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Intravascular hemolysis occurs in hereditary, acquired, and iatrogenic hemolytic

conditions but it could be also a normal physiological process contributing to intercellular

signaling. New evidence suggests that intravascular hemolysis and the associated

release of adenosine triphosphate (ATP) may be an important mechanism for in vivo local

purinergic signaling and blood flow regulation during exercise and hypoxia. However, the

mechanisms that modulate hypoxia-induced RBC membrane fragility remain unclear.

Here, we provide an overview of the role of RBC ATP release in the regulation of

vascular tone and prevailing assumptions on the putative release mechanisms. We show

importance of intravascular hemolysis as a source of ATP for local purinergic regulation of

blood flow and discuss processes that regulate membrane propensity to rupture under

stress and hypoxia.

Keywords: red blood cell, red cell ATP release, intravascular hemolysis, purinergic signaling, red cell membrane

fragility, hypoxia-induced ATP release

INTRODUCTION

During the last three decades it has become increasingly clear that in addition to passive uptake and
release of oxygen and metabolically-derived gases, the red blood cells (RBC) also exhibit diverse
oxygen-sensitive responses that autonomously regulate their own properties and functions. For
example, changes in partial oxygen tension (PO2) trigger a shift in glucose consumption from
the pentose phosphate pathway (PPP) in oxygenated cells to glycolysis in deoxygenated cells
(Messana et al., 1996). This shift is adaptive, since hemoglobin undergoes constant oxidation to
methemoglobin in oxygenated cells, and its reduction back to hemoglobin would be facilitated by
the enhanced production of NADPH in the PPP. Deoxygenation affects active Ca2+ transport and
cytoplasmic Ca2+ buffering in human RBC (Tiffert et al., 1993). It was also shown that PO2 has
an impact on the activity of RBC monovalent ion transporters (Bogdanova et al., 2009). In RBC
from several fish species, low PO2 is required for β-adrenoceptor-mediated stimulation of Na+/H+

exchanger and elevation of hemoglobin affinity for O2 via cytoplasm alkalization (Nikinmaa,
2002). In human RBC with mutated hemoglobin (HbS) K+, Cl− co-transport has an abnormal
PO2-dependence that probably contributes to the pathogenesis of sickle cell anemia (Brugnara
et al., 1996). Apart from the above-listed enzymatic and ion transport pathways, mammalian
RBC also show hypoxia-induced responses involved in regulation of blood flow. These include
two different, likely complementary mechanisms: rapid reduction of blood viscosity via increased
RBC deformability and, delayed but sustained increase of vessel’s diameter via release of adenosine
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triphosphate (ATP) and purinergic receptor stimulated
production of NO and other vasorelaxants in vascular endothelial
cells.

Effects of Hypoxia on Blood Viscosity and
RBC Deformability
Blood viscosity is determined by RBC flow properties that include
adhesion, aggregation and deformability, i.e., ability to change
shape under a given stress without hemolysing. Erythrocyte
deformability affects blood flow in large blood vessels, due to
the increased frictional resistance between fluid layers under
laminar flow conditions. It also affects the microcirculatory blood
flow significantly where erythrocytes are forced to pass through
blood vessels with diameters smaller than their size. Numerous
pathologies are associated with a decrease of RBC deformability.
For our review it is important to note that increased blood
viscosity in sickle cell anemia is caused by decreased RBC
deformability due to gel formation of deoxygenated mutated
hemoglobin HbS and its interaction with the cell membrane
proteins determining membrane elasticity (for review see Yedgar
et al., 2002; Diez-Silva et al., 2010; Viallat and Abkarian, 2014).

