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Respiratory system modeling has been extensively studied in steady-state conditions

to simulate sleep disorders, to predict its behavior under ventilatory diseases or stimuli

and to simulate its interaction with mechanical ventilation. Nevertheless, the studies

focused on the instantaneous response are limited, which restricts its application in

clinical practice. The aim of this study is double: firstly, to analyze both dynamic and

static responses of two known respiratory models under exercise stimuli by using an

incremental exercise stimulus sequence (to analyze the model responses when step

inputs are applied) and experimental data (to assess prediction capability of each model).

Secondly, to propose changes in the models’ structures to improve their transient

and stationary responses. The versatility of the resulting model vs. the other two is

shown according to the ability to simulate ventilatory stimuli, like exercise, with a proper

regulation of the arterial blood gases, suitable constant times and a better adjustment to

experimental data. The proposed model adjusts the breathing pattern every respiratory

cycle using an optimization criterion based on minimization of work of breathing through

regulation of respiratory frequency.

Keywords: respiratory system, dynamic modeling, exercise simulation, work of breathing, respiratory control,

computational modeling

INTRODUCTION

The respiratory system is a complex and feedback system which is responsible for supplying
sufficient oxygen (O2) for metabolism and eliminating carbon dioxide (CO2) produced by
metabolic reactions in order to keep the homeostasis of arterial blood gases and pH in any situation
and, particularly, during exercise (Duffin, 2013). For achieving this goal, the respiratory control
system regulates pulmonary ventilation so that at equilibrium gas exchange in the lungs matches
metabolism: O2 provision and CO2 elimination in the lungs equal O2 consumption and CO2

production in the tissues (Bell, 2006; Duffin, 2013; Guyton, 2015).
The regulation of O2 is achieved keeping a partial pressure of O2 (PO2), in the arterial blood,

that saturates arterial hemoglobin and provides a sufficient gradient to supply the tissue metabolic.
Because of the hemoglobin can be saturated within a wide range of PO2 , oxygen is mainly regulated
when its saturation falls to hypoxia limits (PO2 < 70 mmHg) (Roussos and Koutsoukou, 2003;
Duffin, 2013). On the other hand, due to CO2 diffuses more easily than O2 and quickly reacts with
H2O, generating hydrogen ion concentrations (

[

H+
]

), the regulation of CO2 is more difficult to
achieve although it can carry out by controlling the partial pressure of CO2 (PCO2) and, therefore,
[

H+
]

(Duffin, 2013).
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Pulmonary ventilation (V̇E) is normally generated through
controlled contraction and relaxation of respiratory muscles
during inspiration and expiration, respectively. The pressures
generated by them combined with the airway flow resistance,
and the lung elastance determine the airflow and lung volume,
correspondingly (Bianchi et al., 1995). For this, the respiratory
control system, which is responsible for automatic control of
breathing, (a) receives and integrates several afferent inputs
from both central and peripheral chemoreceptors and pulmonary
sensors, to determine ventilatory demand and efficiently adjust
tidal volume (VT) and respiratory frequency (fR); and (b)
provides signals to the phrenic and intercostal moto-neurons,
which drive the diaphragm and intercostal muscles (Duffin, 1994;
Bianchi et al., 1995). Due to this, the respiratory control system
is frequently seen as a pattern central generator that seeks to
maintain healthy levels of O2, CO2, and pH in body and brain
tissues (Feldman et al., 2013; Richter and Smith, 2014). This
control can also be affected by behavioral inputs such as speech,
voluntary control of respiratory muscles and wakefulness state
(Duffin, 2013).

The central chemoreceptors, which are located in the medulla,
sense increases of

[

H+
]

in their local environment and, therefore,
increases in the brain partial pressure of CO2 (PbCO2 ) (Nattie and
Li, 2009). On the other hand, peripheral chemoreceptors, which
are located in the carotid bodies, sense changes in the arterial
partial pressures of CO2 and O2 (PaCO2 and PaO2 , respectively)
(Marshall, 1994). In this way, both the central and the peripheral
chemoreceptors allow matching pulmonary ventilation to tissue
metabolism via a chemical arc that includes the respiratory
control system, the chemoreceptors and respiratory muscles
(Duffin, 2013). Recently, changes in PaO2 have been related
to increases of chemoreceptor sensitivity to

[

H+
]

at extreme
hypoxia (Blain et al., 2010; Duffin, 2013).

During mild and moderate exercise, metabolic rate and
pulmonary exchange increase as a result of muscular activity,
such increases quickly produce a higher ventilation which seeks
to prevent hypercapnia (due to increase in CO2 production) and
hypoxia (due to increase inO2 consumption) (Turner et al., 1997;
Whipp and Ward, 1998; Haouzi, 2006). Because of V̇E increases
nearly immediately at the onset of exercise, levels of CO2 and O2

remain practically unchanged from their rest values so, for this
reason, a respiratory drive is not compatible with sensing an error
signal transported in the blood (Duffin, 1994).

In recent decades, several clinical and experimental
investigations have been carried out to determine the control
mechanisms responsible for adjusting ventilation during
exercise. A challenging aspect of this ventilatory stimulus is that
V̇E increases while the brain and arterial partial pressures of CO2

and O2 remain almost unchanged. A generally accepted theory
is the so-called neurohumoral theory (Turner, 1991; Mateika
and Duffin, 1995; Turner et al., 1997; Whipp and Ward, 1998),
which is mainly based on the respiratory system response to
a step workload. In this theory, respiratory dynamic response
from rest or light to moderate exercise is characterized by three
phases: the first one, determined by a sudden increase of V̇E,
the second one, by a gradual and exponential increase of V̇E

and the third one, by its value in the steady state. The “abrupt”
increase of V̇E is usually attributed to neurogenic mechanisms,

since this increase is considered too fast to be explained by
humoral agents, such as central and peripheral chemoreceptors,
due to delayed transport. Until now, such mechanisms are not
yet well-understood, because they seem to involve feed-forward
control systems or learned processes that have not been clearly
figured out (Bell, 2006; Williamson, 2010).

Some studies establish that the behavior of ventilatory
response during moderate exercise is related to the frequency of
limb movement, and the force carried out by exercising muscles
(Duffin, 1994). On the other hand, other studies establish that
such response is mainly based on factors related to gas exchange
more than factors related to the motor activity (Haouzi, 2006).
A broad review on the mechanisms currently implicated in the
control of breathing at the onset of exercise from a perspective
of an integrated system can be found in Bell (2006) and Duffin
(2014).

