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Among various possible causes of autoimmune disease, an important role is played by

infections that can result in a breakdown of immune tolerance, primarily through the

mechanism of “molecular mimicry”. In this paper we propose and analyse a stochastic

model of immune response to a viral infection and subsequent autoimmunity, with

account for the populations of T cells with different activation thresholds, regulatory

T cells, and cytokines. We show analytically and numerically how stochasticity can

result in sustained oscillations around deterministically stable steady states, and we

also investigate stochastic dynamics in the regime of bi-stability. These results provide

a possible explanation for experimentally observed variations in the progression of

autoimmune disease. Computations of the variance of stochastic fluctuations provide

practically important insights into how the size of these fluctuations depends on various

biological parameters, and this also gives a headway for comparison with experimental

data on variation in the observed numbers of T cells and organ cells affected by infection.

Keywords: pathogen-induced autoimmunity, immune response, mathematical model, bi-stability, stochastic

effects

1. INTRODUCTION

Breakdown of immune tolerance and the resulting autoimmune disease occur when the immune
system fails to distinguish the host’s own healthy cells from the cells affected by the infection,
thus triggering an immune response that also targets healthy cells. Autoimmune disease is usually
focused in a specific organ or part of the body, such as retina in the case of uveitis, central
nervous system in multiple sclerosis, or pancreatic β-cells in insulin-dependent diabetes mellitus
type-1 (Prat and Martin, 2002; Kerr et al., 2008; Santamaria, 2010). Whilst it is close to impossible
to pinpoint precise causes of autoimmunity in each individual case, it can usually be attributed to a
number of factors, which can include the genetic predisposition, age, previous immune challenges,
exposure to pathogens etc. A number of distinct mechanisms have been identified for how an
infection of the host with a pathogen can result in the subsequent onset of autoimmune disease,
and these include bystander activation (Fujinami, 2011) and molecular mimicry (von Herrath
and Oldstone, 1996; Ercolini and Miller, 2008), which is particularly important in the context of
autoimmunity caused by viral infections.

Over the years, a number of mathematical models have investigated various origins and aspects
of immune response, with an emphasis on the onset and the development of autoimmune disease.
Some of the earlier models studied interactions between regulatory and effector T cells without
looking at causes of autoimmunity but instead focusing on T cell vaccination (Segel et al., 1995).
Borghans et al. (Borghans andDe Boer, 1995; Borghans et al., 1998) looked into this process inmore
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detail and showed the onset of autoimmunity, which was defined
as oscillations in the number of autoreactive cells that exceeded
a certain threshold. León et al. (2000, 2003, 2004) and Carneiro
et al. (2005) have analyzed interactions between different T cells
and their effect on regulation of immune response and control
of autoimmunity. More recently, Iwami et al. (2007, 2009)
considered a model of immune response to a viral infection,
in which they explicitly included the dynamics of a virus
population. Although this model is able to demonstrate an
emergence of autoimmunity, it fails to produce a regime of
normal viral clearance. Alexander and Wahl (2011) have focused
on the role of professional antigen-presenting cells (APCs) and
their interactions with regulatory and effector effector cells for
the purposes of controlling autoimmune response. Burroughs
et al. (2011a,b) have analyzed the autoimmunity through the
mechanism of cytokine-mediated bystander activation. A special
issue on “Theories and modeling of autoimmunity” provides an
excellent overview of recent research in the area of mathematical
modeling of various aspects of onset and development of
autoimmune disease (Root-Bernstein, 2015).

These are several different frameworks for modeling the role
of T cells in controlling autoimmune response. Alexander and
Wahl (2011) and Burroughs et al. (2011a,b) have explicitly
included a separate compartment for regulatory T cells that
are activated by autoantigens and suppress the activity of
autoreactive T cells. Another modeling approach is to consider
the possibility of the same T cells performing different
immune functions through having different or tunable activation
thresholds, which allows T cells to adjust their response to T cell
antigen receptor stimulation by autoantigens. This methodology
was originally proposed theoretically to study peripheral and
central T cell activation (Grossman and Paul, 1992, 2000;
Grossman and Singer, 1996), and has been subsequently used
to analyse differences in activation/response thresholds that are
dependent on the activation state of the T cell (Altan-Bonnet and
Germain, 2005). van den Berg and Rand (2004) and Scherer et al.
(2004) have studied stochastic tuning of activation thresholds.
Interestingly, the need for T cells to have tunable activation
can be shown to emerge from the fundamental principles of of
signal detection theory (Noest, 2000). A number of murine and
human experiments have confirmed that activation of T cells can
indeed dynamically change during their circulation (Nicholson
et al., 2000; Bitmansour et al., 2002; Stefanova et al., 2002; Römer
et al., 2011), thus supporting the theory developed in earlier
papers.

Since immune response is known to be a complex multi-factor
process (Perelson and Weisbuch, 1997), a number of studies
have looked into various stochastic aspects of immune dynamics,
such as T cell selection and proliferation. Deenick et al. (2003)
have analyzed stochastic effects of interleukin-2 (IL-2) on T
cell proliferation from precursors. Blattman et al. (2000) have
shown that repertoires of the CTL (cytotoxic T cell lymphocyte)
populations during primary response to a viral infection and
in the memory pool are similar, thus providing further support
to the theory of stochastic selection for the memory pool.
Detours and Perelson (2000) have explored the distribution
of possible outcomes during T cell selection with account for