Modulation of blood viscosity by PO2 may involve
different processes depending on the duration and extent
of oxygenation/deoxygenation. On the long time scale, these
may include gradual changes of RBC membrane surface charges,
mainly due to reduction in sialic acid content, and deformability
that correlate with age (Huang et al., 2011) and markers of
oxidative stress (Mehdi et al., 2012). On the other hand, the
impact of prolonged hypoxia on RBC membrane properties
remains poorly defined which contrasts with well documented,
e.g., altered protein sialation in other cells types such as tumor
cells. However, brief dips to a lower range of PO2 as they occur
in microcirculation, were recently found to have acute and
significant impact on blood viscosity. Wei et al. (2016) reported
that microinjection of O2 scavengers resulted in vasoactive
mediator-independent capillary hyperemia in mice cerebral
microcirculation. In additional experiments, using microfluidic
channels of small (5µm) or large (20µm) size they assessed effect
of oxygenation on erythrocyte flow velocity and shear-induced
deformability, respectively. These experiments revealed that O2

depletion increased the velocity of erythrocyte flowing through
the microfluidic channel due to increased RBC membrane
deformability. Viewed collectively, these data demonstrate that
in addition to the increment of vessel diameter (see below),
elevation of blood flow in microcirculatory beds under hypoxic
conditions might be achieved via PO2-dependent regulation of
erythrocyte deformability as a key determinant of blood viscosity
(Wei et al., 2016).

Effects of Hypoxia on RBC ATP Release
and Purinergic Regulation of Vascular Tone
Besides release of hemoglobin-associated nitric oxide (NO),
hypoxia affects vascular tone via release of ATP from RBCs that,
in turn, leads to activation of P2Y receptors on endothelial cells,
stimulation of NO production and NO-mediated vasodilation
(Dietrich et al., 2000; Wang et al., 2005; Ellsworth and Sprague,

2012; for review, see Ellsworth et al., 2009, 2016; Jensen, 2009;
Luneva et al., 2015). In vitro studies have shown that shear
stress, mechanical deformation and hypoxia are major stimuli
of RBC ATP release (Bergfeld and Forrester, 1992; Sprague
et al., 1996; Forsyth et al., 2012; Mairbäurl et al., 2013). These
observations were confirmed usingmicrobore capillaries (Fischer
et al., 2003) and microfluidic channels (Price et al., 2004;
Forsyth et al., 2011) demonstrating that shear stress per se is
sufficient to trigger ATP release from RBC (Wan et al., 2011).
Importantly, elevated ATP levels have also been found in vivo
in venous effluent from exercising forearm muscle (Forrester,
1972; Ellsworth et al., 1995) and further augmented by exercise
performed in hypoxia (Dietrich et al., 2000; González-Alonso
et al., 2002). It has been demonstrated that only when the
vessels were perfused with RBCs did venous effluent ATP level
increase and the vessels dilate in response to low extraluminal
PO2 (Dietrich et al., 2000). Recent studies have shown that
RBC-mediated ATP release is reduced in aging humans, which
may contribute to impaired vasodilation and oxygen delivery
to skeletal muscle during hypoxemia with advancing age
(Kirby et al., 2012). Attenuated ATP production and release
during deoxygenation was also found in banked RBCs, likely
contributing to augmented microvascular adhesion of transfused
RBCs in vivo. These alterations could be substantially corrected
by restoring glycolysis-mediated ATP production (Kirby et al.,
2014). To the best of our knowledge the comparative analysis of
the action of hypoxia on ATP release under baseline conditions
and in RBC subjected to shear stress has not been performed
yet.

Search for Transporters Involved in ATP
Release Triggered by Hypoxia
Since mature mammalian RBCs are devoid of intracellular
organelles and unable to secrete ATP via endoplasmic reticulum-
dependent exocytosis, it might be assumed that ATP release
from RBC in hypoxic conditions is mediated by ATP-conducting
channels (Praetorius and Leipziger, 2009). Cystic fibrosis
transmembrane conductance regulator (CFTR), Pannexin-1
(Panex1), voltage dependent anion channel (VDAC), and other
poorly defined VDAC-like maxi anion channels have been
implicated in conductive ATP release in RBCs and in other cell
types (Sprague et al., 1998; Sridharan et al., 2010, 2012).

