard to interpret by human visual inspection. We set out
to investigate whether a machine learning model (Deo, 2015)
could be trained to detect hypovolemia using hemodynamic
signals during progressive reduction of CBV. This would allow

determination to what extent the cardiovascular system can
compensate hypovolemia, i.e., its compensatory reserve prior
to (impending) circulatory collapse (Convertino et al., 2016),
by classifying patients according to their actual need of fluid
therapy (Convertino and Sawka, 2017) and allow timely clinical
intervention. Given that the brain is highly susceptible to
hypoperfusion and hypoxia we hypothesized that the cerebral
flow velocity wave shape may disclose early alterations that
can be alleged to the hypovolemia induced onset of cerebral
hypoperfusion resulting in pre-syncope. Earliermachine learning
approaches based on BP waveforms (Moulton et al., 2013) and
beat-to-beat parameters (Bennis et al., 2017) showed that it can
detect a reduction in CBV. To that purpose, we parametrized
both the BP and TCD waveforms to make information about
curve dynamics available for statistical modeling during
progressive hemorrhagic shock and compared the BP features
to features from other non-invasive hemodynamic technologies.
We trained a model to recognize progressive hypovolemia
by means of supervised machine learning and tested it on a
human model of progressive hemorrhagic shock (lower body
negative pressure, LBNP). The goal was to create a model that
picks up on changing physiology during the transitional phase
from compensated to uncompensated circulatory shock by
classifying each heartbeat based on its accompanying feature
information and to check which non-invasive hemodynamic
monitor contributes the most sensitive information to solve this
problem.

METHODS

Subjects
Forty-two young, healthy volunteers [27 female; age: mean
(SD): 24 (4) years] with no history of fainting and/or cardiac
arrhythmia nor taking cardiovascular medication participated in
the study. They abstained from heavy exercise and caffeinated
beverages at least 12 h prior to the experiment. Before inclusion
subjects underwent a medical screening prior to the experiment
consisting of a medical interview, a physical examination
and a 12-lead ECG. The experiments were conducted in a
quiet, temperature-controlled laboratory (20–22◦C). This study
was carried out in accordance with the recommendations of
AcademicMedical Centre Amsterdammedical ethical committee
(#2014_310) with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
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medical ethical committee of the Academic Medical Centre,
Amsterdam.

Experimental Protocol
Measurements were performed with subjects in the supine
position. Following instrumentation, the lower body was
positioned inside a lower body negative pressure (LBNP) box
(Dr. Kaiser Medizintechnik, Bad Hersfeld, Germany) and sealed
at the level of the iliac crest (Goswami et al., 2009). To prevent
a downward shift of the body into the LBNP box disrupting
the airtight sealing with loss of sub-atmospheric pressure, the
LBNP box was equipped with a saddle (Bronzwaer et al., 2017a).
Subjects rested for 30min of which the final 10 were designated
as baseline segment, followed by application of a single step
continuous negative pressure (50 mmHg below atmospheric
pressure) to the lower part of the body. The pressure inside the
box wasmanually controlled and established within less than 20 s.

During the experiment, subjects were instructed to breathe
normally and to avoid movement and muscle flexing. In
compliance with our laboratory safety guidelines LBNP was
terminated in case of (pre-)syncopal symptoms including
sweating, light-headedness, nausea, blurred vision, and/or signs
meeting one or more of the following criteria: systolic arterial
pressure (SAP) below 80 mmHg, or rapid drop in BP [SAP by
≥25 mmHg·min−1, diastolic arterial pressure (DAP) by ≥15
mmHg·min−1], and drop in HR by ≥15 bpm·min−1. If none of
these criteria occurred within 30min, the protocol was ended.
The subjects were continuously monitored by an investigator
experienced in human studies and unoccupied by experimental
obligations.