variable affinity between T cell receptors and MHC-peptide
complexes. Chao et al. (2004) analyzed a detailed stochastic
model of T cell recruitment during immune response to a viral
infection. Stirk et al. (2010a,b) have developed a stochastic model
for T cell repertoire and investigated the role of competitive
exclusion between different clonotypes. Using the methodology
of continuous-time Markov processes, the authors computed
extinction times, a limited multivariate probability distribution,
as well as the size of fluctuations around the deterministic steady
states. Reynolds et al. (2012) have used a similar methodology
to investigate an important question of asymmetric cell division
and its impact on the extinction of different T cell populations
and the expected lifetimes of naïve T cell clones. With regards
to modeling autoimmune dynamics, Alexander andWahl (2011)
have studied the stochastic model of immune response with an
emphasis on professional APCs to show that the probability
of developing a chronic autoimmune response increases with
the initial exposure to self-antigen or autoreactive effector T
cells. An important aspect of stochastic dynamics that has
to be accounted for in the models is the so-called stochastic
amplification (Alonso et al., 2007; Kuske et al., 2007), which
denotes a situation where periodic solutions with decaying
amplitudes in the deterministic model can result in sustained
stochastic periodic oscillations in individual realizations of
the same model. This suggests that whilst on average the
behavior may show decaying-amplitude oscillations, individual
realizations represented by stochastic oscillations can explain
relapses/remissions in clinical manifestations of the disease as
caused by endogenous stochasticity of the immune processes.

Blyuss and Nicholson (2012, 2015) have proposed and
analyzed a mathematical model of immune response to a viral
infection that explicitly takes into account the populations
of two types of T cells with different activation thresholds
and also allows for infection and autoimmune response to
occur in different organs. This model supports the regimes of
normal viral clearance, a chronic infection, and an autoimmune
state represented by exogenous oscillations in cell populations,
associated with episodes of high viral production followed by
long periods of quiescence. Such behavior, that in the clinical
observation could be associated with relapses and remissions,
has been observed in a number of autoimmune diseases, such
as MS, autoimmune thyroid disease and uveitis (Ben Ezra and
Forrester, 1995; Davies et al., 1997; Nylander and Hafler, 2012).
Despite its successes, this model has a limitation that the periodic
oscillations are only possible when the amount of free virus
and the number of infected cells are also exhibiting oscillations,
while in laboratory and clinical situations, one rather observes
a situation where the initial infection is completely cleared, and
this is then followed by the onset of autoimmune reaction. To
overcome this limitation, Fatehi et al. (unpublished) have recently
extended the model of Blyuss and Nicholson to also include the
population of regulatory T cells and the cytokine mediating T cell
activity.

In this paper we analyse the effects of stochasticity on
the dynamics of immune response in a model with the
populations of T cells with different activation thresholds,
regulatory cells and cytokines, as presented in Methods. Starting
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with a system of ordinary differential equations, we apply the
methodology of continuous-time Markov chains (CTMC) to
derive a Kolmogorov, or chemical master equation, describing
the dynamics of a probability distribution of finding the system
in a particular state. To make further analytical and numerical
progress, we derive an Itô stochastic differential equation, whose
solutions provide similar stochastic paths to those of the CTMC
models. This then allows us to numerically study the stationary
multivariate probability distributions for the states in the model,
explore stochastic amplification, determine how the magnitude
of stochastic fluctuations around deterministic steady states
depends on various parameters, and investigate the effects of
initial conditions on the outcome in the case of bi-stability
between different dynamical states. These results suggest that
the experimentally observed variation in the progression of
autoimmune disease can be attributed to stochastic amplification,
and they also provide insights into how the variance of
fluctuations depends on parameters, which can guide new
laboratory experiments.

2. METHODS

2.1. Continuous-Time Markov Chain Model
of Immune Dynamics
In a recent paper we introduced and analyzed a deterministic
model for autoimmune dynamics with account for the
populations of T cells with different activation thresholds
and cytokines (Fatehi et al. unpublished). The analysis showed
that depending on parameters and initial conditions, the model
can support the regimes of normal disease clearance, where

an initial infection is cleared without further consequences
for immune dynamics, chronic infection characterized by a
persistent presence of infected cells in the body, and the state of
autoimmune behavior where after clearance of initial infection,
the immune system supports stable endogenous oscillations in
the number of autoreactive T cells, which can be interpreted
in the clinical practice of autoimmune disease as periods of
relapses and remissions. This work extended earlier results on
modeling the effects of tunable activation thresholds (Blyuss and
Nicholson, 2012, 2015) by including regulatory T cells, as well
as the cytokine mediating proliferation and activity of different
types of T cells.

A deterministic model for immune response to a viral
infection, as illustrated in a diagram shown in Figure 1, has the
form

dS

dt
= rS

(
1−

S

N

)
− βSF − µaTautS,

dF

dt
= βSF − dFF − µFTnorF − µaTautF,

dTin

dt
= λin − dinTin − αTinF,

dTreg

dt
= λr − drTreg + p1αTinF + ρ1ITreg , (1)

dTnor

dt
= p2αTinF − dnTnor + ρ2ITnor ,

dTaut

dt
= (1− p1 − p2)αTinF − daTaut − δTregTaut + ρ3ITaut ,

dI

dt
= σ1Tnor + σ2Taut − diI,

FIGURE 1 | A schematic diagram of immune response to infection. Blue indicates host cells (susceptible and infected), red denotes T cells (naïve, regulatory, normal

activated, and autoreactive), yellow shows cytokines (interleukin-2).
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where S(t) is the number of susceptible organ cells, F(t) is the
number of infected cells, Tin(t) is the number of naïve T cells,
Treg(t) is the number of regulatory T cells, Tnor(t) is the number
of activated T cells which recognize foreign antigen and destroy
infected cells, Taut(t) is the number of autoreactive T cells which
destroy cells presenting both foreign and self-antigen, and I(t)
is the amount of interleukin 2 (IL-2) cytokine. In this model,
it is assumed that in the absence of infection, organ cells in
the host reproduce logistically with a linear growth rate r and
carrying capacity N, and they can become infected at rate β

