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The non-reducing disaccharide trehalose is widely distributed among various organisms.

It plays a crucial role as an instant source of energy, being the major blood sugar in

insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects

and other invertebrates is thought to occur via the trehalose-6-phosphate synthase

(TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. In many insects, the

TPP gene has not been identified, whereas multiple TPS genes that encode proteins

harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned

in the same species. The function of the TPS gene in insects and other invertebrates

has not been reviewed in depth, and the available information is quite fragmented. The

present review discusses the current understanding of the trehalose synthesis pathway,

TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to

insecticides. We note the variability in the number of TPS genes in different invertebrate

species, consider whether trehalose synthesis may rely only on the TPS gene, and

discuss the results of in vitro TPS overexpression experiment. Tissue expression profile

and developmental characteristics of the TPS gene indicate that it is important in energy

production, growth and development, metamorphosis, stress recovery, chitin synthesis,

insect flight, and other biological processes. We highlight the molecular and biochemical

properties of insect TPS that make it a suitable target of potential pest control inhibitors.

The application of trehalose synthesis inhibitors is a promising direction in insect pest

control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would

be relatively safe for humans and higher animals, making them ideal insecticidal agents

without off-target effects.
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TREHALOSE AND ITS FUNCTION IN
INVERTEBRATES

Trehalose is a non-reducing disaccharide in which two glycosyl
moieties are linked together by an α,α-1,1 bond (Elbein et al.,
2003; Bansal et al., 2013). It is found ubiquitously as a metabolite
in various bacteria, fungi, slime molds, protozoa, plants, and
invertebrates (Kern et al., 2012; Tang et al., 2012a,b, 2014a,b,
2016; Lyu et al., 2013). Trehalose functions not only as a
reserve carbohydrate, but also as an important stress-protecting
molecule in different organisms (Elbein et al., 2003; Pampurova
et al., 2014). Trehalose has been shown to serve as a mobile
energy source for flight, and its levels in the blood have been
reported to control the expenditure of flight energy in insects
(Clegg and Evans, 1961; Cui and Xia, 2009). High levels of
trehalose are also present in the hemolymph of insects at
nonflying stages and in the blood of invertebrates that use lipids
for flight energy (Wyatt, 1961). The levels of blood trehalose
vary greatly in the developmental history of different species,
and in all probability, trehalose has been adapted for diverse
functions within the class Insecta (Murphy and Wyatt, 1965).
However, trehalose synthesis pathway has not been found in
higher animals (mammals) or vertebrates, even though trehalase
(TRE) has been reported in the small intestine, digestive system,
and other organs of various species, especially in insects and
other invertebrates (Richards et al., 2002; Chen and Haddad,
2004).

In the animal kingdom, trehalose was first identified as
an important constituent of insect hemolymph in silkworm
pupae (Wyatt and Kalf, 1956). Trehalose was then found in
concentrations of up to 2% in the hemolymph of the desert locust
Schistocerca gregaria (Howden and Kilby, 1956). This sugar is
an important soluble carbohydrate and energy reserve in insects
(Kandy and Kilby, 1959). It is secrected into the hemolymph
of insects at all developmental stages (Matsuda et al., 2015).
Trehalose functions as a source of glucose for energy in adult
insects during flight and energy-requiring activities; it also serves
as an energy source to meet the demands of insect flight muscles
and other tissues and is continuously synthesized in the fat body
(Evans and Dethier, 1957; Wyatt and Kalf, 1957; Bücher and
Klingenberg, 1958; Candy and Kilby, 1961; Becker et al., 1996;
Elbein et al., 2003; Chen and Haddad, 2004; Kern et al., 2012;
Gao et al., 2014; Shukla et al., 2015). Trehalose serves not only as
a reserve carbohydrate but also as an efficient protection factor,
playing important roles in the protection of organisms against
adverse environmental conditions (Iordachescu and Imai, 2008;
Tang et al., 2008; Shukla et al., 2015; Liu et al., 2016). Trehalose
is also essential for stress response in various microorganisms,
and its inhibition may be a promising antimicrobial strategy as
TPS genes are entirely absent in humans (Magalhães et al., 2017).
Survival strategies for overwintering insects are determined by
biochemical components of their body fluids. Freeze-tolerant and
freeze-avoiding insects often accumulate a high level of trehalose
that acts as a supercooling agent and cryoprotectant (Storey
and Storey, 2012; Wen et al., 2016). During menadione stress,
trehalose has been found to be necessary for yeast intracellular
functions (Herdeiro et al., 2006), whereas the presence of

trehalose on both sides of the lipid bilayer minimized oxidative
damage to proteins and lipids (da Costa Morato Nery et al.,
2008).

