l‘ frontiers
in Physiology

MINI REVIEW
published: 18 December 2017
doi: 10.3389/fphys.2017.01080

OPEN ACCESS

Edited by:
Kimberly Huey,
Drake University, United States

Reviewed by:

Rudy Valentine,

lowa State University, United States
Moh H. Malek,

Wayne State University, United States

*Correspondence:
Craig Pickering
craig@dnafit.com

Specialty section:

This article was submitted to
Exercise Physiology,

a section of the journal
Frontiers in Physiology

Received: 11 October 2017
Accepted: 08 December 2017
Published: 18 December 2017

Citation:

Pickering C and Kiely J (2017) ACTN3:
More than Just a Gene for Speed.
Front. Physiol. 8:1080.

doi: 10.3389/fohys.2017.01080

®

Check for
updates

ACTN3: More than Just a Gene for
Speed

Craig Pickering"#* and John Kiely'

" School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston,
United Kingdom, ? Exercise and Nutritional Genomics Research Centre, DNAFit Ltd., London, United Kingdom

Over the last couple of decades, research has focused on attempting to understand
the genetic influence on sports performance. This has led to the identification of a
number of candidate genes which may help differentiate between elite and non-elite
athletes. One of the most promising genes in that regard is ACTN3, which has commonly
been referred to as “a gene for speed”. Recent research has examined the influence
of this gene on other performance phenotypes, including exercise adaptation, exercise
recovery, and sporting injury risk. In this review, we identified 19 studies exploring
these phenotypes. Whilst there was large variation in the results of these studies, as
well as extremely heterogeneous cohorts, there is overall a tentative consensus that
ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a
common polymorphism (R577X) is associated with enhanced improvements in strength,
protection from eccentric training-induced muscle damage, and sports injury. This
illustrates that ACTNG is more than just a gene for speed, with potentially wide-ranging
influence on muscle function, knowledge of which may aid in the future personalization
of exercise training programmes.
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INTRODUCTION

ACTNS3 is a gene that encodes for alpha-actinin-3, a protein expressed only in type-II muscle fibers
(North et al., 1999). A common polymorphism in this gene is R577X (rs1815739), where a C-to-T
base substitution results in the transformation of an arginine base (R) to a premature stop codon
(X). X allele homozygotes are deficient in the alpha-actinin-3 protein, which is associated with a
lower fast-twitch fiber percentage (Vincent et al., 2007), but does not result in disease (MacArthur
and North, 2004). The XX genotype frequency differs across ethnic groups, with approximately
25% of Asians, 18% of Caucasians, 11% of Ethiopians, 3% of Jamaican and US African Americans,
and 1% of Kenyans and Nigerians possessing the XX genotype (Yang et al., 2007; MacArthur et al.,
2008; Scott etal., 2010). ACTN3 genotype is associated with speed and power phenotypes. Yang et al.
(2003) reported that elite sprint athletes had significantly higher frequencies of the R allele than
controls, a finding that has been replicated multiple times in speed, power and strength athletes
(Druzhevskaya et al., 2008; Roth et al., 2008; Eynon et al., 2009; Ahmetov et al., 2011; Cieszczyk
et al,, 2011; Kikuchi et al., 2016; Papadimitriou et al., 2016; Weyerstraf3 et al., 2017; Yang et al,,
2017), although these findings are not unequivocal (Scott et al., 2010; Gineviciene et al., 2011; Sessa
et al., 2011). Whilst Yang et al. (2003) found a trend toward an increased XX genotype frequency
in endurance athletes vs. controls, this relationship is less robust, with most studies reporting a
lack of association between XX genotype and endurance performance (Lucia et al., 2006; Saunders
et al., 2007; Doring et al., 2010; Kikuchi et al., 2016). In addition, whilst Kenyan and Ethiopian
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endurance runners are highly successful (Wilber and Pitsiladis,
2012), the frequency of the XX genotype within this group is very
low at 8% (Ethiopian) and 1% (Kenyan) (Yang et al., 2007). As
such, the general consensus is that ACTN3 X allele likely does not
modify elite endurance athlete status (Vancini et al., 2014).