by already infected cells that are producing new virus particles.
Unlike earlier models (Blyuss and Nicholson, 2012, 2015; Fatehi
et al. unpublished), we consider the situation where the process
of producing virions by infected cells is quite fast, hence, we
do not explicitly incorporate a separate compartment for free
virus. Regarding immune response, we assume that naïve T cells
remain in homeostasis, and upon activation at rate α by a signal
from infected cells, a proportion p1 of them will develop into
regulatory T cells, a proportion p2 will become normal activated
T cells able to destroy infected cells at rate µF , and the remaining
T cells will become autoreactive, in which case their threshold
for activation by susceptible cells is reduced, and hence, they
will be destroying both infected and susceptible host cells at rate
µa. The effect of regulatory T cells is in reducing the number of
autoreactive T cells at rate δ, and regulatory T cells are themselves
assumed to be in a state of homeostasis. Finally, normal and
autoreactive T cells produce IL-2 at rates σ1 and σ2, and IL-2 in
turn facilitates proliferation of regular, normal and autoreactive
T cells at rates ρ1, ρ2, and ρ3, respectively. One should note that
in light of experimental evidence suggesting the possibility of
autoimmunity in the absence of B cells (Wolf et al., 1996) and
the fact that the development of antibodies can itself depend on

prior T cell activation with bacteria (Wu et al., 2010), the above
model does not take into account antibody response, but rather
focuses on T cell dynamics.

As a first step in the analysis of stochastic effects in immune
dynamics, we construct a CTMC model based on the ODE
model (1) using the methodology developed earlier in the context
of modeling stochastic effects in epidemic and immunological
models (Brauer et al., 2008; Stirk et al., 2010a; Allen, 2011). To
this end, we introduce variables X1(t), . . . ,X7(t) ∈ {0, 1, 2, . . .} as
discrete random variables representing the number of uninfected
cells, infected cells, naïve T cells, regulatory T cells, normal
activated T cells, autoreactive T cells, and interleukin-2 at time
t, respectively. Let the initial condition be fixed as

X0 = (X1(0), . . . ,X7(0)) = (n10, n20, n30, n40, n50, n60, n70).

The probability of finding the system in the state n =
(n1, n2, n3, n4, n5, n6, n7) with ni ∈ {0, 1, 2, ...} at time t can be
defined as

P(n, t) = Prob{X(t) = n|X(0) = X0}.

Let 1t be sufficiently small such that 1Xi(t) = Xi(t + 1t) −
Xi(t) ∈ {−1, 0, 1} for 1 ≤ i ≤ 7. The CTMC can then
be formulated as a birth and death process in each of the
variables (Allen, 2011). The infinitesimal transition probabilities
corresponding to Figure 1 are as follows,

Prob(1X = i|X = n) =





q11t + o(1t), i = (1, 0, 0, 0, 0, 0, 0),

q21t + o(1t), i = (−1, 0, 0, 0, 0, 0, 0),

q31t + o(1t), i = (−1, 1, 0, 0, 0, 0, 0),

q41t + o(1t), i = (0, 0, 1, 0, 0, 0, 0),

q51t + o(1t), i = (0, 0,−1, 0, 0, 0, 0),

q61t + o(1t), i = (0, 0,−1, 0, 1, 0, 0),

q71t + o(1t), i = (0, 0,−1, 0, 1, 0, 0),

q81t + o(1t), i = (0, 0,−1, 0, 0, 1, 0),

q91t + o(1t), i = (0,−1, 0, 0, 0, 0, 0),

q101t + o(1t), i = (0, 0, 0, 1, 0, 0, 0),

q111t + o(1t), i = (0, 0, 0,−1, 0, 0, 0),

q121t + o(1t), i = (0, 0, 0, 0, 1, 0, 0),

q131t + o(1t), i = (0, 0, 0, 0,−1, 0, 0),

q141t + o(1t), i = (0, 0, 0, 0, 0, 1, 0),

q151t + o(1t), i = (0, 0, 0, 0, 0,−1, 0),

q161t + o(1t), i = (0, 0, 0, 0, 0, 0, 1),

q171t + o(1t), i = (0, 0, 0, 0, 0, 0,−1),

1−
17∑
i=1

qi1t + o(1t), i = (0, 0, 0, 0, 0, 0, 0),

o(1t), otherwise,

(2)
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where

q1 = b1n1 + b2n
2
1, q2 = d1n1 + d2n

2
1 + µan1n6, q3 = βn1n2, q4 = λin,

q5 = dinn3, q6 = p1αn2n3, q7 = p2αn2n3, q8 = (1− p1 − p2)αn2n3,

q9 = (dF + µFn5 + µan6)n2, q10 = λr + ρ1n4n7, q11 = drn4, q12 = ρ2n5n7,

q13 = dnn5, q14 = ρ3n6n7, q15 = (da + δn4)n6, q16 = σ1n5 + σ2n6, q17 = din7.

Here, b1n1 + b2n
2
1 and d1n1 + d2n

2
1 are natural birth and death

rates for uninfected cells with b1 − d1 = r and d2 − b2 =
r/N (Allen, 2011).

