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Objective: As the multiple trigonometric regressive spectral (MTRS) analysis is

extraordinary in its ability to analyze short local data segments down to 12 s, we wanted

to evaluate the impact of the data segment settings by applying the technique of MTRS

analysis for baroreflex sensitivity (BRS) estimation using a standardized data pool.

Methods: Spectral and baroreflex analyses were performed on the EuroBaVar dataset

(42 recordings, including lying and standing positions). For this analysis, the technique of

MTRS was used. We used different global and local data segment lengths, and chose

the global data segments from different positions. Three global data segments of 1 and

2min and three local data segments of 12, 20, and 30 s were used in MTRS analysis

for BRS.

Results: All the BRS-values calculated on the three global data segments were highly

correlated, both in the supine and standing positions; the different global data segments

provided similar BRS estimations. When using different local data segments, all the

BRS-values were also highly correlated. However, in the supine position, using short

local data segments of 12 s overestimated BRS compared with those using 20 and 30 s.

In the standing position, the BRS estimations using different local data segments were

comparable. There was no proportional bias for the comparisons between different BRS

estimations.

Conclusion: We demonstrate that BRS estimation by the MTRS technique is stable

when using different global data segments, and MTRS is extraordinary in its ability

to evaluate BRS in even short local data segments (20 and 30 s). Because of the

non-stationary character of most biosignals, the MTRS technique would be preferable

for BRS analysis especially in conditions when only short stationary data segments are

available or when dynamic changes of BRS should be monitored.

Keywords: baroreflex sensitivity, multiple trigonometric regressive spectral analysis, baroreflex function, data

segment, autonomic nervous system
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INTRODUCTION

The arterial baroreflex is of fundamental importance for
cardiovascular homeostasis, and its impairment may play an
adverse role in several diseases (Ziemssen et al., 2013). There is
an inverse relation between baroreflex sensitivity (BRS) and the
risk of mortality after myocardial infarction, and interventions
that improve BRS had beneficial clinical impact on cardiovascular
mortality (La Rovere et al., 1988, 2002; La Rovere, 2000).

Numerous non-invasive techniques that analyze the
sensitivity of spontaneous baroreflex control of heart rate
and blood pressure (BP) have been developed (Bertinieri et al.,
1985; Blaber et al., 1995; Ducher et al., 1995; Di Rienzo et al.,
2001; Laude et al., 2004; Westerhof et al., 2004; Bernardi et al.,
2010; Porta et al., 2013; Svacinova et al., 2015). They differ
in their general approaches (analysis in time, frequency, or
information domains; causal vs. non-causal analyses) and the
applied statistical details (length of data segment analyzed,
window technique, number of single BRS-values for analysis).
Because of their considerable differences, studies comparing the
performance of these methods are needed.

The EuroBaVar study compared 21 methods of BRS analysis
(Laude et al., 2004). The multiple trigonometric regressive
spectral analysis (MTRS) technique for BRS evaluation had
an excellent performance in comparison with the sequence
methods and the spectral analysis based on fast Fourier
transform. In addition, due to the short local data segments,
MTRS is able to analyze BRS in short dynamic ECG and BP
recordings.

BRS-values are non-stationary and profoundly variable. We
therefore shorten the window for BRS analysis. For the MTRS
technique, there are two relevant types of data segments, the
local and the global data segments. Each trigonometric regressive
spectral analysis (TRS) spectrum is only performed within a
local data segment; analyses of local data segments are repeated
in successive segments shifted by one, two, or more beats
within the whole global data segment (multiple TRS analysis,
so called MTRS) (Rüdiger et al., 1999; Ziemssen et al., 2013).
In a local data segment of 25 s, even the longest oscillation of
the low frequency (LF) band can be reliably determined, but
additional longer oscillations could not be accurately detected.
Certainly, oscillations in the high frequency (HF) band can be
well characterized in this time window. However, because of
their short wavelengths, oscillations in the HF band or ultra-
high frequency (UHF) band can slightly change in frequency and
amplitude using a local data segment of 25 s. Therefore, there is
always a compromise in the selection of the local data segment
length. We have applied different lengths of local and global data
segments according to the research conditions (Wright et al.,
2009; Friedrich et al., 2010; Reimann et al., 2010, 2012, 2013;
Gasch et al., 2011; Viehweg et al., 2016; Li et al., 2017). The
most commonly used lengths of local and global data segments
were 30 s and 2min, respectively, but shorter lengths have also
been applied. Until now, the effect of the lengths of local and
global data segments on the BRS estimation remains unclear, and
the reproducibility of selecting different global data segments in
the same recording is unknown. In the present study, we aimed

to investigate the influence of different local and global data
segment settings on BRS assessment using the EuroBaVar dataset,
which is comprised of a heterogeneous population.