Much of the attention on ACTN3 has focused on the robust
relationship with the R allele and strength/power phenotype,
with a number of reviews further exploring this relationship
(Eynon et al., 2013; Ma et al., 2013; Ahmetov and Fedotovskaya,
2015). Indeed, a number of papers referenced ACTN3 as a “gene
for speed” (MacArthur and North, 2004; Chan et al., 2008;
Berman and North, 2010). However, emerging evidence suggests
that this polymorphism may impact a number of other traits,
including exercise recovery, injury risk, and training adaptation
(Delmonico et al., 2007; Pimenta et al., 2012; Massidda et al.,
2017). The purpose of this mini-review is to further explore these
potential relationships, as an increased understanding of the role
played by ACTN3 on these traits may lead to improvements in
the utilization of genetic information in exercise training.

ACTN3 AS A MODULATOR OF TRAINING
RESPONSE

Over the last 20 or so years, the consistent underlying impact
of genetics on exercise adaptation has been well explored
(Bouchard et al., 2011; Bouchard, 2012). Whilst it is clear
that genetics has an undoubted influence on both exercise
performance (Guth and Roth, 2013) and adaptation (Mann et al.,
2014), fewer studies examine the influence of individual single
nucleotide polymorphisms (SNPs) (Delmonico et al., 2007), or a
combination of SNPs (Jones et al., 2016), on this process. In this
section, we explore the evidence regarding the impact of ACTN3
on the post-exercise adaptive response.

Following a structured literature search, we found five studies
that examined the influence of ACTN3 on exercise adaptation
to a standardized training programme (Table 1). Four of these

studied resistance training (Clarkson et al., 2005a; Delmonico
et al., 2007; Pereira et al., 2013; Erskine et al., 2014), and one
focused on aerobic training (Silva et al., 2015). An additional
study (Migi et al., 2016), monitored changes in VOjpeqi over
a five-year period in elite skiers, with no significant ACTN3
genotype differences. However, the exercise intervention in this
study was not controlled, and so we did not include it within
Table 1. There was considerable variation in the findings. For
resistance training, two studies reported that the RR genotype
was associated with the greatest increase in strength (Pereira
et al, 2013) and power (Delmonico et al, 2007) following
resistance training. One study reported no effect of ACTN3
genotype on training adaptations following resistance training
(Erskine et al., 2014). Another reported greater improvement in
one-repetition maximum (1RM) in X allele carriers compared to
RR genotypes (Clarkson et al., 2005a). A further study utilized
ACTN3 within a 15-SNP total genotype score (TGS), finding
that individuals with a higher number of power alleles (such
as ACTN3 R) exhibited greater improvements following high-
intensity resistance training compared to low-intensity resistance
training (Jones et al., 2016). However, because subjects could have
the ACTN3 XX genotype and still be classed as those who would
best respond to high-intensity training (due to the possession of a
higher number of alleles in other power-associated SNPs), we did
not include this study within Table 1.

The variation between studies is likely due to heterogeneity
at baseline between genotypes, and differences in exercise
prescription. Given the prevalence of the R allele in elite speed-
power and strength athletes (Yang et al., 2003; Vincent et al.,
2007), it is speculatively considered that R allele carriers would
respond best to speed-power and strength training (Kikuchi and
Nakazato, 2015). However, as illustrated here, there is perhaps
a paucity of data to support this position. Nevertheless, there
are some potential molecular mechanisms that could underpin
this proposition. Norman et al. (2014) reported that mammalian
target of rapamycin (mTOR) and p70S6k phosphorylation was
greater in R allele carriers than XX genotypes following sprint

TABLE 1 | Studies examining the interaction between ACTN3 genotype and exercise adaptation.

Study Method

Sample characteristics

Main outcome

Clarkson et al., 2005a 12 weeks progressive resistance exercise training
on non-dominant arm. Progression from 3 sets of
12 repetitions to 3 sets of 6 repetitions, with

concurrent increase in load.

Pereira et al., 2013 12-week high-speed power training programme.
Progression from 3 sets of 10 repetitions @ 40%

1RM to 3 sets of 4 repetitions @ 75% 1RM.

9-week unilateral knee extension resistance training
programme.

Erskine et al., 2014

Silva et al., 2015 18-week (3 sessions per week) endurance training
programme, comprised primarily of 60-min running,

individually controlled by heart rate monitor use.

Delmonico et al., 2007 10-week (3 session per week) unilateral knee
extensor strength training comprised of 4-5 sets of

10 repetitions.

602 (355 females) aged 18-40
(n = 133 XX genotype).

139 Older (mean = 65.5 years)
Caucasian females (n = 54 XX
genotype).

51 previously untrained young males
(n =7 XX genotype).

206 male Police recruits (n = 33 XX
genotype).

155 (n = 86 females) older (50-85
years) subjects (n = 39 XX genotype).