The probabilities P(n, t) satisfy the following master equation
(forward Kolmogorov equation)

dP(n, t)

dt
={(ε−1 − 1)q1 + (ε+1 − 1)q2 + (ε+1 ε−2 − 1)q3 + (ε−3 − 1)q4 + (ε+3 − 1)q5

+ (ε+3 ε−4 − 1)q6 + (ε+3 ε−5 − 1)q7 + (ε+3 ε−6 − 1)q8 + (ε+2 − 1)q9 + (ε−4 − 1)q10

+ (ε+4 − 1)q11 + (ε−5 − 1)q12 + (ε+5 − 1)q13 + (ε−6 − 1)q14 + (ε+6 − 1)q15

+ (ε−7 − 1)q16 + (ε+7 − 1)q17}P(n, t). (3)

where the operators ε±i are defined as follows,

ε±i f (n1, n2, n3, n4, n5, n6, n7, t) = f (n1, ..., ni ± 1, ..., n7, t),

for each 1≤ i ≤ 7, and if ni < 0 for any 1 ≤ i ≤ 7, then
P(n, t) = 0.

By solving this master equation, one can find the probability
density function for this model. However, since this is a high-
dimensional difference-differential equation, solving it is a very
challenging task. Normally, the number of events occurring in
a small time step in the CTMC model is extremely large, hence
using the CTMC model for plotting stochastic trajectories is
very computationally intensive (Mandal et al., 2014). A much
more computationally efficient approach is to use chemical
Langevin equations (Gillespie, 2000, 2002), also known as Itô
stochastic differential equation (SDE)models, which provide very
similar sample paths to those of the CTMC models (Mandal
et al., 2014). While both Itô and Stratonovich interpretations of
stochastic calculus can be applied (Øksendal, 2000), in biological
applications Itô formulation is more frequently used due to its
non-anticipatory nature and a closer connection to numerical
implementation (Allen, 2007, 2011; Braumann, 2007).

2.2. Stochastic Differential Equation Model
To derive Itô SDE model, let Y(t) = (Y1(t),Y2(t),
Y3(t),Y4(t),Y5(t),Y6(t),Y7(t)) be a continuous random vector
for the sizes of various cell compartments at time t. Similar
to the CTMC model, we assume that 1t is small enough so
that during this time interval at most one change can occur in
state variables. These changes together with their probabilities
are listed in Table 1, which is again based on Figure 1 and

transitions in the CTMC model (2). Using this table of possible
state changes, one can compute the expectation vector and
covariance matrix of 1Y for sufficiently small 1t (Allen et al.,
2008; Mandal et al., 2014). The expectation vector to order 1t is
given by

E(1Y) ≈
17∑

i=1

Pi(1Y)i1t = µ1t,

where

µ =




P1 − P2 − P3
P3 − P9

P4 − P5 − P6 − P7 − P8
P6 + P10 − P11
P7 + P12 − P13
P8 + P14 − P15

P16 − P17




TABLE 1 | Possible state changes 1Y during a small time interval 1t.

i (1Y)T
i

Probability Pi1t

1 (1, 0, 0, 0, 0, 0, 0) (b1Y1 + b2Y1
2)1t

2 (−1, 0, 0, 0, 0, 0, 0) (d1Y1 + d2Y1
2 + µaY6Y1)1t

3 (−1, 1, 0, 0, 0, 0, 0) βY1Y21t

4 (0, 0, 1, 0, 0, 0, 0) λin1t

5 (0, 0,−1, 0, 0, 0, 0) dinY31t

6 (0, 0,−1, 1, 0, 0, 0) p1αY3Y21t

7 (0, 0,−1, 0, 1, 0, 0) p2αY3Y21t

8 (0, 0,−1, 0, 0, 1, 0) (1− p1 − p2)αY3Y21t

9 (0,−1, 0, 0, 0, 0, 0) (dF + µFY5 + µaY6)Y21t

10 (0, 0, 0, 1, 0, 0, 0) (λr + ρ1Y7Y4)1t

11 (0, 0, 0,−1, 0, 0, 0) drY41t

12 (0, 0, 0, 0, 1, 0, 0) ρ2Y7Y51t

13 (0, 0, 0, 0,−1, 0, 0) dnY51t

14 (0, 0, 0, 0, 0, 1, 0) ρ3Y7Y61t

15 (0, 0, 0, 0, 0,−1, 0) (da + δY4)Y61t

16 (0, 0, 0, 0, 0, 0, 1) (σ1Y5 + σ2Y6)1t

17 (0, 0, 0, 0, 0, 0,−1) diY71t

18 (0, 0, 0, 0, 0, 0, 0) 1−
17∑
i=1

Pi1t

Frontiers in Physiology | www.frontiersin.org 5 February 2018 | Volume 9 | Article 45

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Fatehi et al. Stochastic Effects in Autoimmune Dynamics

is the drift vector, which can be easily seen to be identical to
the right-hand side of the deterministic model Equation (1). The
covariance matrix is obtained by keeping terms of order 1t only,
i.e.,

cov(1Y) = E
[
(1Y)(1Y)T

]

− E [1Y] (E [1Y])T ≈ E
[
(1Y)(1Y)T

]

=
17∑
i=1

Pi(1Y)i(1Yi)
T1t = 61t,

where

6 =




P1 + P2 + P3 −P3 0 0 0 0 0
−P3 P3 + P9 0 0 0 0 0
0 0 P4 + P5 + P6 + P7 + P8 −P6 −P7 −P8 0
0 0 −P6 P6 + P10 + P11 0 0 0
0 0 −P7 0 P7 + P12 + P13 0 0
0 0 −P8 0 0 P8 + P14 + P15 0
0 0 0 0 0 0 P16 + P17




is a 7 × 7 covariance matrix. To derive Itô SDE model, we need
to find a diffusion matrix H defined according to HHT = 6.
Although this matrix is not unique, different forms of this matrix
give equivalent systems (Allen, 2007; Allen et al., 2008).