SUBJECTS AND METHODS

The EuroBaVar Dataset
At first, this dataset was used as part of the EuroBaVar
study to compare estimates of the BRS obtained by different
research laboratories, each using its own software (Laude et al.,
2004). The dataset included 46 recording files obtained from a
heterogeneous population of 21 subjects. There are four duplicate
recording files from two subjects (two lying recordings and two
standing recordings). Thus a total of 42 recordings were analyzed
in the present study. The participants (17 women, 4 men)
were composed of 12 normotensive outpatients (including one
diabetic patient without cardiac neuropathy, 2 treated patients
with hypercholesterolemia, and one 3-month pregnant woman),
one untreated hypertensive patient, two treated patients with
hypertension, four healthy volunteers, and two patients with
evident cardiac autonomic failure (one patient with diabetic
neuropathy and the other patient recently underwent heart
transplantation). All the participants underwent continuous non-
invasive BP monitoring and ECG recording. These recordings
were made for 10–12min both in the supine position and in
the upright position. Data were provided as the BP and ECG
signals sampled at 500Hz with a 16-bit resolution. This is a
heterogeneous population characterized by a large range of BRS-
values, and can thoroughly evaluate the performance of different
BRS calculation methods. This challenging dataset is appropriate
for measuring the consistency of BRS obtained by MTRS using
different local and global data segment settings. The EuroBaVar
data are from the EuroBaVar study, and publicly available for
methodological studies on BRS analysis. The study was approved
by the Paris-Necker committee and all the subjects had given
informed consent.

The MTRS Analysis
In 1999, Rüdiger and colleagues introduced TRS, which detects
true, physiological oscillations and guarantees an optimal
assessment of the measured RR intervals and other parameters
(Rüdiger et al., 1999). All oscillations are captured based on the
following condition

∑

(RRI(t(i)) − Reg(t(i)))2 => minimum,
with RRI(t(i)) being the original RR intervals and Reg(t(i)) =
A ∗ sin (ωt(i) + ϕ(i)) being a trigonometric function of the
parameters A (amplitude), ω (frequency), and φ (phase shift).
This trigonometric function cannot be solved as none of the
three parameters in the regressive function is known. Therefore,
it is necessary to set one parameter, in general the frequency
ω. By the variation of this frequency ω, oscillations can be
calculated with an optimal variance reduction for all target
frequencies.

Computation of BRS Using MTRS
The baroreflex provides a rapid feedback loop to keep
cardiovascular homeostasis. For example, an increased BP
reflexively leads to a decrease of the heart rate in order
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to keep the homeostasis of BP. This feedback loop works
continuously during the constant fluctuations of heart rate and
BP. This is the theoretical foundation of MTRS based BRS
measurement.

Asmentioned above, theMTRS technique uses the oscillations
of SBPs and RRIs instead of their original values which are used
in the sequence methods. Therefore, coherent pairs of SBP and
RRI oscillations are identified, which can be correlated with one
another (Gasch et al., 2011; Ziemssen et al., 2013) (Figure 1).
The frequency distribution of individual BRS-values within two
different 2-min global data segments are shown in Figure 2. The
coherence of RRI and SBP oscillation pairs was determined by
their frequencies and phase shifts. Using the TRS technique,
oscillation pairs are considered coherent when the frequency
difference is ≤0.025Hz.

Let V_SYS (i) the variance reduction of the i-th coherent
systolic BP oscillation and V_RR (i) be the variance reduction of
the i-th coherent RR interval oscillation, then a variance ratio can
be defined according to the following equations:

Ratio(i) = V_RR(i)/V_SYS(i) for V_RR(i) <= V_SYS (i) or

Ratio(i) = V_SYS(i)/V_RR (i) for V_RRr (i) > V_SYS (i)

This ratio can be defined for each coherent oscillation pair (i),
0 <Ratio <= 1. With all the oscillation ratios, BRS can be
determined.