In nematodes, trehalose is usually present at a concentration
higher than that of free glucose (Fairbairn, 1958; Dmitryjuk
et al., 2009), and has many important functions: it protects
cellular structures during stresses such as high osmotic pressure,
drying, or freezing; it provides energy as the major circulating
sugar; and it is important for egg hatching (Perry, 1989; Behm,
1997; Dmitryjuk and Zółtowska, 2003; Elbein et al., 2003).
Nearly all insects maintain high level of trehalose in their
hemolymph (Wyatt, 1967; Kramer et al., 1978; Becker et al.,
1996; Mariano et al., 2009). Trehalose protects organisms against
different environmental stresses, including heat, oxidation,
cold, anoxia, or desiccation, because of its unique chemical
properties (Crowe et al., 1998; Elbein et al., 2003; Matsuda
et al., 2015). In Drosophila larvae desiccated for 10 h at <5%
relative humidity, the desiccation-responsive trehalose metabolic
pathway was activated in concert with the enzymes TPS and
TRE (Shukla et al., 2015). These data indicate that trehalose is
a potential marker for anhydrobiosis in Drosophila (Thorat et al.,
2012).

As in mammals, insulin-like peptides (Dilps) and a glucagon-
like peptide regulate circulating sugar levels in Drosophila
(Yasugi et al., 2017). Feeding on dietary sugar immediately
changes the levels of the circulating sugar (Ugrankar et al.,
2015). Genetic manipulation of the function of Dilps and
adipokinetic hormone (Akh) changes trehalose and glucose levels
in the circulating hemolymph, which means that mobilization of
blood trehalose to glucose is critical for metabolic homeostasis
(Rulifson et al., 2002; Gáliková et al., 2015). Flight, feeding,
and parasitic infections in insects produce hypertrehalosemia in
the hemolymph (Becker et al., 1996; Zółtowska and Lopieniska-
Biernat, 2006). These findings further support the notion that
trehalose plays a role in the response to several biological
functions as a physiological adaptations and as an energy source
in insects (Chung, 2008).

In recent years, several approaches have been applied to
study the trehalose synthesis genes TPS and TPP. Their special
functions in molecular mechanisms underlying different stresses
and even in the regulation of chitin synthesis have been described
in insects and other invertebrates (Chen et al., 2002, 2003; Tang
et al., 2010; Chen and Zhang, 2015; Shi et al., 2016; Xiong
et al., 2016; Yang et al., 2017), taking advantage of their ability
to adapt to stress conditions (Chen and Haddad, 2004; Qin
et al., 2012; Tang et al., 2014b; Guo et al., 2015). On the one
hand, an increasing number of TPS genes are being identified
and cloned from different insects and other invertebrate species.
On the other hand, many insects seem to possess only TPS
genes but no TPP gene according to genome sequencing results.
In this regard, several following questions arise. How does
trehalose synthesis proceed in invertebrates and is there another
pathway in addition to the TPS/TPP pathway? Is the presence
of just the TPS gene sufficient for trehalose synthesis because
the encoded protein has both TPS and TPP domains? Do
trehalose synthesis pathways vary between different insects? In
this review, we summarize and discuss the current knowledge
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of the invertebrate trehalose synthesis pathway; the cloning
and expression of the underlying genes identified so far; their
role in development, stress conditions, and chitin metabolism
regulation. We also point out the knowledge gaps that need
to be filled, especially regarding future pest control by using
inhibitors of trehalose synthesis, considering the absence of TPS
in vertebrates.

GENETIC ARCHITECTURE

TPS and TPP Gene Identification, Cloning,
and Evolution
The first insect TPS gene was cloned in Drosophila (Chen
et al., 2002; Chen and Haddad, 2004), and the induction
of TPS1 gene expression was shown to increase tolerance to
anoxia (Chen et al., 2002). Subsequently, insect TPS genes were
cloned from Helicoverpa armigera (Xu et al., 2009), Locusta
migratoria manilensis (Cui and Xia, 2009), Spodoptera exigua
(Tang et al., 2010), Nilaparvata lugens (Chen et al., 2010b),
Catantops pinguis (Tang et al., 2011), Ctenocephalides felis (Kern
et al., 2012), Harmonia axyridis (Qin et al., 2012), Blattella
germanica (Chen and Zhang, 2015), Delia antiqua (Guo et al.,
2015), Leptinotarsa decemlineata (Shi et al., 2016), Bactrocera
minax (Xiong et al., 2016), and other organisms. Moreover,
two TPS genes have been found in B. germanica, Tribolium
castaneum, and Aphelenchoides besseyi, and three TPS genes
have been found in Ascaris suum and N. lugens (Figure 1A and
Table 1, Shen, 2017). In addition, TPS from the Chinese shrimp
Fenneropenaeus chinensis has been cloned and reported (Zhang
J. et al., 2012), and one full-length cDNA sequence of four
structural isoforms of TPS was isolated from the chela muscles
of an adult female (Shi and Chung, 2014). Furthermore, three
TPS genes have been isolated and sequenced from the muscles
of the parasite A. suum (Dmitryjuk et al., 2013; Dmitryjuk and
Łopienska-Biernat, 2016).

In 2005, gob-1, the first TPP in Caenorhabditis elegans, was
identified. Loss-of-function mutations in gob-1 resulted in early
larval lethality, which was completely suppressed by the ablation
of C. elegans tps-1 and tps-2 genes (Kormish and McGhee, 2005).
Furthermore, a TPP gene was identified in Brugia malayi in 2011
(Kushwaha et al., 2011), and its silencing was found to be lethal
for the third instar larvae as its in vivo development became
impaired (Kushwaha et al., 2012). No more TPP genes were
reported in insects between 2011 and 2015. The identification and
cloning of a single TPP gene was reported in a diapausing insect,
D. antiqua (Guo et al., 2015). Furthermore, single TPP genes
from insects have been reported in GenBank (e.g., Coptotermes
formosanus [JN565075], Drosophila melanogaster [NM_135269],
and Plutella xylostella [XM_011559193]) (Yang et al., 2017).
These genes are shorter than TPS and encode proteins containing
only the TPP domain, very similar to the TPS protein of the
same species, with only some protein sequence differences at the
N-terminus (Figure 1B and Table 2).