Many empirical and functional models have been proposed
in the literature to describe numerous aspects of the respiratory
system (Fincham and Tehrani, 1983; Butera et al., 1999a,b; Cheng
et al., 2010; Williamson, 2010; Tsai and Lee, 2011; Cheng and
Khoo, 2012; SernaHiguita et al., 2014; Serna et al., 2016; Diekman
et al., 2017). Due to the primary goal of this system is to regulate
the CO2 and O2 in the brain and body tissues, ventilatory stimuli
like exercise, hypoxia and hypercapnia are frequently used to
evaluate the performance of such models. Exercise has been one
of the most used ventilatory stimuli for validating this kind of
models and their control mechanisms (Magosso and Ursino,
2005; Hermand et al., 2016).

Particularly, Hermand et al. (2016) have presented a
mathematical model that allows analyzing the mechanisms
responsible for the instability of the respiratory control system
under simultaneous metabolic (exercise), and environmental
(hypoxia) stresses. In this case, the model analysis is mainly
focused on variations of V̇E and fR taking into account several
settings to simulate the central and peripheral chemoreceptor
responses. On the other hand, Maggoso and Ursino have
presented a respiratory model that allows obtaining the transient
and steady-state cardiorespiratory response to exercise with a
good performance, but it does not include a comprehensive
cardiovascular model like that published in Cheng et al. (2010)
and the variables related to breathing pattern (i.e., inspiratory
time, respiratory frequency, and tidal volume) are not evaluated.
Our group has previously analyzed and developed several models
and tools in the framework of this research (Mañanas et al., 2003;
Hernandez et al., 2008; Serna et al., 2010). However, although
the steady-state response of such models has been thoroughly
evaluated (Mañanas et al., 2003, 2004), the transient behavior had
not been studied enough. For these reasons, there is a need to
provide computational models that allow, with a physiological
meaning, simulating a comprehensive dynamic response of the
respiratory system under ventilatory stimuli like exercise.

The aim of this study is two-fold. Firstly, to propose an
improved model of the respiratory system that allows simulating
its dynamic response to ventilatory stimuli like exercise.
Secondly, to compare its transient and static responses with those
obtained from two known respiratory models (Fincham and
Tehrani, 1983; Cheng et al., 2010; Cheng and Khoo, 2012) and
fromwhich the proposedmodel is based on. The comparison was
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performed by simulation and by using experimental data from
healthy subjects who carried out the cardiopulmonary exercise
testing (CPET). The former allowed to analyze differences among
model responses and, the latter, to assess the prediction capability
of each one. Due to complex structures and mechanism that
may be involved during exercise, this study was focused on
the dynamic response analysis of respiratory system under
moderate exercise (below the lactate threshold). All models were
implemented in SIMULINK/MATLAB R©.

MATERIALS AND METHODS

Experimental Data
A database of ten healthy male volunteers (aged 54.0 ± 13.5
years, weight 75.6 ± 10.3 kg, and height 169.9 ± 7.0 cm), non-
smoking subjects, normotensive, normal lung function, and with
no history of lower limb or cardiopulmonary disorders under a
CPET in an electromagnetically-braked cyclorgometer (CardiO2;
MedGraphics Corp., St. Paul, MN), was used in this study. The
experimental protocol was carried out by a trained medical staff
of the Pulmonary Function Laboratory of the Hospital Clínico de
Barcelona for evaluation of exercise tolerance. This study, which
was performed following the Helsinki declaration regarding the
investigation with human subjects, had been previously approved
by the Committee on Investigations Involving Human Subjects
at the Hospital Clinic, University of Barcelona, Barcelona, Spain.
Informed consent was obtained from all individual participants
included in the study.

After a warming-up session consisting of fivemin of stretching
and three min of unloaded pedaling on the cycloergometer,
the exercise workload was increased by 5 or 10 W/min every
minute until the subject stopped due to symptoms (i.e., dyspnea
and/or leg fatigue) or no longer maintained the constant pedal
rate required. The following signals were registered by the
cycloergometer every 15 s: exercise workload (W), minute
ventilation (V̇E), tidal volume (VT), inspiration time (TI),
expiration time (TE), O2 consumptions (V̇O2 ), CO2 productions
(V̇CO2 ), expired fraction ofO2 (PetO2) andCO2 (PetCO2), and heart
rate (HR). Taking into account that no subject had gas exchange
impartments, arterial blood pressures of CO2 and O2 were
adjusted considering average normal values at rest, 39.156mmHg
and 104.37mmHg respectively (Batzel et al., 2007), as follows:

PaCO2 = PetCO2 + (1.78± 3.27) (1)

PaO2 = PetO2 − (1.72± 3.96) (2)

Figure 1 describes registered data in median and interquartile
distance of the database analyzed. It can see that, excepting
TI , PaCO2 and PaO2 whose values remained almost constant, all
variables increased with the exercise workload. This latter was
related to increments of both V̇CO2 and V̇O2 that, in turn, had
a linear relationship with V̇E.

Respiratory System Models
RS1 Model

RS1 is the respiratory model described in Fincham and Tehrani
(1983) which has been extensively studied by many researchers

for teaching and research purposes (Mañanas et al., 2003;
Tehrani et al., 2004; Batzel et al., 2007; Hernandez et al., 2008).
Additionally, it has been used to predict the effects of ventilatory
settings on blood gases of mechanically ventilated patients and
to adjust the ventilation parameters to optimize such a treatment
both adult and infant (Tehrani and Abbasi, 2012). A schematic
diagram of this model is provided in the Supplementary Material
Section (see Figure S1).

RS1 includes a self-adaptive and discrete controller (Priban
and Fincham, 1965), which self-adjusts the ventilation V̇E and the
breathing pattern, every respiratory cycle, from signals captured
by different afferent pathways, as it happens physiologically. It
incorporates complex peripheral processes like the gas exchange
between lungs and body tissues and brain, transport delays due
to blood circulation and blood gas dissociation.