If one rewrites the covariance matrix 6 in the form

6 =



U 0 0

0 W 0

0 0 Z


 ,

with

U =
(
P1 + P2 + P3 −P3

−P3 P3 + P9

)
, Z = P16 + P17,

and

W =




P4 + P5 + P6 + P7 + P8 −P6 −P7 −P8
−P6 P6 + P10 + P11 0 0
−P7 0 P7 + P12 + P13 0
−P8 0 0 P8 + P14 + P15


 ,

we can define three matrices H1, H2 and H3 as follows,

H1 =
(√

P1 + P2 −
√
P3 0

0
√
P3

√
P9

)
, H3 =

√
P16 + P17,

H2 =




√
P4 + P5 −

√
P6 −

√
P7 −

√
P8 0 0 0

0
√
P6 0 0

√
P10 + P11 0 0

0 0
√
P7 0 0

√
P12 + P13 0

0 0 0
√
P8 0 0

√
P14 + P15


 .

Now if we consider

H =



H1 0 0

0 H2 0

0 0 H3


 ,

then HHT = 6, where H is a 7× 11 matrix. The Itô SDE model
now has the form
{
dY(t) = µdt +HdW(t),

Y(0) = (A(0), F(0),Tin(0),Treg(0),Tnor(0),Taut(0), I(0))
T ,

(4)

and W(t) = [W1(t),W2(t), ...,W11(t)]
T is a vector of 11

independent Wiener processes (Allen, 2007).
In order to make further analytical progress, we find

an approximate probability density function for the model
(4) as given by an approximate solution of the master
equation (van Kampen, 1981; Allen, 2007). Let P(Y, t) be
the probability density function of the model (4). Then
P(Y, t) satisfies the following Fokker-Planck equation (Gardiner,
2004; Allen, 2007) which is an approximation of the master
equation





∂P(Y, t)

∂t
= −

7∑

i=1

∂

∂yi

[
µiP(Y, t)

]
+

1

2

7∑

i=1

7∑

j=1

∂2

∂yi∂yj

[
6ijP(Y, t)

]
,

P(Y, 0) = δ7(Y− Y0).

By solving this PDE, one can find the probability density function
of our model, but since this equation is high-dimensional and
nonlinear, solving it analytically is impossible. Hence, we use
another approach, a so-called system size expansion or van
Kampen’s �-expansion (van Kampen, 1981), which is a method
for constructing a continuous approximation to a discrete
stochastic model (Stirk et al., 2010a,b), which allows one to study

stochastic fluctuations around deterministic attractors (Black
et al., 2009).

2.3. System Size Expansion
In order to apply the van Kampen’s approach, we consider
fluctuations within a systematic expansion of themaster equation
for a large system size �. Specifically, we write each ni(t) as a
deterministic part of order � plus a fluctuation of order �

1/2 as
follows,
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ni(t) = �xi(t)+ �
1/2ζi(t), i = 1, . . . , 7, (5)

where xi(t) and ζi(t) are two continuous variables, and �xi(t) =
E[ni(t)]. The probability density P(n, t) satisfying the master
Equation (3) is now represented by the probability density
5(ζ , t), i.e., 5(ζ , t) = P(n, t) = P

(
�x+ �

1/2ζ , t
)
, which implies

dP(n, t)

dt
=

∂5

∂t
−

7∑

i=1

�
1/2 dxi

dt

∂5

∂ζi
. (6)

To expand the master equation (3) in a power series in �
− 1/2, we

use the following expansion for the step operators

ε±i = 1± �−1/2 ∂

∂ζi
+

1

2
�−1 ∂2

∂ζ 2
i

± · · · . (7)

Substituting expressions (6, 7) into the master equation (see
Supplementary Material for details) and collecting terms of order
�

1/2 yields the following deterministic model for macroscopic
behavior

dx1

dt
= b1x1 + b̃2x

2
1 − d1x1 − d̃2x

2
1 − β̃x1x2 − µ̃ax1x6,

dx2

dt
= β̃x1x2 − dFx2 − µ̃Fx2x5 − µ̃ax2x6,

dx3

dt
= λ̃in − dinx3 − α̃x2x3,

dx4

dt
= λ̃r − drx4 + p1α̃x2x3 + ρ̃1x4x7,

dx5

dt
= p2α̃x2x3 − dnx5 + ρ̃2x5x7,

dx6

dt
= (1− p1 − p2 )̃αx2x3 − dax6 − δ̃x4x6 + ρ̃3x6x7,

dx7

dt
= σ1x5 + σ2x6 − dix7,

(8)

where

b2 =
b̃2

�
, d2 =

d̃2

�
, β =

β̃

�
, µa =

µ̃a

�
,

µF =
µ̃F

�
, α =

α̃

�
, δ =

δ̃

�
,

ρi =
ρ̃i

�
, i = 1, 2, 3, λin = λ̃in�, λr = λ̃r�.