Although some invertebrates have more than one TPS and
TPP gene, two TPS genes from a single insect were first
cloned and reported in B. germanica (BgTPS1: KR050213 and

BgTPS2: KR050214) (Chen and Zhang, 2015), followed the
discovery of two separate TPS genes in N. lugens (TPS1:
GQ397450, TPS2: KU556826; Yang et al., 2017). The third TPS
(KU556827) was cloned from N. lugens in 2017 (Shen, 2017).
All these TPS genes have been found to encode proteins with
two conserved TPS and TPP domains with high similarity in
their amino acid sequences (Figure 1A, Table 1; Yang et al.,
2017). Meanwhile, the use of Illumina RNA-seq technology
showed that the beetle Microdera punctipennis may have five
potential TPS UniGenes (Lu et al., 2014). However, the exact
number of TPS genes in this insect remains unknown. In the
evolution of the TPS gene, bacteria and yeasts are likely to
be closer to the relatives of insects than to nematodes and
other non-insects (Figure 1A). Because a) no TPS gene has been
found in higher animals, like mammals and b) most insects
only have one TPS gene, which can synthesis trehalose only
and has TPS and TPP enzymatic activities (Yoshida et al.,
2016). So we hypothesized that the evolution of insect TPS
evolved from multiple homologs to a single one. Insect or
other invertebrate trehalose synthesis from TPS/TPP pathway
maybe evolved to one TPS pathway because of TPS replaced
the function of the TPP gene in some species (Figures 1, 2).
And this could be the reason for so many insects lacking TPP
and most of the known TPP sequences being closely related
to the TPS gene sequence. Also it is reported that Drosophila
have two TPPs (CG5171 and CG5177), but only CG5171 can
dephosphoryte T6P under experimental conditions (Yoshida
et al., 2016). Of course, more work needs to be done to clearly
distinguish the functions of different TPS genes in the same
species and to elucidate whether all of TPS can synthesize
trehalose independently when the species possesses only one TPS
gene.

TPS Gene Structure
One study reported that Drosophila has only one TPS gene,
and this gene has domains that are conserved when compared
with the yeast genes TPS (OtsA in E. coli) and TPP (OtsB in
E. coli) (Chen et al., 2002). Later, TPS genes from H. armigera
(EU878265) and S. exigua (EF051258) and many insects have
been found and cloned. Insect TPS gene encodes an 820–
850-aa protein with two conserved domains—TPS and TPP—
corresponding to OtsA and OtsB genes in yeast (Xu et al., 2009;
Tang et al., 2010, 2014a; Yang et al., 2017). The TPS genes of the
blue crab C. sapidus were cloned in 2014 and found to be very
similar to those of insects. TPS genes of four different lengths
were isolated: TPS-mus-1 (EU910087), TPS-mus-1a (EU910088),
TPS-mus-1b (EU910089), and TPS-mus-1c (EU910090) (Shi and
Chung, 2014; Yang et al., 2017). TPS-mus-1b and TPS-mus1
contain conserved TPS and TPP structures, whereas TPS-mus-
1b and TPS-mus-1c harbor only a TPS conserved domain (Shi
and Chung, 2014; Yang et al., 2017).

The length of TPS genes is variable among different species. It
has been shown that D. melanogaster TPS (DmTPS or Dmtps1)
has 5 exones (Figure 3A). However, Anopheles gambiae TPS
(AgTPS), Aedes aegypti TPS (AaTPS), Nasonia vitripennis TPS
(NvTPS), Apis mellifera TPS (AmTPS) and S. exigua TPS (SeTPS)
have 5, 5, 3, 10, 8, and 12 exons, respectively. Comparison
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FIGURE 1 | Phylogenetic analysis of insect TPS and TPP based on their amino acid sequences. Full-length amino acid sequences were aligned using Mega 6.0 and

to the ML phylogenetic tree (TPS for A; TPP for B) was performed using PhyML with the model of WAG (Guindon et al., 2005). A bootstrap analysis was carried out

and the robustness of each cluster was verified in 1,000 replications. Some species have more than two TPS proteins have marked by different form front of species

name (A). The monophyly of insect TPP and TPS is well supported, but the monophyly of non-insect and microbe is not supported.

between SeTPS andNvTPS showed that they have seven common
exon–intron boundaries (Tang et al., 2010). The genomic
structure of F. chinensis TPS (FcTPS) comprises three exons and
two introns (Zhang J. et al., 2012). Thus, TPS gene structure
has been examined in several insect species, in which genomic

sequencing has been completed. Therefore, to determine
whether TPS alone can synthesize trehalose, more experiments
need to be performed, and structures of gene sequences
homologous to TPS and TPP have to be analyzed in insect
genomes.
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TABLE 1 | Characteristics of reported invertebrate TPS gene and their encoding

protein.