In females, the X allele was associated with
greater absolute and relative improvements in
1RM vs. RR genotypes.

RR genotypes exhibited greater performance
improvements (maximal strength, CMJ)
compared to X allele carriers.

Responses to resistance training were
independent of ACTN3 genotype.

At baseline, XX genotypes had greater VOo
measure scores than RR genotypes. Following
training, this difference disappeared; i.e., RR
had greater improvements than XX.

Change in absolute peak power greater in RR
vs. XX (p = 0.07) for males. Relative peak
power change greater in RR vs. XX (o = 0.02).
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exercise. Both mTOR and p70S6k regulate skeletal muscle
hypertrophy (Bodine et al., 2001; Song et al., 2005), providing
mechanistic support for the belief that hypertrophy, and hence
strength and power improvements, should be greater in R allele
carriers following resistance training. In addition, Ahmetov et al.
(2014) reported that testosterone levels were higher in male
and female athletes with at least one R allele compared to
XX genotypes. Whilst the direction of this association is not
clear, it again supplies a possible mechanism explaining why R
allele carriers may experience greater training-induced strength
improvements.

A single study examined the impact of this polymorphism
on the magnitude of VO, improvements following endurance
training (Silva et al., 2015). Here, VO, scores at baseline were
greater in XX genotypes, but following training this difference
was eliminated, indicating that RR genotypes had a greater
percentage improvement following training. The population in
this cohort were police recruits. Given that the X allele is
potentially associated with elite endurance athlete status (Yang
et al., 2003), it is not clear whether these results would be
mirrored in elite endurance athletes. Clearly, further work is
required to fully understand what relationship, if any, exists
between ACTN3 and improvements in aerobic capacity following
training.

ACTN3 AS A MODULATOR OF
POST-EXERCISE RECOVERY

ACTN3 R577X has also been associated with exercise-induced
muscle damage; here, increased muscle damage will likely reduce
speed of recovery, suggesting a potential modifying effect of this
polymorphism on between-session recovery. Of the eight studies
identified that examined the impact of this polymorphism on
post-exercise muscle damage (Table 2), six reported that that
the X allele and/or the XX genotype was associated with higher
levels of markers associated with muscle damage (Vincent et al.,
2010; Djarova et al., 2011; Pimenta et al., 2012; Belli et al., 2017;
Del Coso et al,, 2017a,b). One study found no effect of the
polymorphism (Clarkson et al., 2005b), and one found that RR
genotypes experienced a greater exercise-induced reduction in
force compared to XX genotypes (Venckunas et al., 2012). An
additional study (Del Coso et al., 2017c) examined the impact
of ACTN3 as part of a TGS on creatine kinase (CK) response
following a marathon race. Within this TGS, the R allele was
considered protective against increased CK concentrations. The
results indicated that those athletes with a higher TGS, and
therefore greater genetic protection, had a lower CK response
to the marathon. Whilst not direct evidence of the R allele’s
protective effect, as it is possible that the other SNPs used in
the TGS conveyed this effect, it nevertheless strengthens the
supporting argument.

The increase in post-exercise muscle damage is likely due to
structural changes associated with this polymorphism. Alpha-
actinin-3 is expressed only in fast-twitch muscle fibers, and X
allele homozygotes are alpha-actinin-3 deficient; instead, they
upregulate production of alpha-actinin-2 in these fast-twitch

fibers (MacArthur et al., 2007; Seto et al., 2011). Both alpha-
actinin-3 (encoded for by ACTN3) and alpha-actinin-2 are
major structural components of the Z-disks within muscle
fibers (Beggs et al., 1992). The Z-disk itself is vulnerable to
injury during eccentric contractions (Friden and Lieber, 2001),
and knock-out mouse models illustrates these Z-disks are
less stable during contraction with increased alpha-actinin-2
concentrations (Seto et al., 2011). A number of the studies in
Table 2 exclusively utilized eccentric contractions, whilst others
focused on prolonged endurance events that include running,
which incorporates eccentric contractions as part of the stretch
shortening cycle with each stride (Komi, 2000).