Model (8) has been analyzed in Fatehi et al. (unpublished), and
it can have at most four biologically feasible steady states. The

A =




b1 + 2̃b2x1 − d1 − 2̃d2x1 − µ̃ax6 − β̃x2 −β̃x1 0 0 0 −µ̃ax1 0

β̃x2 β̃x1 − dF − µ̃Fx5 − µ̃ax6 0 0 −µ̃Fx2 −µ̃ax2 0

0 −α̃x3 −din − α̃x2 0 0 0 0

0 p1α̃x3 p1α̃x2 ρ̃1x7 − dr 0 0 ρ̃1x4
0 p2α̃x3 p2α̃x2 0 ρ̃2x7 − dn 0 ρ̃2x5
0 (1− p1 − p2 )̃αx3 (1− p1 − p2 )̃αx2 −δ̃x6 0 ρ̃3x7 − da − δ̃x4 ρ̃3x6
0 0 0 0 σ1 σ2 −di




,

first one, a disease-free steady state, is given by

S∗1 =
(
b1 − d1

d̃2 − b̃2
, 0,

λ̃in

din
,
λ̃r

dr
, 0, 0, 0

)
,

and it is stable if dF > β̃ . The second and third steady states can
be found as

S∗2 =

(
0, 0,

λ̃in

din
, x∗4 , 0,

di
(
da + δ̃x∗4

)

ρ̃3σ2
,
da + δ̃x∗4

ρ̃3

)
,

and

S∗3 =


 ρ̃3σ2(b1 − d1)− µ̃adi

(
da + δ̃x∗4

)

ρ̃3σ2

(
d̃2 − b̃2

) ,

0,
λ̃in

din
, x∗4 , 0,

di
(
da + δ̃x∗4

)

ρ̃3σ2
,
da + δ̃x∗4

ρ̃3

)
,

where x∗4 satisfies the following quadratic equation

ρ̃1δ̃
(
x∗4
)2 +

(
ρ̃1da − ρ̃3dr

)
x∗4 + ρ̃3̃λr = 0. (9)

These steady states are stable, provided

σ2

µ̃adi
K <

da + δ̃x∗4
ρ̃3

<
dn

ρ̃2
, δ̃ρ̃1(x

∗
4)

2 > λ̃rρ̃3,

ρ̃3̃λ
2
r + ρ̃3dĩλrx

∗
4 − ρ̃3dida(x

∗
4)

2 − δ̃(ρ̃1da + ρ̃3di)(x
∗
4)

3

−ρ̃1δ̃
2(x∗4)

4 > 0,

where K = 1 for S∗2 , and K =
(
β̃ − dF

)
/
(
1+ β̃

)
for S∗3 .

Biologically, the steady state S∗2 represents the death of organ
cells, while S∗3 corresponds to an autoimmune regime.

The last steady state S∗4 has all of its components positive and
corresponds to the state of chronic infection.

At the next order, stochastic fluctuations are determined by
linear stochastic processes, hence, this is known as a linear noise
approximation (van Kampen, 1981; Wallace et al., 2012). The
dynamics of these fluctuations is described by the following linear
Fokker-Planck equation

∂5(ζ , t)

∂t
= −

∑

i,j

Aij
∂

∂ζi
(ζj5)+

1

2

∑

i,j

Bij
∂25

∂ζi∂ζj
, (10)

where A is the Jacobian matrix of system (8)
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and B is a 7× 7 symmetric matrix given by

Bij =





b1x1 + b̃2x
2
1 + d1x1 + d̃2x

2
1 + β̃x1x2 + µ̃ax1x6, if (i, j) = (1, 1),

β̃x1x2 + dFx2 + µ̃Fx2x5 + µ̃ax2x6, if (i, j) = (2, 2),

λ̃in + dinx3 + α̃x2x3, if (i, j) = (3, 3),

λ̃r + drx4 + p1α̃x2x3 + ρ̃1x4x7, if (i, j) = (4, 4),

p2α̃x2x3 + dnx5 + ρ̃2x5x7, if (i, j) = (5, 5),

(1− p1 − p2 )̃αx2x3 + dax6 + δ̃x4x6 + ρ̃3x6x7, if (i, j) = (6, 6),

σ1x5 + σ2x6 + dix7, if (i, j) = (7, 7),

−β̃x1x2, if (i, j) = (1, 2) or (2, 1),

−p1α̃x2x3, if (i, j) = (3, 4) or (4, 3),

−p2α̃x2x3, if (i, j) = (3, 5) or (5, 3),

−(1− p1 − p2 )̃αx2x3, if (i, j) = (3, 6) or (6, 3),

0, otherwise.

Since the Fokker-Planck Equation (10) is linear, the probability
density5(ζ , t) is Gaussian, and hence, just the first twomoments
are enough to characterize it (Hayot and Jayaprakash, 2004; Pahle
et al., 2012). Due to the way the system size expansion was
introduced in (Equation 5), the mean values of fluctuations for
all variables are zero, i.e., 〈ζi(t)〉 = 0 for all 1 ≤ i ≤ 7, while
the covariance matrix 4 with 4ij = 〈ζi(t)ζj(t)〉 − 〈ζi(t)〉〈ζj(t)〉 =
〈ζi(t)ζj(t)〉 satisfies the following equation (van Kampen, 1981;
Pahle et al., 2012)

∂t4 = A4 + 4AT + B, (11)

where AT is the transpose of A.
We aremainly interested in the dynamics of fluctuations when

the oscillations of the deterministic model have died out, and
the system is in a stationary state, i.e., the fluctuations take place
around the steady states (Black et al., 2009). If the model (8)
tends to a steady state as t → ∞, then in the equation (10) one
can substitute the values of xi’s with the corresponding constant
components of that steady state to study the fluctuations around
it, as described by the linear Fokker-Planck equation. At any
steady state, the covariance matrix 4 is independent of time, and
the fluctuations are described by a Gaussian distribution with the
zero mean and the stationary covariance satisfying the equation

A4 + 4AT + B = 0.