Measurements
Continuous arterial BP was measured non-invasively by volume-
clamp finger plethysmography with the cuff placed around the
middle phalanx of the left hand placed at heart level (Nexfin,
Edwards Lifesciences BMEYE, the Netherlands) and sampled at
200Hz. Left ventricular stroke volume (SV) was determined by
a pulse contour method (Nexfin CO-trek, Edwards Lifesciences
BMEYE, Amsterdam, theNetherlands). Cardiac output (CO) was
calculated as the SV times HR and total peripheral resistance
(TPR) was the ratio of mean arterial pressure (MAP) to CO.
Changes in CBV were monitored using thoracic impedance
(TI) (Nihon Kohden, AI-601G, Japan) (Krantz et al., 2000;
van Lieshout et al., 2005). Cerebral blood flow velocity was
measured in the proximal segment of the middle cerebral artery
(MCA) by means of TCD (DWL Multidop X4, Sipplingen,
Germany). The left MCA was insonated through the temporal
window just above the zygomatic arch at a depth of 40–60mm
with a pulsed 2 MHz probe. After signal optimization, the
probe was fixed on a specially designed head-band (Marc 600,
Spencer Technologies, Redmond, Washington, USA). Changes
in oxygenated and deoxygenated hemoglobin (Hb) as well as
their summation were measured using continuous wave near-
infrared spectroscopy (NIRS) (Oxymon, Artinis, Zetten, The
Netherlands). NIRS tracks cortical cerebral oxygenation during
manipulation of CBF in parallel with the brain capillary oxygen
saturation (Rasmussen et al., 2007). A differential path length

factor was computed according to Gersten et al. (Gersten,
2015) to account for the scattering of light in the brain tissue.
NIRS signals were recorded at 10Hz. Optodes were fixed just
above the supraorbital ridge and below the hairline. Changes in
cutaneous perfusion may interfere with the accuracy of cerebral
oximetry, therefore the distance between the transmitter and
the receivers was 5 cm to assure deep enough penetration of
the near-infrared light into the brain to exclude substantial
contamination from the extra-cerebral circulation (Claassen
et al., 2006).

End-tidal CO2 partial pressure (ETCO2) was measured
through a nasal cannula connected to a capnograph (Hewlett
Packard 7834A, Wokingham, UK). All recorded signals were
analyzed offline (Matlab R2007b, Mathworks Inc. MA, USA)
and visually inspected for artifacts and noise. Invalid beats were
manually removed and interpolated.

MODELING APPROACH

Models were created by means of a support vector machine
algorithm [libsvm software package for Matlab (Chang and
Lin, 2011)]. We used a supervised learning approach to
detect worsening of the cardio-cerebrovascular condition
from cardiovascular stability at rest toward instability when
approaching pre-syncope. To this extent, we defined three
distinct classes of the hemodynamic condition (see “class
definition”). The algorithm then used one of 9 designated
feature sets (listed next) to detect patterns in an attempt to
classify each heartbeat in one of the three classes. For each
feature set a model was computed using a non-linear radial
basis function (Gaussian) kernel (Bishop, 2006). To find the
optimal model configuration for each respective feature set we
used 64 combinations of values for both kernel width (gamma)
and C-value (8 values for each). Using a randomly selected
30 subjects train vs. 1 test subject approach, this analysis was
deemed optimal once the sum of sensitivity and specificity was
maximal on average for all tested subjects.

Class Definition
Baseline rest as well as onset of LBNP and pre-syncope were
marked. Time points originating from data during baseline
were designated as class 0, samples from data during the
first 75% of LBNP as class 1 and samples belonging to the
last 25% of LBNP before onset of pre-syncope (i.e., end-
stage LBNP) were defined as class 2 (Figure 2). Multiclass
in libsvm is handled by a one-vs.-one approach (Hsu, 2002).
The corresponding feature values at these time points were
labeled with one of these three classes. Static features were
extracted on a beat-to-beat basis whereas dynamic features
(variation and trends over time) were extracted by a moving
windowing function of fixed size (see model specifications)
where each moved window was classified as one of three
classes. Due to how the class definitions were created, class
distribution was not homogenous. Around 33% of the dataset
was baseline data (class 0); 50% was class 1 and 18%
class 2.
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Feature Extraction
To test the viability of different measured parameters from non-
invasive measurement modalities we designed 7 models (named
model #1 through #7). All shared the BP curve dynamics features
(model #1, Figure 1, Table A1 in Supplementary material).