Organism TPS

Family

GeneBank No. No. amino

acid

References

N. lugens TPS1 GQ397450 807 Chen et al., 2010a

TPS2 KU556826 820 Yang et al., 2017

TPS3 KU556827 783 Shen, 2017

Sogatella furcifera TPS1 JQ743627 807 Zhang D. W. et al., 2012

Diabolocatantops

pinguis

TPS1 GQ389790 809 Tang et al., 2011

Locusta

migratoria

manilensis

TPS1 EU131894 813 Cui and Xia, 2009

Antheraea pernyi TPS1 KU977454 828 Huang et al., 2016

Ctenocephalides

felis

TPS1 JX025053 824 Kern et al., 2012

Delia antique TPS1 JX681124 815 Li et al., 2013

Blattella

germanica

TPS1 KR052013 833 Chen and Zhang, 2015

TPS2 KR052014 822 Chen and Zhang, 2015

Leptinotarsa

decemlineata

TPS1 KU756283 821 Shi et al., 2016

Harmonia axyridis TPS1 FJ50196 805 Qin et al., 2012

Helicoverpa

armigera

TPS1 XM_021345571 826 Xu et al., 2009

Spodoptera

exigua

TPS1 EF051258 826 Tang et al., 2010

Drosophila

melanogaster

TPS1 NM_134983 809
Chen et al., 2002, 2003;

Chen and Haddad, 2004;

Matsuda et al., 2015;

Thorat et al., 2016

Delia antiqua TPS1 JX681124 815 Guo et al., 2015

Ascaris suum TPS1 JF412034 1,298 Dmitryjuk et al., 2014

TPS2 AEUI02000250 1,254 Dmitryjuk et al., 2014

TPS3 AEUI02000153 1,269 Dmitryjuk et al., 2014

Callinectes

sapidus

TPS2 EU679406 755 Chung, 2008

Fenneropenaeus

chinensis

TPS2 EU555435 844 Zhang J. et al., 2012

Aphelenchoides

besseyi

TPS1 KY661388 1,250 Chen Q. et al., 2017

TPS2 KY661389 507 Chen Q. et al., 2017

Caenorhabditis

elegans

TPS1 AJ512333 1,230 Pellerone et al., 2003

Bactrocera minax TPS1 KU379749 814 Xiong et al., 2016

BIOCHEMISTRY

TPS and the Trehalose Synthesis Pathway
Trehalose biosynthetic pathway was first identified in
Saccharomyces cerevisiae (Cabib and Leloir, 1958; Kern et al.,
2012). Initially, insects were thought to synthesize trehalose
through the TPS/TPP pathway (Candy and Kilby, 1961), and
it was suggested that insects might have the same pathway as
that of yeast (Candy and Kilby, 1959, 1961). Now, many studies
have reported that there are at least five trehalose biosynthetic
pathways in different species (Magalhães et al., 2017). In most
invertebrates, including nematodes, TPS/TPP is the predominant

trehalose biosynthetic pathway, which involves the following
steps (Magalhães et al., 2017): TPS catalyzes the transfer of
glucose from UDP-glucose to glucose-6-phosphatase, forming
trehalose-6-phosphate (T6P), and TPP dephosphorylates T6P
to trehalose (Cabib and Leloir, 1958; Behm, 1997; Elbein et al.,
2003; Avonce et al., 2006; Tang et al., 2010; Guo et al., 2015).

The N-terminal TPS (Tre-6-P synthase) domain catalyzes the
production of Tre-6-P using glucose 6-phosphate and UDP-
glucose as substrates, whereas the C-terminal TPP (Tre-6-P
phosphatase) domain then dephosphorylates Tre-6-P, generating
trehalose (Matsuda et al., 2015; Yasugi et al., 2017). Expression of
Drosophila TPS gene in mammalian HEK-293 cells enables them
to synthesize trehalose (Matsuda et al., 2015). InH. armigera, the
level of TPS expression corresponds to TPS enzymatic activity
as a result of increased trehalose production (Xu et al., 2009).
The catalytic activity ofH. armigeraTPS increased approximately
fivefold when it was overexpressed in Bombyx mori hemolymph
infected by using a recombinant baculovirus expression system
(Xu et al., 2009). Therefore, we believe that some insects can
synthesize trehalose by the TPS/TPP pathway, whereas other
insects can synthesize trehalose by TPS alone, just as we described
that the evolution of insect TPS evolved from multiple homologs
into a single one. In addition, the trehalose synthesis enzyme
TPS is solely responsible for the de novo syhthesis of trehalose
in Drosophia based on the genetic and biochemical evidence
(Yoshida et al., 2016). Therefore, a revised trehalose synthesis
pathway in insects and other invertebrates is illustrated in
Figure 2.