Early reports have suggested that CFTR and other members
of the superfamily of ATP-binding cassette transport proteins
serve as a conductive pathway for ATP release, or regulate
an associated ATP channels in several cell types, including
RBCs (Reisin et al., 1994; Sugita et al., 1998). Since CFTR
activity is regulated by cAMP-dependent PKA, it has been also
hypothesized that shear stress- and hypoxia-induced ATP release
involves activation of the cAMP signaling pathway (Sprague
et al., 2007). Consistent with this hypothesis, ATP release has
also been reported in response to other stimuli that elevate
cAMP, such as agonists of prostacyclin (Montalbetti et al., 2011;
Sridharan et al., 2012), or β-adrenergic receptors (Olearczyk
et al., 2001; for review see Ellsworth and Sprague, 2012).
However, subsequent studies by several independent groups with
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the patch clamp, lipid bilayer, and luminometry techniques,
have not revealed any detectable CFTR-mediated or CFTR-
regulated ATP release in several epithelial and non-epithelial
cells (Grygorczyk et al., 1996; Li et al., 1996; Reddy et al., 1996;
Grygorczyk and Hanrahan, 1997a,b; Watt et al., 1998; Hazama
et al., 1999). In particular, it was also determined that CFTR
protein is absent in the RBCs (Hoffman et al., 2004) and the role
of cAMP signaling pathway in stimulating RBC ATP release was
contradicted by recent studies (Sikora et al., 2014; Keller et al.,
2017).

VDAC mediates ATP movement across the outer
mitochondrial membrane (Rostovtseva and Colombini, 1997),
and similar large conductance anion selective channels have
occasionally been found in the plasma membrane of several cells
(Báthori et al., 2000). However, these plasma membrane maxi
anion channels and VDAC were shown to be unrelated proteins
(Sabirov et al., 2006, 2017). VDAC pore selectivity favors the
flow of adenine nucleotides (ATP, ADP) and anionic metabolites,
over molecules of the same size and charge. The flow of small
cations, including Ca2+, proceeds at significant rates even for
closed channel state (Colombini, 2012). Thus, presence of such
large-conductance poorly selective channels in cell plasma
membrane would perturb significantly cell homeostasis. Similar
concerns may apply to other putative ATP channels (see below).

Connexins and the related pannexins, particularly Panx1
currently appear to be the most extensively investigated family
of proteins reported to function as ATP conduits in a broad
range of cell types (Romanello et al., 2001; Dando and Roper,
2009; Ma et al., 2009; Ransford et al., 2009; D’hondt et al., 2010;
Lazarowski et al., 2011), including RBCs (Sridharan et al., 2010;
Qiu et al., 2011; Chu et al., 2016). Nevertheless, several basic
Panx1channel properties, including single channel conductance,
selectivity and regulatory mechanisms still remain unclear (Chiu
et al., 2014). Systematic electrophysiological studies revealed
that Panx1 is a relatively low conductance anion channel
(unitary conductance of 68 to 75 pS) with negligible permeability
to large anions (aspartate, glutamate, gluconate), (Ma et al.,
2012; Chiu et al., 2014). In particular, no measurable Panex1
permeability to ATP was detected in taste buds and several
heterologous expression systems (HEK-293, CHO, and SK-N-
SH cells) (Romanov et al., 2012). Thus, direct patch-clamp
experiments to determine its selectivity so far did not provide
convincing support for the involvement of these channels in
ATP release. It has been suggested however, that permeability
characteristics could change depending on how the channel was
activated (Chiu et al., 2014).