FIGURE 1 | In depth analysis of the blood pressure curve. Five primary points

are detected (A to E). From these points several parameters are estimated

(Table A1 in Supplementary material). Positions on the curve are indicated with

capital letters A through E. Their accompanying time points are described with

lower case letters. Tangent lines are described with roman numerals. Areas of

interest are shaded.

FIGURE 2 | Class definitions. The first part of the measurement is defined as

baseline rest (class 0), LBNP is defined as class 1, of which the last 25% is

defined as end-stage LBNP before pre-syncope (class 2).

Features were then appended for models #2 through #7 for
each investigated measurement modality to evaluate predictive
capability when adding features from ETCO2, TI, NIRS, or TCD
in modeling impending pre-syncope. All extracted features were
down sampled by a factor 10 to abridge calculation time. Two
models (namedmodels #8 and #9) stand on their own and do not
include the BP curve dynamics feature set.

DEFAULT MODEL: BP CURVE DYNAMICS
(MODEL #1)

From the arterial BP wave, beat-to-beat systolic, diastolic, mean,
pulse pressure (SAP, DAP, MAP, and PP), interbeat interval (IBI),
HR, stroke volume (SV), cardiac output (CO), left ventricular
ejection time (LVET), and TPR were extracted (10 features).
Four incrementally sized intervals during LBNP (30, 60, 90,
and 120 s) were used for calculating trends and variances of
SAP, DAP, HR, PP, and SV [4 intervals times 5 parameters
for 2 techniques (trend and variation) delivers 40 features].
Additional information from the BP wave shape was extracted by
wave segmentation and parametrization (Figure 1 and Table A1,
Appendix Supplementary material, 15 features) making a total of
65 parameters available for the BP curve dynamics model.

INCREMENTAL MODELS

Either beat-to-beat interpolated ETCO2 partial pressure or TI
were appended in models #2 and #3 respectively (each has 1
additional feature). Features extracted from the NIRS consisted
of the three concentrations of Hb: oxygenated, deoxygenated,
and their summation (total Hb). Ratios of oxygenated and
deoxygenated to total Hbwere added as well to this model (model
#4, 5 additional features).

Similar to the BP wave parametrization, the same points,
durations, tangents, and surface areas were derived from the
cerebral blood flow velocity wave. Further features comprised
systolic, diastolic, and mean flow velocity as well as the difference

TABLE 1 | Model description, numbering, and feature count.

Model names and

numbers

Amount of features (on top of base)

#1 BP curve dynamics 65: Basic hemodynamics (10 features), curve dynamics

(15 features) and trends and varations (40 features)

#2 ETCO2 66 (model#1 + ETCO2)

#3 TI 66 (model#1 + TI)

#4 NIRS 70 (model#1 +oxygenation parameters (5 features))

#5 TCD curve

dynamics

125 (model#1 +60: TCD trends and variation, cerebral

autoregulation)

#6 Mean MCAv 66 (model#1 +mean TCD MCAv)

#7 MCAv Pulse height 66 (model#1 +TCD pulse height)

#8 Volumetric 10: Basic hemodynamics (10 features)

#9 HR and BP 4: Systolic, diastolic, mean pressures and heart rate.

Models 2 through 7 contain the features from model #1 with device specific features.