Tissue Expression of TPS Genes
Because insect fat bodies appear to be important sites for the
production of α,α-trehalose, studies of trehalose synthesis have
necessarily centered around this organ (Gans et al., 1968), which
is analogous to the mammalian liver (Candy and Kilby, 1959;
Murphy and Wyatt, 1965; Friedman, 1968). Insects express
TPS in the fat body (Cui and Xia, 2009; Xu et al., 2009;
Chen et al., 2010b; Tang et al., 2010; Xiong et al., 2016),
whereas C. sapidus displays ubiquitous expression of TPS in
most tissues examined (Chung, 2008). TPS is expressed in
all tissues of adult crabs of both sexes, indicating that these
tissues can produce trehalose (Chung, 2008). Furthermore, in
L. migratoria manilensis TPS transcripts are expressed in the
fat body, midgut, hemolymph, and leg muscle (Cui and Xia,
2009). It has been reported that Drosophila TPP of CG5171 was
mainly expressed in the Malpighian tubules and the components
of the carcass (Yoshida et al., 2016), so it can’t play a role
in insect trehalose synthesis because it only works in the fat
body.

F. chinensis TPS gene was found to be expressed in various
tissues, including the muscles, hemocytes, ovaries, gills, nerves,
lymphoid organs, intestine, stomach, heart, and epidermis, with
the strongest level observed in the hepatopancreas (Zhang J. et al.,
2012). Previous reports showed that L. decemlineata TPS was
highly expressed in the fat body, and it was also transcribed
in the foregut, hindgut, trachea, ovaries, and testes, indicating
that trehalose might be synthesized in these tissues (Shi et al.,
2016). Several reports demonstrated expression of the TPS gene
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TABLE 2 | Some invertebrate TPP protein sequences from NCBI and published

article.

Organism GeneBank No. No. amino

acid

References

Toxocara canis KHN76157 485

Aphelenchoides besseyi KY661389 507 Chen Q. et al., 2017

Brugia malayi XM_001893174 492

Wuchereria bancrofti ADBV01000495 467

Ascaris suum AEUI02000133 532 Dmitryjuk et al., 2014

Haemonchus contortus HF967182 432

Strongyloides ratti LN609407 451

Necator americanus XM_013448375 466

Delia antiqua KJ130467 273 Guo et al., 2015

Caenorhabditis elegans NM078158 468 Kormish and McGhee,

2005

Loa loa XM_003149998 254

Trichinella nativa JYDW01000071 455

Trichinella murrelli JYDJ01000311 455

Stomoxys calcitrans XM_013242402 343

Musca domestica XM_011292707 331

Ceratitis capitata XM_004536145 323

Zeugodacus cucurbitae XM_011191709 333

Drosophila kikkawai XM_017164119 273

Drosophila biarmipes XM_017109200 296

Drosophila melanogaster NM_001201780 296

Bactrocera latifrons XM_018948982 323

Ceratitis capitata XM_004536143 273

Belgica antarctica JX462665 303

Polypedilum vanderplanki AB490331 294

Anopheles darlingi ADMH02000541 297

Culex quinquefasciatus XM_001850944 309

Anopheles gambiae XM_317247 261

Aedes aegypti XM_001660971 281

Coptotermes formosanus JN565075 299

in the tissues of foregut and trachea, likely because these two
tissues may have been doped with fat body during the extraction
process. RT-PCR or northern blot analysis in C. elegans showed
mRNA expression of two TPS genes at all stages of C. elegans
life cycle (Pellerone et al., 2003; Grewal et al., 2006). B. minax
TPS expression was detectable in all developmental stages, with
a higher expression level in the final (third) instar larvae (Xiong
et al., 2016). In vitro treatment with a lethal dose of ivermectin
decreased TPS and TPP activities in the muscle of adult A. suum
females compared with those in the control groups (Dmitryjuk
et al., 2014).

Insect Development and TPS Gene
Expression
In D. melanogaster, P element mutagenesis experiments showed
that TPS gene disruption is lethal at early larval stages (Chen
et al., 2002, 2003; Chen and Haddad, 2004). TPS mutant
Drosophila larvae exhibited diet-dependent growth and survival
phenotypes when they lacked hemolymph trehalose (Matsuda
et al., 2015). Those findings confirmed the assumed crucial
functions of TPS synthesis in insects (Becker et al., 1996).

In D. antiqua, differential expression of TPS and TPP shared
similar trends among summer- and winter-diapausing pupae
populations, and their enzyme activities were consistent with the
expression levels of corresponding genes (Guo et al., 2015). In
C. sapidus, trehalose concentrations showed a bimodal pattern,
and it exhibited two peaks at early ecdysis and post ecdysis,
indicating thatC. sapidus consumes energy from trehalose during
the molting process (Chung, 2008). The changes in trehalose
content and TPS activity in H. armigera hemolymph showed a
similar trend during larval-pupal development of diapause and
non-diapause programming (Xu et al., 2009).

PHYSIOLOGICAL FUNCTION

Diversity of TPS Genes and Their Functions
TPS plays a key role in the perception of carbohydrate availability
and carbohydrate metabolism (Jin et al., 2016) in insects, other
invertebrates, as well as in plants (Gao et al., 2014). TPS is
considered a cytoplasmic protein with two functionally distinct
catalytic domains (Elbein et al., 2003; Matsuda et al., 2015).
Drosophila TPS gene was cloned and studied at early 2000 (Chen
et al., 2002, 2003). Overexpression of D. melanogaster TPS in
mammalian cells (HEK-293) made them capable of trehalose
synthesis (Chen et al., 2003). In N. lugens, three TPS genes were
cloned, and their protein secondary structures showed similar
structures and composition of α-helix, β-sheet, and random coil
(Table 3, Figure 3B, Shen, 2017). Thus, different TPS genes can
synthesize trehalose, but it is unclear if different TPS genes
vary in their function and genomic structure within the same
species. Currently, at least three other insect species (N. lugens,
B. germanica, and T. castaneum) have more than two TPS genes
(Chen and Zhang, 2015; Yang et al., 2017).