Piezo 1 is a mechanosensitive non-selective cation channel
expressed on RBC membrane. Gain-of-function mutations in
Piezo 1 were linked to dehydrated hereditary stomatocytosis
(Zarychanski et al., 2012; Albuisson et al., 2013). It was recently
shown that Piezo 1 regulates mechanosensitive ATP release in
RBCs by controlling the shear-induced Ca2+ influx (Cinar et al.,
2015). Based on pharmacological data it was proposed that the
release may involve CFTR and/or Pannexin 1 channels, but in
the light of concerns discussed above, alternative pathways that
might be modulated by intracellular Ca2+-elevation should be
also considered (see below).

Regardless of the molecular nature of ATP-conducting
channels, the main conceptual difficulty with such a release
mechanism is that ATP permeation requires pore of large
dimensions (0.6–1.1 nm, Sabirov and Okada, 2005), resulting in
poor selectivity and large conductance (hundreds of pS) for small
ions such as K+, Na+, Cl−, and Ca2+, as exemplified by the well
characterized VDAC channel. VDAC selectivity for ATP, ADP
is based on steric constrains and charge distribution allowing
to discriminate between large anions but it does not prevent
permeation of small cations. Opening of such large, non-selective
pores in the plasma membrane will result in significant influx
of Na+ and Ca2+ down their electrochemical gradients into the
cytoplasm, posing an overwhelming challenge to normal cell
homeostasis and survival (Akopova et al., 2012). Furthermore,
in terms of energy expenditure, conductive ATP release would
be a costly mechanism of intercellular signaling that requires
action of energy-consuming transport processes to re-establish
normal cellular Ca2+, Na+, and K+ gradients. To the best of
our knowledge, currently there is no example of a channel
that on one hand would allow high permeability for anions
as large as ATP and, on the other would prevent significant
fluxes of small cations. None of the currently known putative
plasma membrane ATP channels seems to be compatible with
the requirement of preserving cell homeostasis. Therefore, the
concept of such release mechanisms should be treated with
caution.

ATP Release by Hemolysis
Hemolysis is an important source of extracellular ATP, and
intravascular hemolysis occurs in vivo as a consequence of
hypoxia and mechanical trauma to RBCs (Shaskey and Green,
2000; Mao et al., 2011; Mairbäurl, 2013). Although it has been
also considered to be a potential factor contributing to stimulated
ATP release in most previous in vitro investigations, its actual
involvement has often not been assessed systematically. By paired
measurements of ATP and free hemoglobin in each and every
sample of human RBC supernatants Sikora et al. found that
basal and stimulated ATP release not only correlated tightly
with extracellular hemoglobin, but matched the levels expected
from cell lysis and independently determined cell ATP content
(Sikora et al., 2014, 2015). Unexpectedly, this was seen with all
stimuli tested (hypotonic shock, shear stress, hypoxia) strongly
indicating that, for each stimulus, the only source of extracellular
ATP was cell lysis (Sikora et al., 2014; Luneva et al., 2016).
Surprisingly, stimulation of cAMP pathway had no effect on RBC
ATP release, which remained at the basal level observed with
unstimulated cells. The report triggered a significant debate in
the field with opposing views presented by Kirby et al. (2015)
and Sikora et al. (2015). Absence of cAMP-regulated ATP release
was recently confirmed by Keller et al. who also showed using
Panex1−/− mice model that Panex1 has no role in exercise
performance, challenging assumptions about Panex1 role in
ATP-dependent blood perfusion to exercising skeletal muscle
(Keller et al., 2017). In the study by Sikora et al. the primary
role of hemolysis in hypotonic shock-induced ATP release
was confirmed more directly by simultaneous luminescence
ATP imaging and infrared imaging of substrate-attached RBCs
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(Sikora et al., 2014). With luciferin-luciferase (LL) present in the
extracellular solution these experiments identified single ATP-
releasing cells and revealed that only lysing cells contributed
to the release. This was seen as a flash of ATP-dependent
LL luminescence around the cell followed, after some delay,
with cell ghosting due to Hb leakage, Figure 1A. Individual
cells showed variable duration of ATP release as might be
expected for different number and/or size of lytic pores in the
membrane, Figure 1B. Interestingly, time-course of ATP release
correlated with time delay of cell ghosting, i.e., cells showing
slower ATP release also displayed longer delay before ghosting,
consistent with slower Hb leakage. This is in agreement with
3-to 4-fold difference of their diffusion coefficients in water,