In order to be able to relate the results of this analysis to
simulations, it is convenient to express the covariance matrix in
terms of actual numbers of cells in each compartment, rather
than deviations from stationary values. To this end, we instead
use the covariance matrix C defined as Cij = 〈(ni − 〈ni〉)(nj −
〈nj〉)〉, which, in light of the relation Cij = �4ij, satisfies the
following Lyapunov equation (Pahle et al., 2012)

AC + CAT + �B = 0. (12)

This equation can be solved numerically for each of the stable
steady states to determine the variance of fluctuations around
that steady state depending on system parameters.

3. RESULTS

To simulate the dynamics of the model, we solve the system
Equation (4) numerically using the Euler-Maruyama method
with parameter values given inTable 2, and� = 1000. The initial
condition is chosen to be of the form

(x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0))

= (18, 2, 7.2, 6.3, 0, 0, 0), (13)

which corresponds to a small number of host cells being initially
infected.

Figure 2 shows the results of 20,000 simulations with the
initial condition (13) and σ2 = 1. In the deterministic
model (8), for σ2 = 1 both steady states S∗1 (disease-free)
and S∗3 (autoimmune state) are stable, but with the initial
condition (13) the system is in the basin of attraction of S∗3 .
In the stochastic model, the majority of trajectories also enter
the attraction region of S∗3 , but a small proportion of them
went into the basin of attraction of S∗1 . This figure illustrates
a single stochastic path around S∗1 , and a single stochastic
path around S∗3 , together with the deterministic trajectory.
These individual solutions indicate that whilst deterministically,
the system exhibits decaying oscillations around S∗3 , the same
behavior is observed in the stochastic simulations only upon
taking an average of a very large number of simulations. At the
same time, individual realizations exhibit sustained stochastic
oscillations in a manner similar to that observed in models of
stochastic amplification in epidemics (Alonso et al., 2007; Kuske
et al., 2007). Figure 2 also illustrates the size of areas of one
standard deviation from the mean for trajectories in the basins
of attraction S∗1 and S

∗
3 , in which individual stochastic trajectories

may exhibit stochastic oscillations (Conway and Coombs, 2011;
Reynolds et al., 2012).

Figures 3A,B show temporal evolution of the probability
distribution in the case of bi-stability between the steady states
S∗1 and S∗3 , as illustrated in Figure 2. They indicate that after
some initial transient, the system reaches a stationary bimodal
normal distribution. The width of the probability distribution
around each stable steady state, as described by its variance
or standard deviation, gives the size of fluctuations around
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TABLE 2 | Table of parameters.

Parameter Value Parameter Value

b1 2.5 dr 0.8

b̃2 0.1 p1 0.4

d1 0.5 ρ̃1 10/9

d̃2 0.2 p2 0.4

β̃ 0.1 dn 2

µ̃a 40/9 ρ̃2 4/45

dF 2.2 da 0.002

µ̃F 4/3 δ̃ 1/4500

λ̃in 18 ρ̃3 2/9

din 2 σ1 0.3

α̃ 0.04 σ2 0.4

λ̃r 108 di 1.2

FIGURE 2 | Numerical simulation of the model (4) with parameter values from

Table 2, σ2 = 1, and the initial condition (13). Red curves are two sample

paths that have entered the basins of attraction of S*1 or S*3, black curve is the

deterministic trajectory from (1), and the shaded areas indicate the regions of

one standard deviation from the mean.

this steady state observed in individual stochastic realizations,
as is shown in Figure 2. Similar behavior has been observed
in stochastic realizations of other deterministic models with
bi-stability (Earnest et al., 2013; Bruna et al., 2014; Hufton
et al., 2016). For the parameter values given in Table 2, the
deterministic system exhibits a bi-stability between S∗1 and S

∗
2 , and

with the initial condition

(x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0))

= (18, 9, 7.2, 6.3, 0, 0, 0), (14)

it is in the basin of attraction of S∗2 . Due to stochasticity, the
stationary probability distribution in this case is also bimodal,
with the majority of solutions being distributed around S∗2 , and
a very small number being centered around S∗1 , as can be seen
in Figures 3C,D. Increasing the system size � is known to result
in the bimodal distribution becoming unimodal due to the size
of fluctuations scaling as �−1/2, which results in a reduced

variability in trajectories (Black and McKane, 2012; Hufton et al.,
2016), and the same conclusion holds for the system (4).

To gain better insights into the role of initial conditions, in
Figure 4 we fix all parameter values, and vary initial numbers
of infected cells and regulatory T cells. For the parameter
combination illustrated in Figure 4A, the deterministic model
exhibits a bi-stability between a stable disease-free steady state S∗1
and a periodic oscillation around the state S∗3 , which biologically
corresponds to an autoimmune regime. In the deterministic case,
the black boundary provides a clear separation of the basins of
attraction of these two dynamical states, in a manner similar to
that investigated recently in the context of within-cell dynamics
of RNA interference (Neofytou et al., 2017). For stochastic
simulations, the color indicates the probability of the solution
going to a disease-free state S∗1 , and it shows that even in the case
where deterministically the system is in the basin of attraction
of one of the states, there is a non-zero probability that it will
actually end up at another state, with this probability varying
smoothly across the deterministic basin boundary. This figure
suggests that if the initial number of infected cells is sufficiently
small, or if the number of regulatory T cells is sufficiently
large, the system tends to clear the infection and approach
the disease-free state. On the contrary, for higher numbers of
infected cells and lower numbers of regulatory cells, autoimmune
regime appears to be a more likely outcome. Qualitatively similar
behavior is observed for another combination of parameters
illustrated in Figure 4B, in which case the deterministic system
has a bi-stability between a disease-free steady state S∗1 , and a state
S∗2 which represents the death of host cells.