Models 8 and 9 are smaller models, that contain features that are currently clinically used

and/or available.
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between systolic and diastolic flow velocity (flow velocity pulse
height) and their variation and trends over the same intervals
as described for model #1. Also included were the cerebral
autoregulatory computed gain and phase expressed as the
transfer function between MAP and MFV over a 3-min moving
window between BP and MFV (Zhang et al., 1998). The low
frequency band (0.06–0.15Hz) where covariation in both signals
was significant (coherence of at least 0.5) was averaged to get
respective gain and phase. Model #5 will further be referred to as
flow velocity curve dynamics model (FV curve dynamics). Model
6 and 7 had a single FV derived feature addition. Either the MFV
or flow velocity pulse height were appended to models #6 and #7,
respectively.

FURTHER MODELS (MODELS #8 AND #9)

Two separate models were created to check model performance
without newly introduced features. A model with the basic
hemodynamic output from the Nexfin device (SAP, DAP, MAP,
PP, IBI, HR,SV, CO, TPR, and LVET, model #8) was created
to evaluate their additional value compared to BP and HR. A

TABLE 2 | Optimal model configuration.

Feature Set C Gamma

#1 BP curve dynamics 0.13895 0.002683

#2 BP curve dynamics & ETCO2 0.13895 0.051795

#3 BP curve dynamics & TI 0.13895 0.051795

#4 BP curve dynamics & NIRS 0.517947 0.007197

#5 BP curve dynamics & TCD 100 0.019307

#6 BP curve dynamics & MCAv mean 0.037276 0.13895

#7 BP curve dynamics & MCAv pulse height 7.196857 0.001

#8 Volumetric 0.0100 0.001

#9 HR and BP 0.5179 0.0027

Optimal results following the 64-fold optimization steps for different incremental values for

regularization parameter C (misclassification penalty) and gamma (deviation of the radial

basis Kernel) for each feature set.

model comprising of mere BP (SAP, DAP, andMAP) and HR was
introduced as a basic model (#9).

The number of features in each model is summarized in
Table 1.

Parameters were transposed into a feature matrix, normalized
with respect to values during baseline and scaled so that all
features ranged between 0 and 1. Alongside, a corresponding
label vector that contained the appointed class per subject of each
feature row was appended.

Training and Testing Process
Integral data sets of subjects were included in the modeling
algorithm in order to prevent contaminating data from subjects
in both training and testing set. Training data consisted of
data from a subselection of 30 randomly chosen subjects which
changed each iteration. The resulting model was then tested on a
single subject who was not part of the training set. This process
was repeated for all 42 subjects. The subset of 30 subjects was
chosen to reduce total training time.

Model Selection
Classification success was defined as to what extent a model
correctly classifies individual samples. Each successive feature

TABLE 4 | Median mean squared errors per model.

Class/Model Class 0 Class 1 Class 2 Total error

#1 BP curve dynamics 0.11 0.06 0.82 1

#2 ETCO2 0.13 0.12 0.65 0.89

#3 TI 0.11 0.11 0.67 0.89

#4 NIRS 0.1 0.11 0.74 0.95

#5 FV curve dynamics 0.19 0.06 0.53 0.78

#6 MCAv mean 0.11 0.1 0.7 0.91

#7 MCAv PP 0.11 0.11 0.81 1.03

#8 Volumetric 0.03 0.07 0.71 0.82

#9 HR and BP 0.12 0.16 0.81 1.09

Expressed as difference between moving averaged prediction and the predefined class

line (Figure 3). Lowest error per class indicated in bold.

TABLE 3 | Median [25% 75%] sensitivity and specificity for different features sets for the three designated classes.