supporting the view that release of Hb and ATP proceeds
through the common pathway. The study demonstrated that
at least in the case of hypotonic shock and cAMP/forskolin
stimulation hemolysis is likely the only mechanism of RBC ATP
release, and therefore processes that control RBC susceptibility
to lysis will also contribute to modulation of ATP release
(Sikora et al., 2014). In the light of this finding there is an
urgent need to understandmechanisms underlying the hemolysis
(Thomas, 2014).

RBC fragility, or propensity to hemolyse under osmotic
or mechanical stress, is determined by properties of the cell
membrane. It is comprised of a phospholipid bilayer and
an underlying two-dimensional cytoskeleton, a network of

FIGURE 1 | ATP release due to lysis of single RBCs. (A), sequential infrared images of RBCs (green) that are overlaid with extracellular ATP-dependent

bioluminescence from luciferin-luciferase reaction (red). Elapsed time is indicated in the right-upper corners (min:s). Twenty percent of hypotonic solution was

introduced at time 0 and hypotonic shock-induced ATP release is shown on the center image. Ghosting of the RBC (indicated by arrow) due to Hb leakage occurred

with a delay of about 66 s. No ATP release from intact RBCs is evident. (B), three examples of ATP release time-course due to lysis of single RBCs such as shown in

A. Duration of ATP release τ (in s) is indicated for each trace and corresponding delay from peak ATP release until cell ghosting is shown below. Adapted from Sikora

et al. (2014).
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actin and α- and β-spectrin molecules that are held together
by ankyrin. The membrane is stabilized by interactions of
ankyrin with band 3, the major RBC membrane integral
protein (Mohandas and Gallagher, 2008). The composite
properties of the phospholipid bilayer and 2D cytoskeleton
are responsible for the biconcave discocyte morphology of
healthy RBC and membrane elastic and rheological properties.
Disruptions of interactions between cytoskeletal components
and/or integral membrane proteins change spectrin network
density causing cell morphological changes and membrane
fluctuations, affecting RBC deformability and fragility (Diez-Silva
et al., 2010).

Under shear stress the RBC cell membrane deforms until
the membrane reaches its “yield point.” Beyond this threshold
point, additional stress results in irreversible plastic deformation
of the membrane, which accelerates with accumulation of
microdefects in the membrane, leading to the cell destruction
(Orbach et al., 2017). However stressed cells do not rupture
immediately, the time-course of this process depends on
the duration and extent of the stimuli. Li et al. (2013)
showed that after exposure to brief pulse of cavitation-
induced shear stress (i.e., during air bubble formation and
collapse) RBC lysis is a 2-step process. It involves formation
of nanopores followed by colloidal osmotic cell swelling
until cell bursts. To reach that point, the nanopores in the
membrane must remain for a sufficient time. In erythrocyte
membrane the brush-like glycocalyx molecules by steric
interactions may contribute to stabilization of nanopores. In
their study pores of up to 1.6µm effective size were formed
at rupture site that allowed diffusion of cellular content. Lysis
occurred within few seconds to several tenths of seconds.
Interestingly, in these experiments cells that ruptured showed
irregular shape, indicating that changes in the 2D spectrin
network and/or anchor points to plasma membrane are
important factors enabling lytic pore formation (Li et al.,
2013).