The overall consensus of these studies is that the X allele,
and/or the XX genotype, is associated with greater markers
of muscle damage following exercise that has an eccentric
component; either through direct eccentric muscle action
(Vincent et al, 2010), from sport-specific training (Pimenta
et al., 2012), or from a competitive event requiring eccentric
contractions (Belli et al., 2017; Del Coso et al., 2017a,b). However,
there are a number of weaknesses to these studies, potentially
limiting the strength of these findings. The overall subject
number is modest, with a total of 376 (mean 47) across all
eight studies; indeed, the study with the greatest number of
subjects, Clarkson et al. (2005b), reported no modifying effect
of this polymorphism on post-exercise muscle damage. The total
number of XX genotypes was also low, with 85 reported across
the studies. This is partly a function of the lower prevalence
(~18%) of this genotype, but again the study with the largest
number (n = 48) of XX genotypes found no effect of this
polymorphism (Clarkson et al., 2005b). It is clear that, in order
to increase the robustness of this association, further work with
greater subject numbers is required.

ACTN3 AS A MODULATOR OF
EXERCISE-ASSOCIATED INJURY RISK

We found six studies examining the association between ACTN3
genotype and sports injury risk (Table3). Three of these
examined ankle sprains (Kim et al.,, 2014; Shang et al., 2015;
Qi et al,, 2016), with one each for non-contact injuries (Iwao-
Koizumi et al., 2015), professional soccer players (Massidda et al.,
2017), and exertional rhabdomyolysis (ER) (Deuster et al., 2013).
Whilst ER is strongly related to increased CK following exercise
(Clarkson and Ebbeling, 1988; Brancaccio et al., 2010), because it
requires medical treatment we classified it as an injury. Of these
papers, five reported a protective effect of the R allele and/or
the RR genotype against injury (Deuster et al., 2013; Kim et al,,
2014; Shang et al,, 2015; Qi et al., 2016; Massidda et al., 2017).
Specifically, Deuster et al. (2013) found that XX genotypes were
almost three times more likely to be ER patients than R allele
carriers. Qi et al. (2016) reported a significantly lower frequency
of the RR genotype in a group of ankle sprain patients vs.
controls. Kim et al. (2014) found that XX genotypes were 4.7
times more likely to suffer an ankle injury than R allele carriers
in their cohort of ballerinas. Shang et al. (2015) reported the R
allele as significantly under-represented in a cohort of military
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TABLE 2 | Studies examining the interaction between ACTN3 genotype and exercise recovery.

Study

Method

Sample characteristics

Main outcome

Pimenta et al., 2012

Clarkson et al., 2005b

Vincent et al., 2010

Venckunas et al., 2012

Djarova et al., 2011

Del Coso et al., 2017b

Del Coso et al., 2017a

Belli et al., 2017

Eccentric-contraction based training

session.

50 maximal eccentric contractions of the

elbow flexor.

4 x 20 maximal single leg eccentric knee

extensions.

Two bouts of 50 drop jumps.

Resting blood sample.

Marathon race, pre- and post-race

Counter Movement Jump (CMJ).

Triathlon competition (1.9 km swim, 75km
cycle, 21.1 km run), pre- and post-race

CMJ.

37.1km adventure race (22.1 km

mountain biking, 10.9 km trekking, 4.1 km

water trekking, 30 m rope course).

37 male professional soccer players
based in Brazil. (n = 9 XX genotype).
157 male (n = 78) and female
subjects of various ethnicities

(n = 115 Caucasians; n = 48 XX
genotype).

19 healthy young males (n = 10 XX
genotype).

18 young males (n = 9 XX genotype).

31 South African Zulu males (n = 14
Cricketers and n = 17 controls). No
XX genotypes.

71 experienced runners (n = 8 XX
genotype).

28 healthy, experienced triathletes
(n = 19 males, n = 5 XX genotype).

20 well trained athletes (n = 15
males; n = 4 XX genotype).

Greater creatine kinase (CK) activity in XX genotypes
vs. RR.

No association of R577X with increases in CK and
myoglobin (Mb) following eccentric exercise.

XX genotypes had greater peak CK activity
post-training compared to RR genotypes, and
reported greater increases in muscle pain.

RR showed greatest decrease in voluntary force, and
slower recovery, compared to XX genotypes.

R allele associated with lower CK levels (RR vs. RX).

X allele carriers had higher CK and Mb levels
post-race compared to RR homozygotes. X allele
carriers also had a greater reduction in leg muscle
power compared to RR genotypes.

X allele carriers had a more pronounced jump height
reduction compared to RR genotypes. In X allele
carriers, there was a tendency toward higher
post-race Mb concentrations (P = 0.10) and CK
concentrations (P = 0.06) compared to RR
homozygotes.

XX genotypes had higher concentrations of serum
Mb, CK, lactate dehydrogenase (LDH) and AST
compared to R allele carriers.