In order to understand how biological parameters affect
the size of fluctuations around steady states, in Figure 5 we
explore several parameter planes by first identifying parameter
regions where the deterministic system has a stable steady state
S∗3 , and then for each combination of parameters inside these
regions, we use the Bartels-Stewart method (Bartels and Stewart,
1972; Hammarling, 1982) to numerically solve the Lyapunov
equation (12) and compute the variance in the number of
regulatory T cell when the deterministic model is at the steady
state S∗3 . The value of variance gives the square of the magnitude
of oscillations observed in individual stochastic realizations. One
should note that getting closer to the deterministic boundary of
stability of S∗3 increases the stochastic variance of fluctuations
around this steady state. The reason for this is that closer
parameters are to the deterministic stability boundary, the less
stable is the steady state, hence the larger is the amplitude of
stochastic oscillations around it. Moreover, the variance increases
with the rate of production of IL-2 by autoreactive T cells and the
rate at which regulatory T cells suppress autoreactive T cells; it
decreases with the higher rate of production of regulatory T cells,
and it appears to not depend on the rate at which autoreactive T
cells destroy infected cells, or on the infection rate.

4. DISCUSSION

In this paper we have analyzed stochastic aspects of immune
response against a viral infection with account for the
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FIGURE 3 | Probability distribution of solutions out of 20,000 simulations. (A,B) with parameters from Table 2, but σ2 = 1 and the initial condition (13). (C,D) with

parameters from Table 2 and the initial condition (14). In (A,C), the probability histogram is fit to a bimodal normal distribution at different times. (B,D) illustrate

stationary joint probability histograms.

populations of T cells with different activation thresholds, as
well as cytokines mediating T cell activity. The CTMC model
has provided an exact master equation, for which we applied
a van Kampen’s expansions to derive a linear Fokker-Planck
equation that characterizes fluctuations around the deterministic
solutions. We have also explored actual stochastic trajectories of
the system by deriving an SDE model and solving it numerically.

One biologically important aspect we have looked at is the
influence of stochasticity on the dynamics of the system in the
case where deterministically it exhibits a bi-stability between
either two steady states, or a steady state and a periodic solution.
In such a situation, bi-stability in the deterministic version of the
model translates in the stochastic case into a stationary bimodal
distribution for the probability density. To obtain further insights
into details of how stochasticity affects bi-stability, we have
investigated how for the fixed parameter values time evolution
of the system changes depending on the initial numbers of the
regulatory T cells and infected cells.

Our analysis reinforces the need to distinguishmean dynamics
from individuals realizations: where in the deterministic case
the system can approach a stable steady state (which represents
mean behavior of a very large number of simulations), individual
realizations can exhibit sustained stochastic oscillations around
that steady state, as we have seen in numerical simulations. Since
in the clinical or laboratory setting one is usually dealing with
single measurements of some specific biological quantities rather
than their averaged values, the stochastic oscillations exhibited
by our model may quite well explain observed variability in the
measured levels of infection or T cell populations. To better
understand the magnitude of stochastic fluctuations around
the deterministic steady states, we have solved the Lyapunov
equation, which has provided us with a quantitative information
on the dependence of variance of fluctuations on system
parameters.

There are several directions in which the work presented
in this paper can be extended. In terms of fundamental
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FIGURE 4 | Probability of solution entering and staying in the basin of attraction of the disease-free steady state S*1 in the bi-stability regime with A(0) = 18, 000 and

Tin(0) = 7, 200. Black curves are the boundaries between different basins of attraction in the deterministic model. (A) With parameter values from Table 2, λ̃r = 45

and µ̃a = 10/9, in the region below the black curve, the deterministic model exhibits a periodic solution around S*3, and above this curve is the deterministic basin of

attraction of S*1. (B) With parameter values from Table 2, area below the black curve is the basin of attraction of S*2, and above it is again the basin of attraction of S*1.

FIGURE 5 | Variance of the number of regulatory T cells Treg with parameter values from Table 2. Colored regions indicate areas in respective parameter planes in

which the autoimmune steady state S*3 is deterministically stable.
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immunology, the model can be made more realistic by
including additional effects, such as the control of IL-2
secretion by regulatory T cells (Burroughs et al., 2006), or
the memory T cells (Antia et al., 2005; Skapenko et al.,
2005). Whilst we have used numerical simulations to compute
the probability of attraction to a given steady state in the
case of bi-stability, one could approach the same problem
theoretically from the perspective of computing extinction
probability within the framework of the CTMC model (Yuan
and Allen, 2011; Mandal et al., 2014). The van Kampen’s
system size expansion could yield an expression for the power
spectrum, which allows one to compute the peak frequency
and amplification (McKane and Newman, 2005; Alonso et al.,
2007; Black et al., 2009; Black and McKane, 2010). From a
practical perspective, future work could focus on validating
theoretical results presented in this paper using experimental
measurements of the progress of autoimmune disease in animal
hosts, with experimental autoimmune uveoretinitis (EAU), an
autoimmune inflammation in the eyes, being one interesting
possibility. In one such recent experiment, all animals were
genetically identical C57BL/6 mice, but once the EAU was
induced in them through inoculation, the autoimmune disease
then progressed at slightly different rates (Boldison et al.,
2015; Boldison and Nicholson, unpublished) and the measured
variability in the numbers of infected cells and T cell responses
could be compared to theoretical estimates of the variance as

predicted by our model. From a clinical perspective, comparison
of variance in the measured populations of different cells with
the model conclusions will facilitate an efficient parameter
identification and provide a set of prognostic criteria for
the progress of autoimmunity, which can be used for risk
stratification and assessment of patients with autoimmune
disease.
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