Role of RBC Aging and Membrane
Vesiculation
The circulating RBCs undergo a natural aging process occurring
throughout their lifespan of about 120 days. The aged “senescent”
cells are characterized by loss of cell surface area, cell morphology
alterations, increased cell rigidity and aggregability, reduced level
of cell membrane stomatin (band 7 protein), and translocation
of phosphatidylserine (PS) to the cell surface. The surface
membrane content of sialoglycoproteins and sialic acids which
accounts for majority of the negative surface charge of RBC
membrane is also reduced in aged RBC contributing to altered
RBC membrane mechanical and electrical properties, receptor-
mediated cellular interactions, immune responses and survival
(Durocher et al., 1975; Huang et al., 2011). The aging of RBCs
are also characterized by the formation and accumulation of
microdefects in the RBC membrane which as mentioned above,
makes them susceptible to stress. Indeed, Orbach et al. found
that the cells that were destroyed under low mechanical stress
were characterized by low deformability, high level of surface

PS, and reduced level of membrane stomatin, all properties
consistent with aged senescent cells possessing augmented
macrovesicle formation terminated by RBC lysis (Orbach et al.,
2017).

The molecular mechanisms underlying the formation of the
plasma membrane macrovesicles remain poorly understood.
Changes in metabolic status and decrease of cellular ATP levels
during prolonged deoxygenation induce RBC shape changes
and increase membrane fluctuations. Membrane fluctuations
are directly linked to binding of membrane bilayer to spectrin
network which is actively controlled by ATP (Diez-Silva et al.,
2010; Park et al., 2010). Low ATP-induced morphological
changes are reversible upon restoration of normal cellular ATP
levels. Thus, metabolic status of RBC might be important
factor affecting RBC susceptibility to membrane vesiculation
and RBC lysis. It was also well documented that RBC
vesiculation is sharply potentiated by elevation of intracellular
Ca2+ concentration ([Ca2+]i) via activation of scramblase and
inhibition of flipase. These [Ca2+]i-dependent events results in a
collapse of membrane phospholipid asymmetry and cytoskeleton
detachment (for review see (Greenwalt, 2006; Alaarg et al.,
2013). In early studies, Tiffert and co-workers observed that brief
deoxygenation results in elevation of [Ca2+]i up to 70% that
was probably caused by Ca2+-ATPase inhibition (Tiffert et al.,
1993).

Intravascular vesiculation process and associated hemolysis
of senescent cells in healthy subjects was reassessed in recent
study by Ciana et al. (2017). They showed that contrary
to some earlier in vitro investigations vesiculation process
of senescent RBCs removes membrane in a balanced way
as a lipid bilayer vesicles containing membrane cytoskeleton.
Moreover, the study suggests that in vivo vesiculation almost
entirely occurs by active processing in the spleen producing
progressively smaller but otherwise viable discoid shape cells.
This agrees with the view that vesiculation is a self-protective
mechanism to remove damaged membrane patches containing
removal proteins, thereby postponing untimely elimination of
healthy RBCs (Willekens et al., 2008). The study implies that
in healthy subjects under normal conditions contribution of
intravascular hemolysis to RBC clearance may be negligible.
Therefore, intravascular hemolysis may occur only under
particular conditions in the localized regions of the vasculature
where elevated shear and hypoxia may arise, such as in the
microvessels of skeletal muscle during intense exercise. It should
be noted, however, that due to high ATP content of RBCs (1–
5mM) even negligibly small intravascular hemolysis may readily
produce local ATP concentrations reaching∼1µM, sufficient for
purinergic control of blood flow. For example, lysis of a single
erythrocyte will result in ATP concentration of 1µM within 2–
10mm long segment of a capillary with a diameter comparable
to RBC size (7µm). Thus, a miniscule fraction of the circulating
pre-senescent cells, e.g., those prior to their processing in the
splenic system could constitute a sufficient pool of RBCs available
for intravascular hemolytic ATP release and blood flow control.
Contribution of the oldest RBCs showing so called terminal
density reversal and the role of the nonselective cationic channels
in the sustained elevation of Ca2+ and triggering of hemolysis
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should be also considered (Lew and Tiffert, 2013; Thomas,
2014).