During the shift of the local data segments by one, two or
more beats, these coherent oscillation pairs change in frequency
and amplitude. Therefore, with a local data segment of 25 s,
all oscillations other than the VLF band are contained at least
once, and the number of individual values can be significantly
increased by shifting this small data segment over a global data
segment of one or more minutes.

This MTRS technique has been further developed and
improved after its application in the EuroBaVar study (Ziemssen
et al., 2008). In the calculations of BRS in the EuroBaVar study, all
individual values have been arithmetically averaged; a weighted
mean is now determined according to the following relationship:

BRS_opt =

(

∑

BRS(i)∗V_ratio(i)²)/
∑

V_ratio(i)²

With the squaring function, an even stronger weight is placed
on values close to V_ratio = 1. This reduces the influence of
inconsistent BP and RR interval fluctuations (such as small BP
fluctuations corresponding with large RR interval fluctuations)

FIGURE 1 | Illustration of the BRS calculation process using TRS. Spontaneous oscillations of RR intervals and systolic blood pressure (A) are replaced by theoretical

TRS oscillations (B). Calculation of BRS as the slope of the regression line (D) originates from coherent oscillation pairs of RR interval and systolic blood pressure (C).

Points 1 and 2 are two examples of coherent oscillation pairs of RR intervals and systolic blood pressures. [Taken from Gasch et al. (2011)].
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FIGURE 2 | (A,B) Individual BRS-values within two different 2-min global data segments (2a and 2b, respectively) in the same recording. It is noted that although

there was some degree of variability of individual local BRS-values between these two global data segments, these two mean global BRS-values were quite close.

on the BRS calculation, because this phenomenon apparently
does not reflect a baroreflex.

BRS Analyses Using Varying Local and
Global Data Segments:
We used different local and global data segment settings for
each recording. To assess the influence of different local data

segment lengths, we calculated the BRS of a common 1-min
global ECG and BP segment (1a) using local data segments of
12, 20, and 30 s, respectively. To explore the influence of the
length of global data segments, we additionally computed BRS
from a 2-min global data segment (2a) which extended 1min
from the aforementioned 1-min global data segment (1a) (the
1-min segment 1a was included in the 2-min segment 2a). To
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test the stability of BRS analysis using MTRS, we calculated BRS
from another 2-min ECG and BP data segment (2b), which had
no overlap with the other two global data segments (1a and
2a). We used a common length (30 s) of local data segments
when comparing BRS-values computed from different global
data segments (1a, 2a, and 2b).

Statistical Analysis
All statistical analyses were performed using SPSS for Windows
(Version 23.0. Armonk, NY: IBM Corp). Data are presented
as mean ± standard deviation unless stated otherwise. The
Kolmogorov–Smirnov test was used to evaluate data normality.
Repeated measures ANOVA or Friedman’s test was employed
to test differences between BRS-values obtained with different
settings of data segments.

To compare the BRS estimates from different local and
global data segments, we performed Spearman correlation and
the Bland-Altman plot. The differences between the pairs of
measurements (e.g., BRS2a−BRS2b) on the vertical axis were
plotted against the means of each pair [e.g., (BRS2a+BRS2b)/2].
The Bland-Altman analysis requires that the differences should
be normally distributed. Logarithmic (ln) transformation of
the original BRS data was used if the differences of the
BRS-values were not normally distributed and the logarithmic
transformation solved this problem. To determine the potential
proportional bias, we performed the Spearman correlation
between the differences of the pairs and their means. We
also calculated the 95% confidence intervals of the differences
(also called limits of agreement) (Bland and Altman, 1986;
Giavarina, 2015). P ≤ 0.05 were considered statistically
significant.

RESULTS

Comparisons between BRS Obtained
Using Different Local and Global Data
Segments
Friedman’s test was used for comparisons between different
data segment settings. The mean BRS-values of different global
data segments (using a common local data segment length of
30 s) were 10.44 ± 8.83, 11.58 ± 11.79, and 11.07 ± 11.34
ms/mmHg for 1a, 2a, and 2b in the supine position, and 5.82
± 3.13, 5.65 ± 3.09, and 5.39 ± 3.57 ms/mmHg in the standing
position, respectively. There was no significant difference
between the BRS-values obtained using different global data
segments.