To adjust V̇E, RS1 controller continuously receives
information sent by the central (PbCO2 ) and peripheral
chemoreceptors (delayed by transport through the circulatory
system, P′aCO2 and P′aO2 ), computes the mean value of such
pressures in each respiratory cycle and sends these signals to the
ventilatory controller which calculates the alveolar ventilation,
cycle to cycle, through the following expression:

V̇A

V̇Abasal

= 0.2332PbCO2 + 0.2025PaCO2 + G3 +MRV + β (3)

where,

G3 =

{

4.72× 10−9
(

104− PaO2

)4.9
for PaO2 ≤ 104 Torr

0 for PaO2 > 104 Torr
(4)

In this case, V̇E is defined by the sum of V̇A and dead space
ventilation (V̇D), where VD is, in turn, a function of V̇A:

VD = 0.1698V̇A + 0.1587 (5)

The first term of Equation (3) represents the response generated
by the central chemoreceptors, where PbCO2 is defined as a
function depending on the brain venous and cerebrospinal fluid
partial pressures of CO2 (PvbCO2 and PCSFCO2 , respectively) and,
therefore, on PaCO2 (see Figure S1). The second and third terms
define the response of peripheral chemoreceptors to the arterial
partial pressure of CO2 and O2, respectively; the fourth term, the
neural control related to metabolism or exercise and, the last one
β , is a controller constant equals 17.4. V̇Abasal

is the basal alveolar
ventilation for a healthy adult, and it is ∼0.0673 L/s (Fincham
and Tehrani, 1983).

MRV, the neural impulse derived frommetabolism, represents
in RS1 the neurogenic mechanism of the respiratory control
system during exercise, and it is determined by the following
expression:

τ4
∂

∂t

dMRV

dt
= (MRR− 1)−MRV for MRR > 1

MRV = 0 for MRR ≤ 1
(6)
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FIGURE 1 | Experimental data distribution in function of time. (Left) Experimental exercise stimuli used to simulate the models under study: ventilated values of CO2

(V̇CO2
) and O2 (V̇O2

). Rest and moderate exercise levels are also marked in both variables. (Right) Experimental data of the cardiorespiratory variables analyzed:

inspiratory time (TI ), respiratory frequency (fR), tidal volume (VT ), minute ventilation (V̇E ), arterial partial pressure of CO2 (PaCO2
) and O2 (PaO2

), and heart rate (HR).

Gray dots show original experimental data, bar plots and red lines display the median values obtained in 50-s consecutive time intervals and error bars show the

interquartile ranges calculated in each interval.

where MRR is the metabolic ratio defined by the current and
basal of metabolic rates of the brain (MRB) and tissues (MRT),
as follows:

MRR =
MRactual

MRbasal
=

MRT(actual)+MRB(actual)

MRT(basal)+MRB(basal)
(7)

and an exercise level increment can be simulated by a change in
the input RTT (the magnitude of the step defining the final value
ofMRT) which is given by:

τ3
dMRT

dt
= RTT − MRT (8)

In this way, Equations (6–8) allow determining the metabolic
dynamics of body and brain tissues as well as the subject’s neural
response during exercise. These equations represent first order
dynamic systems whose response rates are determined by the
time constants τ4 = 50 and τ3 = 30, respectively (Fincham and
Tehrani, 1983).

There are essential conditions on which Equation (3) is
invalid. Under conditions of acute hypoxia associated with low
levels of the arterial partial pressure of CO2, this equation can
produce a negative value of V̇A, clearly inadmissible. In this case,
apnea occurs and immediately V̇A equals zero.

Once V̇E is determined, which in turn is equal to the product
of VT and fR, breathing pattern is adjusted by the regulation of
fR through an optimization criterion based on minimizing the

work of breathing (Otis et al., 1950), as is shown in the following
expression:

fROtis, et al =
−ErsVD +

√

(ErsVD)2 + 4ErsRrsπ2 VDV̇A

2π2RrsVD
(9)

where, Rrs and Ers are the resistance and the elastance of the
respiratory system, respectively. For that, the RS1 controller
generates a neural signal at the beginning of each cycle such that:

dν

dt
= πAsin(2π fRt) (10)

In RS1, the blood flows control, this is, the “brain blood flow
controller” and “the cardiac output controller” were modeled
through algebraic relationships that allow calculating brain blood
flow (Q̇B) and total cardiac output (Q̇) depending on partial
pressures of CO2 and O2 and metabolic rate ratio (MRR).

RS2 Model
RS2 comprises the cardiorespiratory model described in Cheng
et al. (2010) and Cheng and Khoo (2012) and it is referred by its
authors as “PNEUMA.” This model is the result of the integration
of key published models of the respiratory and cardiovascular
system. It has been designed to simulate the cardiorespiratory
control dynamic during wakefulness and sleep, so that provides
realistic predictions of the physiological responses under a wide
variety of conditions such as the day-to-day sleep-wake cycle,
Cheyne-Stokes respiration in chronic heart failure, obstructive
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sleep apnea (OSA) and hypoxia-induced periodic breathing.
It can be used to investigate several types of interventions:
isocapnic and hypercapnic and/or hypoxemic gas administration,
the Valsalva and Mueller maneuvers, and the application of
continuous positive airway pressure (CPAP). The most recent
version incorporates a sub-model of glucose-insulin-fatty acid
regulation to simulate also the metabolic control of glucose-
insulin dynamics and its interaction with the autonomic control
in obese individuals (Cheng and Khoo, 2012). RS2 is available
at the USC Biomedical Simulation http://bmsr.usc.edu/software/
pneuma/.

RS2 has been developed using a hierarchical structure in such
a way that the degree of complexity associated with each level
of organization is adapted appropriately to the investigation of
physiological processes at each level. This feature allows that
the whole model can be presented in a compact and efficient
way. RS2 is mainly composed of five principal interconnected
compartments: the respiratory system, the cardiovascular system,
the central control system, the sleep mechanism, and the
metabolic control system. The last one allows simulating the
metabolic control over the glucose-insulin dynamics and its
interaction with the autonomic control in obese individuals
(Cheng and Khoo, 2012). A schematic diagram of the model is
given in the Supplementary Material Section (see Figure S2).