In addition, TPS1 and TPS2 enzymes have been identified in
C. elegans (Pellerone et al., 2003), as well as in the anhydrobiotic
nematode Aphelenchus avenae (Goyal et al., 2005; Kormish
and McGhee, 2005). Simultaneous RNA interference (RNAi)
targeting of both TPS1 and TPS2 in wild-type C. elegans lowered
trehalose levels to 7% of control levels (Pellerone et al., 2003;
Kormish and McGhee, 2005). Nonetheless, on the background
of age-1 mutant, RNAi of TPS1 and TPS2 greatly decreased
C. elegans resistance to osmotic shock (Kormish and McGhee,
2005). Meanwhile, there are several instances when multiple TPS
genes have been found in the same insect species, and these TPS
genes could have different functions in trehalose synthesis (Chen
and Zhang, 2015; Yang et al., 2017). Further research on the
distinct roles of different TPS genes is warranted.

Role of TPS in Regulating Sugar
Metabolism
It has been reported that larvae lacking trehalose exhibit diet-
dependent phenotypes relating to growth and survival in the
genetically tractable organism of Drosophila (Matsuda et al.,
2015). Moreover, a lack of TPS can cause an accumulation
of trehalose that is lethal during the pupal period, as well as
results in a significant reduction in circulating glucose and the
larvae exhibit a high lethality after desiccation stress (Yoshida
et al., 2016). Temporary and simultaneous knockdown of both
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FIGURE 2 | The potential pathway of trehalose synthesis in insects and other

invertebrate animals. Trehalose are mainly synthesized by the pathway of TPS

and TPP in many kind of invertebrates, but it also be synthesis by TPS only in

some species from Insecta and Crustacean. (TPS, Trehalose-6-phosphate

synthase; TPP, Trehalose-6-phophate phosphatase; TRE, Trehalase).

TPS genes in C. elegans by RNAi resulted in a 90% decline
in trehalose levels but no obvious phenotype was observed
(Pellerone et al., 2003; Cui and Xia, 2009). In the crustacean
Artemia franciscana, a fraction of trehalose is quickly mobilized
as an energy source, whereas the remainder serves as a substrate
for glycogen and glycerol synthesis when dormancy is broken
(Collins and Clegg, 2004; Argüelles, 2014). Members of the
phylum Apicomplexa, a group of protists evolutionarily close
to dinoflagellates and ciliates, synthesize trehalose through the
biosynthetic pathway similar to that in plants and fungi (Yu et al.,
2010; Argüelles, 2014). In nematodes, e.g., in Anisakis simplex,
glycogen and trehalose metabolism plays a key role in supporting
life processes (Łopienska-Biernat et al., 2015). Because TPP has
a high affinity for trehalose-6-phosphate and the later hydrolyzes
quickly to trehalose, TPS activity is an important limiting factor
in trehalose synthesis (Behm, 1997). Two TPS genes with very
high resemblance to the tps2 gene of C. elegans were also
identified in A. avenae, but the expression of a gene similar to
C. elegans tps1 has not yet been confirmed (Łopienska-Biernat
et al., 2015).

Drosophila larvae were shown to be unable to synthesize
trehalose when dTPS1 transcript levels were decreased by
the ubiquitous daGAL4-driven expression of the dTPS1-RNAi
transgene (Thorat et al., 2016). This result highlighted the
significance of trehalose in the regulation of desiccation-
responsive redox homeostasis (Thorat et al., 2016). The result
on the function of TPS further demonstrated that the regulation

of trehalose metabolism is essential for normal development,
body water homeostasis, and desiccation tolerance in Drosophila
(Yoshida et al., 2016). Dietary trehalose has also been shown to
be directly transported to the hemolymph from the larval gut in
insects (Shi et al., 2016), because feeding of trehalose dramatically
increased the in vivo trehalose pools in D. melanogaster larvae
treated with DmTPS RNAi (Thorat et al., 2016). In addition,
the knockdown of LdTPS delayed larval development, strongly
reduced hemolymph monosaccharides in the fat body, and
potentiated sugar absorption in the larval gut of L. decemlineata
(Shi et al., 2016). Trehalose can be maintained at a high
level while glucose is broken down and used shortly after
food intake (Ugrankar et al., 2015; Yasugi et al., 2017). In
this condition, the production of trehalose from diet appears
to be critical for buffering the fluctuation of sugar levels
in the body and for producing trehalose in fat body on a
long-term basis (Yasugi et al., 2017). Trehalose is the main
hemolymph sugar, and its metabolism plays a pivotal role
in systemic energy homeostasis based on the requirement
for dietary sugar when both TRE and TPS1 are mutated
(Yasugi et al., 2017).