The mean BRS-values calculated with different local data
segment lengths (using the common global data segment 1a) were
12.84± 11.42, 11.27± 9.24, and 10.44± 8.83ms/mmHg for local
data segment lengths of 12, 20, and 30 s in the supine position,
and 6.01 ± 3.56, 5.84 ± 3.31, and 5.82 ± 3.13 ms/mmHg in the
standing position, respectively. There were significant differences
between 12 s and the other two local data segments in the supine
position (p = 0.013 for 12 s vs. 20 s and p < 0.001 for 12 s
vs. 30 s), while BRS-values obtained with local data segments
of 20 and 30 s were similar. The BRS-values obtained in the

standing position were similar across different local data segment
settings.

Correlation Analyses between BRS-Values
Obtained Using Different Data Segment
Settings
There were significant correlations between all the BRS calculated
using different global data segments and BRS calculated using
different local data segment lengths, and all the p-values were
<0.001. The correlation coefficients are shown in Table 1.

Bland-Altman Analyses of the BRS-Values
Obtained Using Different Parameters
Comparing the BRS-values calculated using different global data
segments showed no fixed bias or proportional bias, either in the
supine or standing position. In addition, most of the differences
between these BRS-values were relatively small regarding the
corresponding mean values (Figure 3).

However, when calculating BRS using the common 1a global
data segment in the supine position, the BRS computed using the
local data segment of 12 s was higher than those using local data
segments of 20 and 30 s (fixed bias). BRS estimations using local
data segments of 20 and 30 s in the supine position were similar.
There was no significant fixed bias comparing BRS calculated
by different local data segments in the standing position. No
proportional bias was found when comparing BRS using different
local data segments in the supine or standing position (Figure 4).

DISCUSSION

This is the first study evaluating the influences of local and
global data segment settings on BRS analysis by MTRS. We
found very close correlations between BRS-values calculated
using different global and local data segments. Both in the supine
and standing positions, using different global data segments
did not significantly affect the BRS estimation. However, in the
supine position, local data segments that are too short, such as
12 s, lead to overestimation of BRS.

MTRS solves several shortcomings of the widely used
sequence method and spectral analysis using fast Fourier
transform. The sequence method requires consecutive
concordant changes of BP and heart rate, thus sometimes
not enough BP and heart rate pairs can be obtained for accurate
BRS calculation. In the EuroBaVar study, a large proportion
of the methods using the sequence approach failed to detect
autonomic failure (Laude et al., 2004). The fast Fourier transform
based spectral analysis requires interpolation between real RRIs
which affect the accuracy of the BRS assessment, and demands a
long stationary data segment of at least 5min which restrict its
usage in dynamic processes (Rüdiger et al., 1999; Ziemssen et al.,
2013). MTRS has overcome these problems using a trigonometric
regression and short local data segments.

On one hand, using the coherent RRI and SBP oscillations
determined by TRS other than the original RRI- and SBP-values
(like in the sequence methods) could substantially increase the
number of single BRS-values per time. This substitution could
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TABLE 1 | Spearman’s correlation coefficients between different BRS-values.

G1a L30

Supine Standing Supine Standing

L12 vs. L20 L12 vs. L30 L20 vs. L30 L12 vs. L20 L12 vs. L30 L20 vs. L30 G1a vs. G2a G1a vs. G2b G2a vs. G2b G1a vs. G2a G1a vs. G2b G2a vs. G2b

Rho 0.98 0.95 0.97 0.95 0.89 0.93 0.97 0.88 0.92 0.93 0.91 0.87

G1a, BRS calculated using the global data segment 1a.

G2a, BRS calculated using the global data segment 2a.

G2b, BRS calculated using the global data segment 2b.

L12, BRS calculated using the local data segments of 12s.

L20, BRS calculated using the local data segments of 20s.

L30, BRS calculated using the local data segments of 30s.