TABLE 3 | Studies examining the interaction between ACTN3 genotype and sports injury.

Study

Method

Sample characteristics

Main outcome

lwao-Koizumi et al.,
2015

Deuster et al., 2013

Qietal, 2016

Kim et al., 2014

Shang et al., 2015

Massidda et al., 2017

Sports injury data survey.

Controls—lower body exercise test.
Cases—anonymous blood or tissue
sample collected after an exertional
rhabdomyolysis (ER) incident.

Ankle sprain case-control analysis.

Ankle injury case-control analysis.

Ankle injury case-control analysis.

Case control, genotype-phenotype
association study.

99 female students (n = 34 XX genotype).

134 controls and 47 ER patients (n = 38 XX
genotype)

100 patients with non-acute ankle sprain vs.

100 healthy controls (n = 89 XX genotype).

97 elite ballerinas and 203 normal female
adults (n = 65 XX genotype).

142 non-acute ankle sprain patients and 280
physically active controls (n = 87 XX genotype).

All military recruits.

257 male professional ltalian soccer players
and 265 non-athletic controls.

R allele associated with an increased odds ratio
(OR) of 2.52 of muscle injury compared to X allele.
XX genotypes 2.97 times more likely to be to ER
cases compared to R allele carriers.

Significantly lower frequency of RR genotype in
ankle sprain group compared to controls

(o = 0.001).

XX genotypes 4.7 times more likely to suffer an
ankle injury than R allele carriers.

RR genotype and R allele significantly
under-represented in the acute ankle injury group.

XX players were 2.6 times more likely to suffer a
sports injury than RR genotypes. Severe injuries
were also more likely in X allele carriers compared to
RR genotypes.

recruits reporting ankle sprains. Finally, Massidda et al. (2017)
demonstrated that XX genotypes were 2.6 times more likely to
suffer an injury than RR genotypes, and that these injuries were
more likely to be of increased severity. Only one study (Iwao-
Koizumi et al., 2015) reported that the R allele was associated with
an increased risk (OR = 2.52) of a muscle injury compared to X

allele carriers in a female cohort.

Regarding ER, the likely mechanism is similar to that
discussed in the post-exercise muscle damage section; increased
damage at the Z-disk during exercise. For ankle sprains, the
mechanism is potentially related to muscle function. R allele
carriers tend to have greater levels of muscle mass (MacArthur
and North, 2007), and specifically type-II fibers (Vincent et al.,

2007), indicating that both the RX and RR genotypes tend to
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have increased strength capabilities (Pimenta et al., 2013). For
other soft-tissue injury types, again, the decreased potential of
damage at the Z-disk likely reduces injury risk. This would be
particularly true for eccentric contractions; given the importance
of this contraction type in the etiology of hamstring injuries, this
could be a further causative mechanism (Askling et al., 2003),
alongside that of reduced muscle strength (Yamamoto, 1993).
Alongside the modifying role of ACTN3 on muscle strength
and injury risk, emerging evidence suggests this SNP may also
impact flexibility and muscle stiffness. Two studies reported an
association between RR genotype and a decreased flexibility score
in the sit-and-reach test (Zempo et al., 2016; Kikuchi et al., 2017).
Conversely, Kim et al. (2014) reported that XX genotypes had
decreased flexibility in the same test. This lack of consensus is
largely due to the small total study number, with greater clarity

expected as research in the area evolves. It also mirrors the lack
of consensus as to whether flexibility increases or decreases risk
of injury (Gleim and McHugh, 1997), indicating the complex,
multifactorial nature of injuries and their development (Bahr and
Holme, 2003).

In summary, it appears that the R allele of ACTN3 is somewhat
protective against injuries. The mechanisms underpinning this
are likely varied, and related to a combination of the modifying
effects of this SNP on both strength (particularly eccentric
strength), exercise-induced muscle damage, and flexibility.

DISCUSSION

The results of this mini-review indicate that, aside from its
established role in sporting performance, the ACTN3 R577X

R allele: R allele:

¢ Enhanced response to o
resistance training
training

XX genotype:

¢ Reduced response to .
resistance training

ACTN3

|
)
|

Reduced post-exercise muscle .
damage following eccentric .

XX genotype:

Increased post-exercise o
muscle damage following .
eccentric training

FIGURE 1 | A summary of the potential wider implications of ACTN3 genotype on outcomes from exercise.