TPS Functions during Stress Conditions
During 18-h starvation, the maximum distance by which
Harmonia axyridis moved initially increased and then decreased
with time and falling levels of trehalose and glycogen as
well as with the reduction in TPS expression. This indicates
that insects need to consume trehalose to search for food
(Tang et al., 2014b; Shi et al., 2017). The Arctic collembolan
Onychiurus arcticus can survive winter temperatures of −25◦C
by increasing trehalose concentrations, decreasing glycogen
reserves, and reducing TRE activity as temperature decreases.
Meanwhile, TPP activity peaks at 0◦C (Montiel et al., 1998).
TPS induction in Schizosaccharomyces pombe transformed with
TPS gene increased intracellular trehalose levels and the increase
correlated with increased tolerance to heat shock and other
stresses (Soto et al., 1999). Furthermore, human primary
fibroblasts transformed using a recombinant adenovirus vector
to express the trehalose biosynthetic enzymes encoded by OtsA
and OtsB genes from Escherichia coli., which produced increased
amounts of trehalose with increasing multiplicities of infection
(Guo et al., 2000). In addition, elevated trehalose levels in
mammalian cells transfected with the Drosophila TPS gene were
reported to protect the cells from hypoxic injury (Chen et al.,
2002, 2003; Chen and Haddad, 2004).

In Polypedilum vanderplanki, one of the mechanisms of the
tolerance to extreme conditions is that the larvae can rapidly
accumulate trehalose to the levels up to 18% of dry body
mass (Watanabe et al., 2002; Chen and Haddad, 2004). In
2009, Xu et al. reported TPS activity regulates the changes in
trehalose content during H. armigera larval-pupal development,
and that this is the reason of a significantly higher trehalose
concentration in diapausing insects than in non-diapausing
insects (Xu et al., 2009). Furthermore, it has been reported
that trehalose concentrations were lower in summer- and
winter-diapausing pupa at the initial phase, but then, they
increased gradually and peaked during the maintenance phase
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FIGURE 3 | D. melanogaster TPS genomic structure (A) from FlyBase and predicted secondary structures of three TPS proteins of the brown planthopper, including

TPS1, TPS2, and TPS3 (B). Blue and red regions represent α-helixes and β-sheets in Figure 3B, respectively.

(Guo et al., 2015). The concentration then declined in the
quiescence phase, indicating that trehalose metabolism plays
an important role through the expression of TPS, TPP, and
TRE genes (Guo et al., 2015). In overwintering mountain pine
beetle larvae, TPS levels are high in the autumn proteome,
whereas in the spring proteome, they are significantly lower. This
observation supports the hypothesis that trehalose is produced
for survival during cold periods (Bonnett et al., 2012). TPS
has also been found to possess anti-stress functions and play
putative roles in physiological adaptation to environmental
stress in Bactrocera dorsalis (Yang et al., 2014) and C. sapidus
(Yednock and Neigel, 2014).

Anastrepha ludens larvae developed a protection mechanism
based on the synthesis of trehalose by TPS to achieve greater
survivability to stress caused by hydrostatic pressure (Vargas-
Ortiz et al., 2013). Starvation and the injection of dsSeHTF—
an Akh-like hypertrehalosemic factor—can significantly decrease
TPS expression level (Park and Kim, 2017). Although no
conspicuous phenotype changes were observed after TRE and
TPS genes were silenced individually or simultaneously in the
nematode A. besseyi, its survival under hypertonic osmotic
pressure decreased significantly and the recovery was delayed.
Thus, trehalose metabolism genes, including TPS and TRE, play
an important role in osmobiosis regulation in a time/season-
dependent fashion (Chen Q. et al., 2017).

Regulation of Chitin Metabolism by TPS
In silkworm larvae, trehalose has been reported to be a source of
carbon for chitin synthesis during the new cuticle production and
molting stages (Duchateau-Bosson et al., 1963). Trehalose is also

considered a major substrate for chitin synthesis (Shi et al., 2016;
Xiong et al., 2016). In insects, ecdysis, i.e., shedding of the cuticle
at the end of a larval stadium, only occurs when ecdysteroid
returns to a low level after its peak titer in the hemolymph (Steele,
2016). In Periplaneta americana, ecdysis is strongly correlated
with the increase in trehalose and glucose concentrations in
the hemolymph (Steele, 2016), suggesting a causal relationship
between both events. 20-Hydroxyecdysone has been shown to
induce the expression of BmTPS and three other genes in the
chitin biosynthesis pathway, includingTRE, glucose-6-phosphate
isomerase (G6PI), and chitin synthase (CHS) (Xiong et al., 2016).
TRE is the first gene in the chitin synthesis pathway (Tang et al.,
2008; Zhang et al., 2011), and it regulates insect chitin synthesis
and degradation (Tang et al., 2016; Zhao et al., 2016). Figure 4
illustrates how TPS in the chitin synthesis pathway regulates
insect molting (Chen Q. W. et al., 2017; Yang et al., 2017).