In this model, the respiratory subsystem allows the simulation
of both gas exchange system and ventilatory mechanics. Unlike
RS1, RS2 provides a more detailed description of chemical and
physical processes generated during respiration. It includes the
progressive decline of inspiratory gas pressure (PICO2and PIO2 ),
due to different sectors of anatomic dead space, using a first-
order dynamic approach to calculate the arterial partial pressures
of CO2 and O2 in the areas closer to the alveoli and five
small serial compartments (Khoo, 1990). It also considers the
phenomena of convection and dissociation of respiratory gases
during cardiovascular mixing by using a second-order dynamic
system that relates the arterial pressures to the alveolar pressures
(Spencer et al., 1979). In general, RS2 presents more elaborate
expressions to describe in greater detail the different processes
that comprise respiration, as well as its control and interaction
with the cardiovascular system (Cheng et al., 2010). Only the
variables directly related to ventilation control are considered
here for brevity, as shown below.

The ventilatory controller in RS2 incorporates the
contribution of the central (Dc) and peripheral (Dp)
chemoreceptors. In this model, the central chemoreceptors
only respond to variations in the brain partial pressure of CO2

(PbCO2 ) while the peripheral chemoreceptors are influenced by
the arterial partial pressures of CO2 (PaCO2 ) and the oxygen
saturation in arterial blood (SAO2) and their multiplicative
interaction (Khoo, 1990). During wakefulness, the total
ventilatory demand (DT) is defined by the sum of the central and
peripheral chemoreceptors responses as follows:

DT = Dc + Dp (11)

Dc =

{

Gc
(

PbCO2 − Ic
)

for Dc ≥ 0
0 for Dc < 0

(12)

Dp =

{

Gp
(

PaCO2 − IpCO2

) (

IpO2
− SAO2

)

for Dp ≥ 0
0 for Dp < 0

(13)

where, Ic, IpCO2 , and IpO2 represent the central and peripheral
chemoreceptors activation threshold and, they are equal to 45,
38, and 102.4, respectively. In this case, PbCO2 is controlled by the
metabolic rate (MRbCO2) and the brain blood flow (QB) and it is
defined as a function of PaCO2 (Read and Leigh, 1967).

To adjust the breathing pattern, RS2 computes the respiratory
frequency in function of ventilatory demand by using the
following expressions (Duffin et al., 2000):

if DT < TD then fR = Fb
if TD ≤ DT ≤ Tp then fR = S1F(DT − TD)+ Fb
if DT > Tp then F = S1F(Tp − TD)+ S2F(DT − Tp)+ Fb

(14)

where, Fb is the basal frequency and TD and Tp are thresholds of
DT that determine the behavior of respiratory rate. For the last
two options of Equation (9) the respiratory rate varies linearly
respect to DT with a slope established by the scaling factors
S1F and S2F , which indirectly determine the adopted ventilatory
pattern by the subject (frequency and depth) depending on the
level of ventilation.

Once fR is determined, the neural control, derived from the
respiratory centers, establishes the muscular activity integrating
the total ventilatory demand and modulating it, in turn, by an
auto-rhythmic and square signal. Such a signal determines each
breathing cycle (TTOT) by using a relation 1.5:4 to define TI and
TE, as follows:

N (t) =

{
∫ TI
0 DTdt for 0 < t ≤ 0

0 for TI < t ≤ TTOT
(15)

In the case of assisted mechanical ventilation, internal neural
activity is decreased. Depending on the type of ventilatory
assistance, the respiratory period would be determined by the
ventilator, the subject or the interaction between both.

The cardiovascular subsystem allows simulating the heart
nature pulse and blood flow through the pulmonary and
systemic circulations. Unlike RS1, this subsystem includes
several processes like atria-ventricular mechanics, circulatory
hemodynamics, SA node, change of total peripheral resistance
and baroreflex (see Figure S2). Through these mechanisms, the
system calculates the arterial blood pressure, ABP, heart period,
HP, cardiac output, CO, and blood flow to lung for gas exchange
depending on inputs from the autonomic control system, the
respiratory system, and the sleep control system (Cheng et al.,
2010).

Additionally, considering Equations (7, 8) of RS1, metabolic
dynamics of CO2 and O2 were incorporated in RS2 to simulate
exercise stimuli.

RS3 Model
A third model called RS3 has been proposed in this study to get a
completed and detailed model with a more appropriate dynamic
response to exercise stimuli. This model is based on RS2 to
take advantages of its associated subsystems, but mainly two key
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FIGURE 2 | Schematic diagram of the proposed respiratory system model RS3. A model based on RS2 (Cheng et al., 2010; Cheng and Khoo, 2012) that integrates

key features of RS1 (Fincham and Tehrani, 1983). The changes introduced in RS2 have been highlighted in orange. In the model, mean values of P′aCO2
, P′aO2

, and

PbCO2
(Pm) and a metabolically related neural drive component to the ventilation (MRV) are used by the central neural control system to compute the alveolar

ventilation (V̇A) and the total ventilatory drive (DT ≡ V̇E = V̇A + V̇D). Then, V̇A is used to adjust the respiratory frequency (fR) each breathing cycle following the

optimization principle set in Otis et al. (1950). A detailed description of model variables is provided in the Supplementary Material Section (Table S1).

features from RS1 are replaced: (a) the estimation of ventilatory
demand as a function of PbCO2 , PaCO2 , PaO2 , and MRV and (b)
the adjustment of breathing pattern by using the optimization
criteria set by Otis et al. (1950).

Schematic diagram of RS3 is shown in Figure 2. The main
changes, highlighted in orange color, are associated with the
replacement of “ventilatory drive” and “respiratory rhythm”
blocks of the original model RS2 by a clock pulse generator,
similar to RS1 (see Figures S1, S2). The latter allows determining
the onset and the end of each breath as follows: (a) the “mean
value detector” block determines average values of PbCO2 , PaCO2 ,
and PaO2 ; (b) the “ventilation controller” block uses previous
mean values andMRV to calculate V̇A by using Equation (3) and,
finally, (c) the “frequency optimizer” block computes fR using the
Otis’ Equation (Equation 9).

Moreover, three significant changes were added to the gas
exchange subsystem, which is also highlighted in orange color in
Figure 2, according to:

• Production of CO2 and consumption of O2 into brain tissues
were included into the mass balance equations for the rate

of change of the lung CO2 and O2 volumes, because they
constitute∼20% of the metabolic rate at the basal level.