Search for Upstream PO2 Sensors and
Downstream Intermediates of
PO2-Dependent Signaling
Hemoglobin is the only known O2-binding protein in
erythrocytes. Keeping this in mind, the reversible association
of oxygenated and/or deoxygenated hemoglobin (oxyHb and
deoxyHb, respectively) with downstream intermediates of
intracellular signaling might be considered as a mechanism of
triggering PO2-dependent erythrocyte responses. Indeed, in
cell-free experiments it was shown that hemoglobin binds to
the cytoplasmic domain of band 3 (cdb3) (Cassoly, 1983; Low
et al., 1984) also known as anion exchanger (AE1, SLC4A1), i.e.,
the major integral protein of erythrocytes membrane, playing a
key role in anion transport and the organization of membrane
cytoskeleton (Reithmeier et al., 2016). Importantly, both in
human and mice the affinity of cdb3 for deoxyHb is much
higher than for oxyHb (Walder et al., 1984; Sega et al., 2012,
2015).

Downstream intermediates of PO2-dependent erythrocyte
responses remain poorly understood (Figure 2). Stefanovic and
co-workers has demonstrated that oxygentation strengthens

band 3-ankyrin interactions, thereby stabilizing the erythrocyte
membrane during turbulent flow from the lungs to the
capillary beds (Stefanovic et al., 2013). Deoxygenation
displaces ankyrin from band 3 releasing the spectrin/actin
cytoskeleton from the membrane. This weakening of membrane-
cytoskeleton interactions could increase RBC deformability
enabling deoxygenated RBCs move more efficiently through
narrow capillaries. Prolonged deoxygenation, on the other
hand, could increase membrane propensity to rupture due
to diminished mechanical support by the cytoskeleton.
Indeed, theoretical considerations of membrane stability
and pore formation in a lipid bilayer showed importance
of cytoskeletal network in stabilizing the membrane against
pore growth by reducing the surface tension (Sung and Park,
1997).

It is important to note that when oxygenated RBCs enter
a region of low PO2 the full-scale saturation of hemoglobin
deoxygenation occurs within 25ms (Ellsworth et al., 2016).
Therefore, we constructed a special chamber allowing isolation
of RBC ghosts in control and deoxygenated conditions
and found a ∼2-fold elevation of ∼60 kDa membrane-
bound protein content under deoxygenated conditions (Luneva
et al., 2016). Currently, we employ proteomics technology for
identification of full set of proteins whose interaction with RBC
membrane is affected by hypoxia. This approach should lead to

FIGURE 2 | Mechanisms underlying the implication of RBC in blood flow regulation. Hypoxia leads to accumulation of deoxyhemoglobin (DeoxyHb) and its interaction

with cytoplasmic domain of anion exchanger (Band 3 protein). This interaction triggers signaling via changes in the content of unknown membrane-bound proteins (?)

resulting in increased RBC deformability, membrane vesiculation and ATP release via hemolysis. For more details, see text.
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identification of downstream intermediates involved in hypoxia-
induced ATP release mediated by diminished RBC membrane
integrity.

FUTURE RESEARCH DIRECTIONS

Several issues remain unsettled and require further
investigations. Among them the question remains if besides
hemolysis as the primary release mechanisms, are there
conditions or stimuli that would induce regulated non-lytic ATP
release from RBC and what pathway it could involve? What
might be the contribution of young immature erythrocytes
(reticulocytes) to such release? With their residual intracellular
structures could they release ATP via exocytosis? While modest
in relative terms (0.5–2.5%) these cells constitute a significant
cellular pool (∼4.5 × 104 cells/µl) with plenty of ATP for
local purinergic signaling. If conductive release pathway would

be involved what could be the mechanism allowing selective
permeation of ATP but preventing massive influx of Ca2+ and
Na+? Finally, much remains to be learned about the downstream
intermediates involved in hypoxia-induced membrane fragility,
membrane microdefects, lytic pore formation and associated
ATP release.
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