FIGURE 3 | The Bland-Altman plot of the differences and means of the logarithmic transformed BRS-values using different global data segments. There was no

significant fixed or proportional bias. G1a, BRS calculated using the global data segment 1a; G2a, BRS calculated using the global data segment 2a; G2b, BRS

calculated using the global data segment 2b.

improve the statistical power and validity of BRS estimation
(Ziemssen et al., 2013). On the other hand, the algorithm
of TRS analysis provides a pure physiological spectrum using
trigonometric regression in contrast to a mathematical spectrum
by using the Fast Fourier transform, thus avoiding interpolation
and promote the accuracy of BRS evaluation (Ziemssen et al.,
2013). Figure 2 presents an illustration of the BRS analysis
of two separate global data segments. Figure 2A shows the
frequency distribution of individual BRS-values in a data segment
of 2min (2a) of the recording of a subject in the supine
position. There are plenty of individual BRS-values detected,
and the values with the greatest reliability (variance ratio
≥ 0.7) concentrated around the vertical line of the value
3.22 ms/mmHg. Figure 2B shows the individual BRS-values’
distribution of another global data segment of 2min (2b) in the
same recording. The averaged “optimal” BRS estimate was 3.31
ms/mmHg, which was quite close to that of the global data

segment 2a. Furthermore, as mentioned in the method section,
our improved MTRS analysis (after the EuroBaVar study) gives
more weight on the “real” coherent SBP and RRI pairs for BRS
estimation. This improvement reduces the influence of non-
baroreflex mediated random fluctuations of SBP and RRI on BRS
analysis. This upgrade enhances the reliability and stability of
BRS analysis by MTRS, and may be part of the reason of the
high consistency of BRS estimations using different global data
segments.

In our study, supine BRS analysis using local data segments
of 12 s produced significantly higher BRS-values compared with
those using local data segments of 20 and 30 s. Because the longest
LF oscillation has a wavelength of 25 s, 12 s might be too short to
accurately assess the oscillations in the LF band. Increasing the
local data segment length to 20 s would solve this problem and
obtain similar results as those using local data segments of 30 s.
Therefore, for MTRS, a local data segment length of 20–30 s is
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FIGURE 4 | The Bland-Altman plot of the differences and means of the logarithmic transformed BRS-values using different lengths of local data segments.

BRS-values obtained using local data segments of 12 s were higher than those using local data segments of 20 and 30 s (fixed bias). There was no significant

proportional bias. L12, BRS calculated using the local data segments of 12 s; L20, BRS calculated using the local data segments of 20 s; L30, BRS calculated using

the local data segments of 30 s.

considered to be optimal for BRS analysis in the supine position.
In a local data segment of TRS analysis, the oscillations must also
remain constant similar to the fast Fourier transform. However,
fast Fourier transform requires a stationary segment with the
length of at least 5min. For TRS, a stable local segment length
of only 20–30 s seems to be enough. Therefore, MTRS can be
utilized in BRS analysis during a dynamic process. Wright and
colleagues conducted an analysis with a global data segment of
30 s and local data segments of 20 s, which is a good example
of MTRS for a relatively short cardiovascular recording (Wright
et al., 2009). In contrast to the BRS in the supine position, BRS-
values applying different lengths of local data segments did not
differ significantly in the standing position. The reason might
be that BRS decreased during orthostasis (Friedrich et al., 2010;
Reimann et al., 2010), and the difference also shrank to be
non-significant.

A limitation of the MTRS analysis on BRS is that it could not
distinguish the two directions of interactions between heart rate
and SBP. Heart rate and BP can influence each other, thus form a
closed loop. The change of BP would regulate heart rate through
baroreflex (a feedback process), while heart rate also affects BP via
the Frank–Starling mechanism and the runoff phenomenon (a
feedforward non-baroreflex process) (Baselli et al., 1988; Taylor
and Eckberg, 1996; Javorka et al., 2017). Recent studies have
shown that causal analyses could discriminate the effect of SBP on
heart rate (the feedback process, mediated by baroreflex) from the

effect of heart rate to SBP (the feedforward process) (Porta et al.,
2011, 2013; Svacinova et al., 2015; Javorka et al., 2017). Although
MTRS based BRS analysis is a non-causal analysis, it showed good
performance in the EuroBaVar study and agreed well with the
modified Oxford method which was viewed as the gold standard
of BRS estimation (Gasch et al., 2011). Future studies comparing
causal analysis, MTRS and modified Oxford method would be
helpful to clarify this issue.

In conclusion, BRS estimation by MTRS using different global
data segments could acquire highly consistent results. However,
too short local data segments such as 12 s would overestimate
BRS in the supine position, and the optimal lengths of local data
segments should be 20–30 s.
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