During inspiration,

ṖACO2 =

V̇T

(

Pd(5)CO2−PACO2

)

+ 863
(

Q̇T

(

CνCO2 − CaCO2

)

+ Q̇B

(

CBCO2−CaCO2

))

(

VLCO2 + VT

)

(16)

ṖAO2 =

V̇T

(

Pd(5)O2 − PAO2

)

+ 863
(

Q̇T

(

CνO2 − CaO2

)

+ Q̇B

(

CBO2 − CaO2

))

(

VLO2 + VT

)

(17)

During expiration,

ṖACO2 =
− 863

(

Q̇T

(

CνCO2 − CaCO2

)

+ Q̇B

(

CBCO2 − CaCO2

))

(

VLCO2 + VT

)

(18)

ṖAO2 =
− 863

(

Q̇T

(

CvO2 − CaO2

)

+ Q̇B

(

CBO2 − CaO2

))

(

VLO2 + VT

) (19)
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where VLCO2 and VLO2 denote the volume storage of CO2

and O2 in the lungs. Likewise, ṖACO2 and ṖAO2 represent the
alveolar partial pressures of CO2 andO2; CaCO2 , CaO2 , CvCO2, and
CvO2 symbolize the arterial and venous concentrations in body
tissues of these gases, respectively; CBCO2 , CBO2 denote the brain
concentrations and QT and QB the blood rate in body and brain
tissues.

• The exchange in the brain considered as follows:

(

VBCO2 + VT
)

ĊBCO2 = Q̇B(CaCO2 − CBCO2 ) + MRBCO2 (20)
(

VBO2 + VT

)

ĊBO2 = Q̇B

(

CaO2 − CBO2

)

+MRBO2 (21)

whereVBCO2 andVBO2 denoted volume storage of CO2 andO2 in
the brain.

• Calculation of VD as a function of V̇A (see Equation 5).

These changes provide to RS3 a more detailed gas exchange
plant, and although they do not improve its transient response,
they provide additional information that can be useful in future
studies connected to, for example, analysis of brain-tissues
relationship implicated in the pulmonary gas exchange.

Furthermore, to guarantee that ventilation generated by the
mechanical plant matched ventilatory demand, the neural signal
N(t) in RS3 was adjusted through the following expression:

N (t) =

{

K
∫ TI
0 DTdt for 0 < t ≤ 0
0 for TI < t ≤ TTOT

(22)

where,

K =

(

V̇ (TI) + bV(TI)

bV(TI) − 0.25V̇ (TI)

)

(

RC

DTTI

)

×

(

ErsV (TI) + RrsV̇(TI)
)

eV(TI)/0.28VC (23)

RC denotes the muscle constant time (0.060s) and VC the vital
capacity (5 L).

Like in RS1 and RS2, metabolism dynamic of CO2 and O2 was
incorporated in the gas exchange plant with the aim of simulating
exercise stimuli, see Equations (7, 8).

Simulation
Responses and features of the three models were evaluated
considering different levels of exercise. In this stimulus, the
consumption of O2 and the production of CO2 rise significantly
increasing the ventilated values of CO2 and O2. For this reason,
a step input of V̇CO2 and V̇O2 from rest (0.20 and 0.25 L/min),
to moderate exercise (1.20 and 1.50 L/min), under conditions of
normoxia, was considered to analyze their transient responses.
Then, similarly, 11 equidistant step inputs among such intervals
were taken into account to evaluate their stationary responses.
These values were selected considering those published in
Mañanas et al. (2002) and Guyton (2015) for moderated exercise
and experimental data obtained in the CPET test (see Figure 1).
Additionally, a sensitivity analysis was carried out with RS3 to
assess the individual roll of the neurogenic and neuro-humoral
mechanisms implemented to simulate exercise.

Prediction Error
To assess the prediction capability of each model, experimental
values of V̇CO2 and V̇O2 were used to simulate exercise
stimulus. Then, the output cardiorespiratory variables predicted
by the models were analyzed concerning the ones obtained
experimentally. Comparison of each model response regarding
experimental data was evaluated quantitatively by the prediction
error (PE) calculated from the following variables:

• V̇E, TI , fR, and VT , which provide information about
ventilatory strategy or breathing pattern adopted for each
model (controller) to adjust ventilation,

• HR, which provides information about cardiac activity, and
• PaCO2 and PaO2 , which allow assessing the regulation of CO2

and O2 respectively.

PE was calculated by measuring percent differences between
simulated, SIM, and experimental, EXP, variable as follows:

PE (%) = 100×
1

k

k
∑

i= 1

∣

∣

∣

∣

νarEXP(i) − νarSIM(i)

νarEXP(i)

∣

∣

∣

∣

(24)

where k denotes the number of samples. Overall prediction error
was obtained averaging the PE for all variables.

RegardingHR, due to RS1 does not provide direct information
about it, this variable was obtained indirectly from the cardiac
output (Q), considering a constant stroke volume (SV =

70mL) and using the expression HR = Q/SV (Fincham and
Tehrani, 1983; Batzel et al., 2007). Although this is a simple
approximation, it allows comparing the cardiac response of RS1
with the other models.

Statistical Analysis
Non-parametric tests, Friedman and Wilcoxon-Mann-Whitney
(WMW), were used to identify statistical differences between
prediction capability with a significance level of ρ = 0.05. The
former was used in order to find differences between the model
errors, and the latter to identify the model with the best fitting to
experimental data. Each simulation was run once due to models
are determinists (i.e., their responses do not change if the initial
conditions and stimulus step size remain unchanged).

Availability
Themodels RS1, RS2, and RS3 can be interactively tested through
a Matlab app, which is available at https://bioart.upc.edu/en/
virtual-laboratories/modules upon query. Additionally, median
values and interquartile distances of experimental data analyzed
in this study as well as the stimulus levels used during simulation
models are also provided.

RESULTS

Simulations
Transient Response

Figure 3 shows a time series breath-to-breath of airflow signal
for each model at the onset of exercise when a step input of
V̇CO2 =1.25 L/min and V̇O2 =1.50 L/min was applied to simulate
each model (0.2 and 0.25 L/min values were considered as rest
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FIGURE 3 | Time series breath-to-breath of airflow signal at the onset of exercise when a step input was used to simulate the respiratory system models RS1, RS2,

and RS3 (see text).

levels, respectively). In all models, it can be seen an increase in
ventilation, which is higher and faster in RS3.

Figure 4 shows the transient response obtained by the models.
An additional interval, after of the stimulus, was also considered
to simulate the recovery phase. Values of each variable are shown
regarding their basal or rest values. Table 1 shows the constant
times obtained in each of them.