Feature set Sensitivity Specificity

Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

#1 BP curve dynamics 0.99 [0.98; 0.99] 0.63 [0.54; 0.72] 0.56 [0.37; 0.76] 0.81 [0.75; 0.87] 0.98 [0.93; 0.99] 0.95 [0.92; 0.97]

#2 BP curve dynamics & ETCO2 0.99 [0.98; 0.99] 0.62 [0.50; 0.72] 0.53 [0.31; 0.69] 0.81 [0.71; 0.85] 0.96 [0.93; 0.98] 0.96 [0.93; 0.98]

#3 BP curve dynamics & TI 0.99 [0.98; 0.99] 0.63 [0.54; 0.73] 0.51 [0.27; 0.69] 0.81 [0.74; 0.88] 0.96 [0.93; 0.98] 0.96 [0.93; 0.98]

#4 BP curve dynamics & NIRS 0.99 [0.98; 0.99] 0.64 [0.55; 0.70] 0.53 [0.35; 0.64] 0.81 [0.74; 0.90] 0.97 [0.93; 0.98] 0.96 [0.93; 0.97]

#5 BP curve dynamics & TCD 0.99 [0.99; 1.00] 0.58 [0.48; 0.66] 0.47 [0.26; 0.61] 0.72 [0.62; 0.83] 0.98 [0.90; 0.99] 0.96 [0.93; 0.98]

#6 BP curve dynamics & MCAv mean 0.99 [0.98; 0.99] 0.63 [0.54; 0.71] 0.50 [0.29; 0.69] 0.80 [0.73; 0.88] 0.96 [0.92; 0.98] 0.96 [0.93; 0.97]

#7 BP curve dynamics & MCAv Pulse height 0.99 [0.98; 0.99] 0.62 [0.57; 0.69] 0.52 [0.28; 0.71] 0.81 [0.72; 0.88] 0.97 [0.91; 0.98] 0.96 [0.91; 0.98]

#8 Volumetric 0.99 [0.98; 0.99] 0.73 [0.68; 0.81] 0.56 [0.40; 0.77] 0.93 [0.88; 0.97] 0.98 [0.91; 0.99] 0.96 [0.93; 0.97]

#9 HR and BP 0.97 [0.94; 0.98] 0.62 [0.43; 0.67] 0.49 [0.20; 0.73] 0.79 [0.60; 0.89] 0.94 [0.90; 0.97] 0.95 [0.92; 0.96]

Class 0: rest; class 1: during LBNP; class 2: final stage LBNP before pre-syncope per model structure. Highest cumulative sensitivity, specificity in that class is indicated in bold.
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addition returned a unique classification outcome that in-
or decreased model performance. Each model estimated the
probability of a new sample belonging to each of the three classes.
Since the classes were defined arbitrarily it is unlikely that the
trained models describe a relevant physiological paradigm. To
select the best model (and thus its corresponding feature set)
three methods were used to quantify model performance.

1. Actual model sensitivity and specificity
Sensitivity and specificity per class were the numbers as
classified by the trained models without taking into account
additional detail of probability estimates of each class.
Sensitivity and specificity were calculated on a 1-vs.-all
manner.
2. Individual model error
Model error was expressed as the difference between the
predefined classes and the moving average of the prediction
of each model.
3. Specificity and sensitivity by accounting for probability
estimates
Next to each model classifying every individual sample, all
models return a probability for the sample belonging to
each respective class. In method 1 the class with the highest
probability is selected as the prediction of the model for that
sample. To account for probability estimates we took the ratio
of the probability of a sample belonging to class 2 over its
probability belonging to class 0. The logarithm of this (odds)
ratio was taken and lower and upper cutoff values for this ratio
were determined by using stepwise incremental thresholds
to distinguish between classes 0, 1, and 2. The cutoffs were
defined as optimal when the sum of both sensitivity and
specificity was maximal.

RESULTS

The results of the search for the optimal C and gamma values per
model are given in Table 2. These optimal models were chosen
to compute both sensitivity and specificity (Table 3), the model

errors (Table 4) and to detect optimal cutoffs for the probability
estimate analysis (Table 5).