O
I\

l

Reduced injury risk
Possible reduction in flexibility

R allele:
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Increased injury risk
Possibly enhanced flexibility
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polymorphism also potentially modifies exercise adaption,
exercise recovery, and exercise-associated injury risk. As this
polymorphism directly influences both muscle structure and
muscle fiber phenotype, this is perhaps unsurprising, and points
to the potential use of knowledge of this polymorphism in the
development of personalized training programmes. However, it
is important to consider the limitations surrounding many of
these studies. The subject numbers in the considered studies
tended to be low, with large heterogeneity between study
cohorts, ranging from untrained subjects to professional sports
people, as well as differences in sex. Both of these aspects
will impact the study findings; the effect of this polymorphism
may be smaller in untrained subjects, for example, whereas
in elite, well-trained athletes, who are likely closer to their
genetic ceiling, the effect may be greater. The low subject
numbers are troubling due to the relatively low XX genotype
frequency, which is ~18% in Caucasian cohorts, and even
lower in African and African-American cohorts. As such,
XX genotypes are considerably under-represented across the
considered research.

The above limitations indicate further work is required to
fully understand the impact of this polymorphism on these
phenotypes. That said, there is some consistency between trials,
allowing speculative guidelines to be developed for the use
of genetic information in the development of personalized
training. XX genotypes potentially have increased muscle
damage following exercise that includes an eccentric component
(Pimenta et al., 2012; Belli et al., 2017; Del Coso et al,
2017a,b). This information may, consequently, be used to guide
between-session recovery, and during the competitive season
recovery times post-competition. For example, in an elite soccer
club, ACTN3 genotype could be utilized alongside other well-
established markers to determine training intensity in the
days following a match, with players genetically predisposed
to increased muscle damage either having a longer recovery
period, or increased recovery interventions such as cold-water
immersion. In addition, recent research has illustrated the
positive impact of Nordic Hamstring Exercises on hamstring
injury risk (van der Horst et al., 2015), making these exercises
increasingly common in professional sports teams. These
exercises have a large eccentric component, upon which this
polymorphism may have a direct effect. As such, it would
be expected that XX genotypes would have increased muscle
soreness and damage following these exercises, potentially
impacting the timing of their use within a training programme.

Focusing on sporting injuries, the general consensus from
the studies found is that the X allele increased the risk of ankle
injuries (Kim et al., 2014; Shang et al., 2015; Qi et al., 2016)
and general sporting injury (Massidda et al., 2017). Again, this
information could guide training interventions. In this case, X
allele carriers might undertake increased general strengthening
exercises and neuromuscular training targeting injury risk
reduction. Furthermore, knowledge of this information could
increase athlete motivation to undertake these exercises (Goodlin
et al., 2015).

Finally, maximizing the training response is crucial, both
to elite athletes looking to improve by fractions of a second,
and to beginners looking to decrease their risk of disease.
Increasingly, there is evidence that polymorphisms, including
ACTN3 R577X, can impact this adaptive process (Delmonico
et al., 2007; Pereira et al., 2013). If further research replicates
these early findings, then again, this information could be used in
the development of training programmes. Regarding ACTN3, at
present it appears that R allele carriers potentially exhibit greater
increases in strength and power following high-load resistance
training (Delmonico et al., 2007). As such, Kikuchi and Nakazato
(2015) speculate that R allele carriers should prioritize high-load,
low-repetition resistance training if improvements in muscle
strength are required, and high intensity interval (HIT) training
to specifically elicit improvements in VOjp,y.

CONCLUSION

There is a clear, undoubted impact of genetics on both
sporting performance and exercise adaptation. In this regard,
one of the most well-studied genes is ACTN3, which has
been reliably shown to impact speed-power and strength
phenotypes. However, emerging research indicates that this
polymorphism may also impact other exercise associated
variables, including training adaptation, post-exercise recovery,
and exercise-associated injuries; this research is summarized
in Figure 1. This information is important, not just because
it illustrates the wide-ranging impact SNPs can have, but also
because it represents an opportunity to personalize, and therefore
enhance, training guidelines. At present, there are no best-
practice guidelines pertaining to the use of genetic information
in both elite sport and the general public. However, sports teams
have been using genetic information for over 10 years (Dennis,
2005), and continue to do so. Consequently, the development
of these guidelines represents an important step from lab to
practice. Clearly, further research is required to fully develop
these guidelines, and at present such information is speculative.
Nevertheless, the use of genetic information represents an
opportunity to enhance training prescription and outcomes in
exercisers of all abilities.
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