Regarding variables related to breathing pattern, TI , fR, and
VT , for RS1 and RS2, an exponential behavior was observed
both exercise and recovery, being RS1 faster than RS2. For RS3,
such responses were characterized by two main temporal phases
during exercise: an initial phase determined by an instantaneous
increase of almost 100% of V̇E and a second phase defined
by a gradual increase of V̇E to its steady state-value. During
recovery, V̇E and VT presented a similar behavior and opposite
to that obtained during exercise while fR and, therefore, TI were
given by the dynamics defined in Equation (9) (Otis et al.,
1950).

Regarding the variables related to gas exchange and for RS1,
PaCO2 presented initially a slight overshoot, which was followed
by a decrease and subsequent exponential evolution toward a
value close to its basal level. By contrast, PaO2 exhibited an
initial slight drop, which was followed by a positive overshoot
of about 10% and an exponential evolution that, as PaCO2 ,
converged to a value close to that obtained during rest. This
behavior was also reported by the same authors in Fincham and
Tehrani (1983). For RS2, PaCO2 increased exponentially until

overcomes its basal value by 40% (≈56 mmHg), while PaCO2

rapidly declined to 50% (≈50 mmHg), reaching values close
to hypoxia (PaCO2 < 70 mmHg) (Roussos and Koutsoukou,
2003), for then evolves exponentially at a steady-state value of 80
mmHg.

For RS3, PaCO2 was characterized by an initial decrease, of
about 15% from its basal value, followed by an exponential
growth toward a steady-state value 10% higher than its basal
value. PaO2 was defined by, first, an overshoot that, after ∼1min,
evolved almost exponentially toward its stationary value with
a negative overshoot that was not as critical as that found in
RS2. During recovery, both PaCO2 and PaO2 presented similar
and opposite behaviors in all models. In addition, evolution of
PaCO2 was slower than PaO2 , especially for RS2 and RS3 (see
Table 1), possibly due to the larger storage capacity available for
CO2 (VTCO2 = 15 L) compared to O2(VTO2 = 6 L). A similar
behavior has been reported in Mateika and Duffin (1995).

Finally, for all models, HR exponentially evolved with
different velocities toward its final value. Particularly for RS1, the
response time of HR was lower than that obtained by the other
models, and its increase from baseline was quite higher (≈170
bpm) than that expected for moderate exercise (85–110 bpm), see
Figure 1.

Steady State Response
Figure 5 shows the final values of analyzed variables in function
of different levels of exercise. Eleven step inputs from 0.2 to

Frontiers in Physiology | www.frontiersin.org 8 February 2018 | Volume 9 | Article 69

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Serna et al. Simulation of Respiratory Dynamic Response to Exercise

FIGURE 4 | Transient responses of analyzed variables—ventilation (V̇E ),

inspiratory time (TI ), respiratory frequency (fR), tidal volume (VT ), arterial CO2

pressure (PaCO2
), arterial O2 pressure (PaO2

), and heart rate (HR)—when a

step exercise input (V̇CO2
= 1.20 L/min and V̇O2

=1.50 L/min) was used to

simulate RS1, RS2, and RS3. Variations of each variable are showing

regarding their respective values in rest.

1.2 L/min for V̇CO2 , with PIO2 fixed to its sea level value (150
mmHg), were applied to simulate the models and analyze their
steady-state responses under moderated exercise.

TABLE 1 | Rise time (τ ) of the dynamic response of RS1, RS2, and RS3 obtained

when a step exercise input of V̇CO2 =1.20 L/min and V̇O2 =1.50 L/min was used

to simulate them.

Variable τ (mm : ss)

RS1 RS2 RS3

TI 00:38 03:00 00:45

fR 00:52 04:15 01:15

VT 01:24 01:55 02:45

V̇E 01:22 03:15 02:40

PaCO2
00:57 04:20 03:30

PaO2
00:44 00:55 01:20

HR 00:21 04:55 03:25

Excepting PaCO2 , variables of all models increased followed
similar trends: TI and PaO2 decreased while fR, VT , and
V̇Eincreased with higher stimuli. Static performance in RS1 and
RS3 for TI , fR, VT , and V̇E was quite similar since both models
include the same neural ventilatory control to calculate V̇E,
optimize fR and, therefore, set TI and VT .

The slight differences found among the model responses were
mainly due to: (a) model basal values no related to exercise, (b)
differences among the gas exchange plant, and (c) the control
systems implemented in each model. The steady-state values
of PaCO2 and PaO2 further evidence these differences. RS1 and
RS3 were able properly to regulate PaCO2 and PaO2 , while RS2
converged to values very different from those expected during
moderate exercise (PaCO2 ≈ 40 mmHg and PaO2 ≈ 104 mmHg)
(Guyton, 2015). For RS1 and RS3, the proper regulation of such
gases could be because V̇E was adjusted to match the ventilatory
demand generated by exercise.

Regarding HR, in RS2 and RS3, this variable raised slightly
and linearly with the stimulus level, reaching approximately an
increase of 20% at the highest stimulus. On the contrary, in the
RS1 model, HR increased considerably (up to 130%), moving
away from the expected range for this type of stimulus.

Analysis of RS3 Control Mechanisms
Figure 6 shows the results obtained in the sensitivity analysis
carried out in RS3. V̇E, PaCO2 and PaO2 are shown in two
different conditions: first, with all mechanisms working and
second, without the neurogenic mechanism MRV (exercise
neural control component). Results are compared with those
obtained with RS2.

Selective elimination of neurogenic mechanism MRV leads
to a slower increase of V̇E during exercise with a consequent
and important drop of PaO2 at the onset of exercise (up to
50 mmHg) and an exponential increase in PaCO2 (up to 12
mmHg from baseline). During the stimulus, the final ventilation
value of RS3 differs only by 5 L/min from the value reached
when all the mechanisms are considered, case in which PaCO2

and PaO2 vary slightly from their values at rest. This is
because the absence of a neurogenic mechanism is compensated
by central and peripheral chemoreceptors, which are greatly
stimulated by the large decompensation of arterial pressures,
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FIGURE 5 | Steady state values obtained when step inputs of exercise from 0.25 to 2.50 L/min of V̇CO2
were used to simulate the respiratory system models under

study.