Actual Model Sensitivity and Specificity
Regarding classes 1 and 2, the combination with highest
sensitivity and specificity was found for the model comprising
volumetric features (#8) (class 1: sensitivity: 0.73; specificity:
0.98; class 2: sensitivity: 0.56; specificity: 0.96) (Table 3).
Adding variation, trends and BP curve dynamics (model
#1, Figure 1) did not improve the performance of the
model for classes 1 (sensitivity 0.63; specificity 0.98) and 2
(sensitivity 0.56; specificity 0.95). Sequentially adding features
of ETCO2, TI, or from NIRS or TCD devices also did not
improve classifying actual model sensitivity. Specificity was
maintained.

Individual Model Error
The FV curve dynamics model (#5) had the lowest error for
all three classes combined (Table 4). The median error of the
BP curve dynamics (#1) vs. FV curve dynamics model (#5)
was greater for class 2. The largest fraction of subjects (12/42)
benefited from the FV curve dynamics model (#5) since it
had the lowest overall error. Models with either mean MCAv
(model # 6) or pulse height of MCAv (model #7) accounted
for another 8/42 subjects. The BP curve dynamics model (#1)
had the lowest error for 10/42 subjects. Models including
ETCO2 (#2) or NIRS (#4) both performed best 5/42 times.
The TI model (#3) came in last as the best model for 2/42
subjects.

Specificity and Sensitivity by Accounting
for Probability Estimates
In general, all models had similar sensitivity for baseline (class
0) (range: [0.89; 0.95]) and specificity ([0.90; 0.96]) (Table 5).
Regarding class 1, the best combination of sensitivity and
specificity was found for the model that contained the FV derived
pulse height (model #7). The highest combination for class 2 was
found for the model with the volumetric features (model #8).
This model also had the highest combination for both class 1 and

TABLE 5 | Sensitivities and specificities of all models using two cutoffs on probability estimates.

Model NR Class 0 Class 1 Class 2 Cutoffs

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity low high

1 0.9047 0.9310 0.5453 0.8942 0.7301 0.9012 -1.01 7.19

2 0.8984 0.9310 0.5985 0.8803 0.6835 0.9181 -1.45 7.94

3 0.8980 0.9334 0.5886 0.8815 0.6952 0.9144 -1.51 7.79

4 0.8872 0.9421 0.6208 0.8687 0.6666 0.9199 -1.51 7.79

5 0.9457 0.9252 0.6272 0.9130 0.6066 0.9289 1.09 7.58

6 0.8898 0.9326 0.6351 0.8701 0.6469 0.9258 -1.28 8.01

7 0.9082 0.9341 0.6688 0.8779 0.5981 0.9370 -1.31 8.19

8 0.9536 0.9562 0.6007 0.9325 0.7239 0.9114 -1.52 8.17

9 0.8934 0.9000 0.6092 0.8697 0.6064 0.9298 -1.25 5.34

Model numbers indicate: 1, BP curve dynamics; 2, ETCO2; 3, TI; 4, NIRS; 5, TCD dynamics; 6, MCAv mean; 7, MCAv pulse height; 8, Volumetric; 9, HR and BP. Bold: highest cumulative

sensitivity, specificity in that class.
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FIGURE 3 | Output of six models compared to BP curve dynamics model (#1, top) in a single subject. Each subsequent graph shows the modulation of the addition

of the annotated feature(s). In this subject the model for MCAv pulse height (bottom left) had the lowest error. Note that all model outputs increase with increasing

duration of lower body negative pressure. ETCO2, end-tidal carbon dioxide pressure; TI, thoracic impedance; NIRS, near infrared spectroscopy; TCD, transcranial

Doppler; MCAv, middle cerebral artery velocity; MCAvpulse, middle cerebral artery velocity pulse height.

class 2 together. An overview of all classification samples can be
found in the confusion matrices (Stehman, 1997) in Appendix
2 Supplementary material. For both the actual models and after
accounting for probability estimates. In general it can be seen that
the models encounter most difficulty in the distinction between
class 1 and class 2 while the distinction between class 0 and either
class 1 or 2 is clearer.