S. exigua complete the process of molting and die when
TPS is knocked down by RNAi (Tang et al., 2010): the
decrease in trehalose content causes larval and pupal lethality.
In L. decemlineata, when LdTPS was knocked down by
RNAi, surviving insects consumed a greater amount of foliage;
accumulated more glycogen, lipid, and proline; and gained a
larger body mass with a lower amount of chitin than did control
insects (Shi et al., 2016). Moreover, TPS activity and trehalose
content decreased significantly when dsRNA was injected into
third -instar larvae, successfully silencing the transcription of
BmTPS in B. minax and inhibiting the expression of three
key genes in the chitin biosynthesis pathway. Furthermore,
this treatment was associated with 52% mortality rate and the
appearance of abnormal phenotypes (Xiong et al., 2016). In
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TABLE 3 | The prediction of the secondary structure of TPS in brown planthopper.

Item α-helix(%) β-sheet(%) Radom coil(%)

TPS1 40.27 12.76 45.35

TPS2 36.59 13.29 49.39

TPS3 35.50 18.01 46.49

N. lugens, three phenotypes, namely molting deformity, molting
and wing deformity, and wing deformity, occurred when the
expression of TPS1 or TPS2 was decreased significantly by RNAi,
along with 30% mortality (Chen et al., 2010b; Yang et al.,
2017) and a significant decrease in trehalose content (Zhang
et al., 2017). In addition, the expression of chitinase genes and
chitin content decreased significantly, after that mainipulation,
suggesting that the chitin metabolism balance is disrupted upon
TPS gene knockdown (Chen Q. W. et al., 2017; Shen, 2017; Yang
et al., 2017).

An increasing number of key enzymes and proteins of crop
insects are being identified as candidates for RNAi-based gene
silencing (Kola et al., 2015; Joga et al., 2016; Reisenman et al.,
2016; Kolliopoulou et al., 2017). In a study by Shi et al. (2016),
in TPS RNAi group, the chitin content in the body and epidermis
decreased significantly, compared with that in the control group,
from the third day to the eighth day of the life cycle. Moreover,
a rescue bioassay revealed that trehalose feeding increased the
survival of TPS RNAi hypomorphs and partially recovered chitin
content.

POTENTIAL TARGET FOR INSECTICIDES

The non-reducing disaccharide trehalose is absent in vertebrates,
and, in particular, in mammals (Argüelles, 2014). This
physiological difference might provide clues regarding the
evolutionary branching of invertebrates and vertebrates
(Argüelles, 2014). An increasing number of studies have shown
significant mortality in insects when the trehalose balance is
blocked (Chen et al., 2010a; Tang et al., 2010), further supporting
the notion that TPS enzyme inhibition might be a viable
insecticidal mechanism (Kern et al., 2012). However, until
recently, no attempts to use inhibitors of insect TPS have been
undertaken. In 2012, 4-substituted 2,6-diamino-3,5-dicyano-4H-
thiopyrans were applied at potential inhibitory concentrations on
insect TPS and highlighted as potential lead compounds for the
development of insecticides (Kern et al., 2012). TPP is suggested
to be a promising target for the development of antibacterial,
antifungal, and antihelmintic therapeutics (Liu et al., 2017). The
World Health Organization has included B. malayi TPP enzyme
in the priority list of prospective antifilarial drug targets for
lymphatic filariasis (Ho et al., 1992).

Studies on some potent inhibitors of insect TREs such as
trehazolin (Ando et al., 1991, 1995), validoxyamine-A (Asano
et al., 1990), and its derivative validamycin, have suggested
that these compounds can act as insecticides by interfering
with trehalose utilization in flight muscles, wing buds, cuticle,
nervous system, and other body parts (Kono et al., 1999;
Wegener et al., 2003, 2010; Tang et al., 2017). Application of

FIGURE 4 | Trehalose metabolism and its relevance to chitin biosynthesis and

degradation in insects and and invertebrate animals. (TRE, Trehalase; HK,

Hexokinase; CHS, Chitin synthase; Cht, Chitinase; Hex,

β-N-acetylhexosamindase or β-N-acetyl-D-Hexosamindase; TPS,

Trehalose-6-phosphate synthase; TPP, Trehalose-6-phophate phosphatase).

TPS RNAi constructs via injection into S. exigua larvae (Tang
et al., 2010) or via feeding into N. lugens larvae (Chen et al.,
2010b) led to significant mortality in these insect species, further
supporting the notion that TPS enzyme inhibition might be
a viable insecticidal mechanism (Kern et al., 2012). Aryl D-
glucopyranoside 6-sulfate prototypes are expected to find future
applications for the development of tailored second-generation
T6PP inhibitors (Liu et al., 2017). Interfering with trehalose
biosynthesis could also be an insecticidal approach, making the
trehalose biosynthesis enzyme TPS a potential drug target for
pest control (Kern et al., 2012). A considerable body research
over the recent years has demonstrated that TPS is indispensable
for larval-pupal metamorphosis and that it is a suitable target
to control insect and helminth pests by inhibiting the trehalose
synthesis pathway (Tang et al., 2010; Xiong et al., 2016; Yang et al.,
2017).

To conclude, TPS genes have been identified so far
in hundreds of insect and other invertebrate species. We
have reviewed the current understanding of the evolutionary
and physiological significance of trehalose. In future studies,
different trehalose synthesis pathways, distinct functions of
multiple TPS genes, and sensitivity of TPS proteins to
potential pest control inhibitors should be investigated in
depth.
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