FIGURE 6 | Response of RS3 to a step exercise input under two conditions: firstly, with all mechanism of respiratory control operative and, secondly, without the

neurogenic mechanism MRV (see Equation 3). Results are compared with those obtained in RS2 for the same stimulus. Variations of each variable are showing

regarding their respective rest values.

especially PaCO2 . On the other hand, the action of the humoral
mechanism (central chemoreceptors response) of RS2 generates
a ventilation inferior to that obtained by RS3, a fact that
contributed to a greater increase of PaCO2 for the same stimulus
level.

Figure 7 shows the contribution from each controller
component of RS3 regarding its basal value. In this case, it
can be seen that, during exercise, the presence of the exercise
neural control component (neurogenic mechanism) generates
a change in ventilation of up to 16 L/min (67%) while central
and peripheral chemoreceptors contribute only with 8 L/min
(33%) in the total ventilation. For the latter, this contribution
is mainly generated by the changes given in PaCO2 due to the
relationship between V̇A and PaCO2 (i.e., changes in V̇A by PaO2

only are significant when this is lower than ≈60 mmHg, see
Equation 4).

Experimental Data
Given the nature of the stimuli used to simulate the models
from experimental data (a progressive increase, contrary to step
function), only responses in “transient regime” were analyzed.
Figure 8 shows simulation results in median and interquartile
distance. In this case, both experimental data and model
responses of V̇E, fR, and VT increased with the increment of
exercise stimulus whereas TI decreased slightly. Regarding PaCO2

y PaO2 , RS1 and RS3 showed an appropriate regulation. For RS2,
these latter variables took values a little apart from experimental
data at the highest stimulus levels. Respect to HR, RS2 and RS3
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FIGURE 7 | Contribution of each controller component of RS3 on ventilatory response (see Equation 3). Results are shown regarding their respective rest values.

FIGURE 8 | Transient responses of models analyzed in this study. Median values and interquartile distance of experimental and simulated data are presented for each

variable and model. Gray shadows show the IQR of experimental data and error bars the IQR of simulated data obtained by each model.

showed a good fitting whereas RS1 presented values far away of
experimental data.

Figure 9 shows the median values and interquartile distance
of prediction error calculated from Equation (24). Friedman
test showed statistically significant differences in all variables
except fR and VT , where the ρ-values were 0.149 and 0.122
respectively. In general, RS3 was the model with the best
adjustment. It reached the lowest overall PE (13.76 vs. 20.92%
for RS1 and 16.57% for RS2). Wilcoxon signed-rank test showed
statistical differences between RS3 and the other models (ρ
< 0.01) whereas RS1 and RS2 did not have any statistically

significant difference (ρ = 0.432). Regarding each variable,
RS3 presented the best fitting for V̇E, TI , PaO2 , PaCO2 , and
HR with ρ < 0.01 for the first three variables. RS1 and RS2
showed a better adjustment for fR and VT , respectively, but
without any significant statistical difference respect to RS3 (see
Figure 9).

On the other hand, HR in RS1, which was calculated from Q̇T

and a stroke volume of 70mL, presented a very high prediction
error. In this case, the absence of a more complex cardiovascular
subsystem impeded a suitable simulation of HR response to
exercise.
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FIGURE 9 | Prediction errors (PE) obtained by each one of analyzed models. Bars graph shows median values and error bars indicate interquartile distance (range of

values from 25 to 75% quartile). Wilcoxon signed-rank test was used to find statistically significant differences between the obtained PE. (*) for ρ < 0.05 and (**) for

ρ < 0.01.

DISCUSSION

Dynamic responses of three respiratory system models under
exercise stimuli have been analyzed in this study. The
performances of these models were evaluated by using two
settings: first, through simulation to assess the realism of the
dynamics of their responses and second, using experimental data
to estimate the prediction capability of each model.

Dynamic Response
Transient Response

Transient response of each model was evaluated by using a
moderate exercise step input. In this case, RS1 presented a
relatively fast response at the onset of exercise (see Table 1), with
an exponential response for V̇E and an appropriate regulation
for PaCO2 and PaO2 at the end of the stimulus. RS2 presented
an exponential growth in V̇E that was not enough to regulate
the arterial gases. Due to this, PaO2 decreased dramatically,
during the transient phase reaching hypoxemic values (PaO2 ≈ 50
mmHg) and PaCO2 increased by 40% its basal value reaching
hypercapnic values (PaCO2 ≈ 56 mmHg). This fact invalidates its
simulation for this kind of stimulus. Finally, RS3 presented at the
onset of exercise an sudden increase of V̇E which was followed by
an intermediate phase characterized by an exponential growth,
and a final phase defined by its static value. The “abrupt” increase
of V̇E caused PaCO2 to decrease slightly and that PaO2 obtained
an overshoot at the beginning of the stimulus. Then, in the
intermediate phase, PaO2 decreased while PaCO2 raised as a result
of the increase in consumption of O2 and production of CO2,
respectively, and its dissociation with V̇E (Whipp and Ward,
1991) and, at the final phase, PaCO2 and PaO2 took values near
their basal values (see Figure 4).

Regarding variables involved in breathing pattern (TI , fR, and
VT), it was found that, except RS3 at the onset of the stimulus, all
variables evolved similarly and exponentially toward their steady-
state values. Differences found among them were mainly given
by the ventilatory controller implemented in each model. On the

other hand, behavior of HR in RS2 and RS3 was very similar, and
its values were within the range defined for moderate exercise,
contrary to RS1, where HR took values far away to those expected
(see Figures 1, 4).

Static Response

The steady-state model responses were evaluated considering
a sequence of step inputs from rest to moderate exercise. In
all models, V̇E linearly increased with the stimulus level (see
Figure 5). Changes between consecutive stimulus were quite
similar. Respect to fR, this variable also linearly augmented
in RS2 according to Equation (14), while in RS1 and RS3
it was determined by Equation (9), which guarantees the
minimum respiratory work of breathing (Otis et al., 1950). These
adjustments affected the behavior of TI and VT due to their
relationship with V̇E and fR (V̇E = fR × VT = VT/TI + TE).