DISCUSSION

The new findings of the present study are, first, that
distinguishing between normovolemia and considerable central
hypovolemia in healthy young adults requires information from
volumetric hemodynamic features beyond BP and HR, such as
IBI, SV, CO, LVET, and TPR. Second, the cerebral blood flow

velocity parameters reduced model error, possibly due to the
creation of a more easily separable solution.

Features derived from the BP curve, ETCO2, TI, and from
cerebral blood flow velocity and brain cortical oxygenation did
not improve the classification in terms of sensitivity to detect
advanced class 2 hypovolemia. In contrast, cerebral blood flow
velocity models (#5–7) outperformed the other models in terms
of absolute error from the predefined (artificially created) classes.
Models 2–4 [ETCO2, central blood volume (TI), and cerebral
cortical oxygenation (NIRS)] contributed to such an extent that
they were the best discriminative model for fewer subjects and
therefore in general seem less sensitive to the detection of CBV
depletion.

In machine learning or datamining approaches large datasets
are investigated to determine whether these features together
result in a better solution to the problem at hand. A mechanistic
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approach may not find such a solution in a multidimensional
space. The underlying physiological mechanisms can ideally
be described by such a mechanistic approach so that it can
explain the wide variety of pathophysiology as is seen in
different patients. Unfortunately, this is not easily achieved and
assumptions would have to bemade for many parameters, as they
cannot be measured in real time (or at all) resulting in a model
that is not very useful for individual cases. Due to the large natural
variation between subjects, some individuals increase peripheral
resistance to maintain adequate blood pressure, whereas others
increase heart rate at onset of LBNP, yet another group responds
in a mixed fashion. We do not think these subtleties can be
grasped by a mechanistic approach, unless the responses of a
patient would be assessed beforehand which is not feasible in
clinical practice.

It is possible that a unique set of features exists from
different devices that gives an even better solution. To assess
this possibility would require a feature selection process which
is cumbersome for this amount of models. We considered that
these devices are either connected as monitors to patients or not.
If so, they return a fixed array of features which was included in
the models here. This study therefore aimed to describe which
monitors deliver the most sensitive features and should therefore
be connected as a monitor for detecting changing CBV.

Limitations
By design the subjects were healthy individuals exposed to
simulated bleeding which restrains us from extrapolating the data
to elderly subjects, considering that with healthy aging brain
perfusion becomes increasingly dependent on cardiac output
(Bronzwaer et al., 2017b).

The current models require that its features are normalized
to a reference baseline condition. This will be required as well
for future use of the models. Future studies should therefore
be directed at finding similar model accuracy without baseline
normalization. We recognize that eliminating normalization will
increase intersubject scatter, inevitably reducing classification
performance.

We consider the possibility that adding a considerable
number of features introduced the phenomenon known as
overfitting. This would imply that the model is being too
specifically trained on training data and may not function
equally well on new data. Since the SVM method is a
regularization model, the introduction of large amounts of
features does not necessarily have to lead to worse performance
due to overfitting. However, we selected optimal gamma and
C on the held-out data, which could have led to a form
of overfitting, but due to the newly random selection of 30
subjects in the testing step as well, this is expected to be
marginal.

Classes were not distributed homogenously. Especially during
training this could have had a significant effect on the outcome as
the algorithm could have had relatively more examples of what is
considered class 2 with respect to the other classes.

Since the training was performed on a subset of subject
data, the reported numbers for sensitivity and specificity are
not absolute and will be different if the analysis is repeated.

In healthy subjects, variation in cardiovascular responses to
sympathetic stimulation evoked by submaximal lower body
negative pressure (LBNP) is considerable (Bronzwaer et al.,
2016). Differences in resting HR between subjects suggest
individually programmed reflex strategies of autonomic
blood pressure control which may contribute to the hitherto
unpredictable variance observed in cardiovascular reflex
responses to central hypovolemia (Bronzwaer et al., 2016).
Due to this large natural variation in subject responses we
considered that by using a random subset the models are not
focused on a fixed set but will vary with each iteration. Also
since not everyone experiences symptoms of pre-syncope in
the exact same way there may be a bias toward the point
that was defined as pre-syncope here. By using a random
subset of individuals the models were never trained on the full
set of this bias but included different subjects each training
iteration.

Classification and Tracking
The fact that feature sets from cerebral oxygenation, central
blood volume, or cerebral blood flow velocity data do not qualify
beats better than the volumetric features seems to suggest that
their capability to predict pre-syncope may be low or at least
not better than HR and BP combined with LVET, CO, TPR,
and SV. However, the probability estimation of class 2 shows a
notable increase indicating that in the large majority of subjects
the developed models all recognized the process of moving from
baseline, to CBV depleted, to pre-syncope.

One explanation for the limited difference in performance
between models #1 and #8 may be that the Nexfin built-in
algorithms in itself include a BP wave shape analysis (pulse
contour).

Any attempt to produce a complete clinical classification
of hemorrhagic shock for the individual patient can be only
provisional due to the complex interrelations in physiological
adaptive responses (McMichael, 1944; Michard and Teboul,
2002; Perner and De Backer, 2014). Similarly, between healthy
subjects the variation in cardiovascular responses to sympathetic
stimulation evoked by bleeding is considerable. Distinct
cardiovascular response patterns of preferential autonomic
blood pressure control appear consistent over time within
one subject but with considerable inter-individual variance in
tolerance to hypovolemia (Convertino et al., 2012; Ryan et al.,
2012; Bronzwaer et al., 2016). This explains the difference in
time until pre-syncope and thus differences in the number
of samples between subjects available to the models (Jellema
et al., 1996). The models are nevertheless requested to assign
one of the three classes to each individual subject through
the whole trajectory from normo- to hypovolemia. Also,
the large number of samples available for class 0 compared
to class 1 and 2 creates an unequal distribution of samples
between the three classes. This also explains the overall high
specificity, since classification of a sample not belonging to
the investigated class could mean either of two remaining
classes.

The translation from model output to underlying
physiological events is by no means straightforward. Defining
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the classes from normo- to hypovolemia served merely to create
an artificial distinction between the ongoing circulatory
adaptive responses to progressive central hypovolemia.
As a consequence, the underlying physiological adaptive
responses may not fit into the predefined classes and
reported sensitivity does neither reflect direct classification
of physiology. However, the actual sensitivity/specificity is
amenable for improvement by using the certitude of the
model by introducing a cut-off analysis on the probability
estimates as proposed in order to quantify model performance.
This better approaches a classification on a physiological
response as changing probabilities of the classes could
hint at progression toward cardiovascular instability
respectively a return to normovolemia that can be tracked
over time.

Ideally, model performance is described by the individual
(moving averaged) prediction line as they tend to increase
during progressive hypovolemia (Figure 3), as a visual
manifestation of the increasing probability of impending
circulatory collapse since it immediately visualizes into what
direction the patient’s hemodynamic condition is headed. We
attempted to overcome the fact that this measure is difficult
to express as a numeric error by implementing three different
ways of model performance quantification. This probability
estimate analysis increased model sensitivity and specificity
by taking into account the complexity of the output of the
model in the relative large variation of subject responses to
hypovolemia.

Classification of heart beats belonging to either class 0 or class
1 and 2 is straightforward, and appeared linearly separable using

only a few features. This may be due to the fact that this protocol
was executed in a controlled setting and due to the fact that the

data was normalized to a baseline value. Detecting whether a
particular beat should be classified to either the class 1 or class
2 state of being hypovolemic is more challenging, hence the use
of a non-linear Gaussian kernel. Due to the large inter-individual
variance and artificial nature of class creation, the data show a
considerable overlap for the currently presented features, which
hindered us into constructing models with a higher sensitivity.
Rather, the moving average during the classification process in
itself has the potential to function as a real-time visualization of
progress toward hypovolemia induced cardiovascular instability.
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