On the other hand, RS1 and RS3 presented an appropriate
regulation for PaCO2 y PaO2 (the final values were closer to normal
ones at rest, PaCO2 ≈ 40 mmHg and PaO2 ≈ 104 mmHg)
(Guyton, 2015). Particularly in RS3, PaCO2 and PaO2 shown slight
variation regarding their basal values such has been reported
from several studies (Krogh and Lindhard, 1913; Pearce and
Milhorn, 1977; Magosso and Ursino, 2005). RS2 did not show
a proper regulation of the arterial gases due to PaCO2 increased
toward hypercapnic values (PaCO2 ≈ 54 mmHg) while PaO2

decreased toward hypoxemic values (PaO2 ≈ 80 mmHg), lower
than expected ones (Guyton, 2015).

Control Mechanisms
In RS3, the abrupt increase of V̇E at the onset of exercise
and, therefore, the initial changes in PaCO2 and PaO2, was
mainly determined by the “MRV” component incorporated in its
controller (see Equation 4). This component played an important
role in the determination of anticipatory ventilatory response
and allowed simulating, with a straightforward approach, the
neurogenic mechanism of ventilation to exercise, i.e., the so-
called central command (direct activation of the respiratory
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control centers by the locomotor stimulus), chemoreceptors in
large vessels and mechanoreceptors located in exercising muscles
(Dempsey and Smith, 2014), see Figures 6, 7. Although, an only
“exercise” component in the respiratory controller could not
be enough to simulate each underlie mechanism to this type
of control, similar results to those obtained in RS3, especially
with regard to the behavior of V̇E, PaCO2 , and PaO2 , have been
reported in several sources (Krogh and Lindhard, 1913; Pearce
andMilhorn, 1977; Whipp et al., 1982; Mateika and Duffin, 1995;
Turner et al., 1997;Whipp andWard, 1998; Magosso and Ursino,
2005; Wasserman et al., 2011; Parkes, 2013; Guyton, 2015).

Particularly, the changes in ventilation, blood flow, pulse rate,
respiratory exchange and alveolar CO2 tension, which take place
in men during the first minute of light (moderate) or heavy work,
presented in Krogh and Lindhard (1913) agree with the transient
responses obtained in RS3, see Figure 4. They found in all the
cases examined (six subjects, three of them subject trained to
sudden exertions) a sudden rise in ventilation when an exercise
step was used to stimulate the subjects. This abrupt increase
was greater with heavier work. Although differences were found
between trained and no-trained subjects, the latter presented a
higher increase in V̇E that, although was not as pronounced as
in trained subjects, was always present even during moderate
exercise. Regarding gases regulation, as in RS3 a considerable
fall in alveolar CO2 tension was detected, which was, likewise,
followed by a CO2 increase. A similar behavior was also reported
in Parkes (2013). They found a nearly exponential increment
of ventilation during exercise, while PaO2 decreased regarding
its rest value at the beginning of stimulus for, then, growing
up exponentially to its steady state. Moreover, the simulated
data reported in Magosso and Ursino (2005), which were found
according to experimental dynamic responses of human subjects
to bicycle exercise published in Pearce and Milhorn (1977), were
also consistent with RS3.

It is important to note that respiratory drive and therefore,
ventilatory response (V̇A) in RS3 (and RS1) is related to PbCO2 ,
PaCO2 , PaO2 and MRV through Equation (3). Thus, there is
a linear relationship with PbCO2 , PaCO2 , and MRV and an
exponential dependence with PaO2 (see Equation 4). So, unitary
changes in PbCO2 , PaCO2 , and MRV would modify V̇A by a
quantity of 0.2332, 0.2025, and 1 of its basal value (V̇Abasal

). By
contrast, decreases of PaO2 would exponentially increase V̇A only
if PaO2 < 104.9 (see Figure 7).

On the other hand, in this study, exercise stimulus was used
to generate different levels of ventilation and evaluate how the
models adjust ventilation and breathing pattern to accomplish
metabolic demand and regulate arterial blood gases. RS1 and
RS3 used an optimization principle that allows adjusting fR by
minimizing work of breathing. In this sense, the minimization
of WOB has been extensively considered as a control criterion
to adjust the breathing pattern (Yamashiro and Grodins, 1971;
Poon et al., 1992; Serna Higuita et al., 2014; Serna et al., 2016).
Moreover, recent formulations seek to describe how sensory
information influences the dynamics of respiratory rhythm
under the hypothesis that “respiratory rhythms arise from the
interplay of central rhythm generation circuits, biomechanics
and feedback from peripheral signaling pathways” (Butera et al.,

1999a,b; Diekman et al., 2017). Particularly, rhythmogenesis is
investigated in Diekman et al. (2017) in a simple model of close-
loop control, incorporating biomechanics, oxygen handling,
metabolism and chemo-sensation. In such study, the Butera-
Rinzel-Smith model (Butera et al., 1999a) of bursting pacemaker
neurons in the preBötzinger complex is adopted as their central
pattern generator. Although, peripheral processes modeled in
Diekman et al. (2017) are not as comprehensive as RS1, RS2,
and RS3, this approach to simulate the dynamics of rhythm
respiratory could be interesting to provide RS3 a more realistic
pattern generator.

Finally, highly regulated neural inputs are critical to
maintaining normal cardiovascular function. Although the
cardiovascular central command during exercise is typically
associated with a perception of effort, there is not a clear
understanding of the role of central command in the integration
of sensory information that can define more completely the
relevance of central command for the neural control of exercise
(Williamson, 2010).

Prediction Capability
Regarding the model goodness of fit, RS3 presented the overall
best adjustment to experimental data with the lowest prediction
error and an improvement of 17% respect to RS2 (overall PE =

13.51%, see Figure 9). RS3 also presented the lower prediction
errors for TI , V̇E, PaCO2 , PaCO2 , and HR with statistically
significant differences for the first three.

While the reduction of the prediction error in RS3 (13.76%)
is lower concerning RS2 (16.57%) than to RS1 (20.92%) when
using experimental data, in both cases, these reductions were
statistically significant (ρ < 0.01). This improvement is more
evident if only the respiratory variables TI , fR, VT , and V̇E are
considered. In this case, the prediction errors are 23.0, 26.4, and
16.3%, for RS1, RS2, and RS3 respectively, and RS3 presents an
improvement of 38% regarding RS2. Such difference is due to
prediction errors of PaCO2 and PaO2 in all models were relatively
small by the magnitude of these variables.

CONCLUSION

Three respiratory system models have been analyzed in this
paper. Two of them published Fincham and Tehrani (1983),
Cheng et al. (2010), and Cheng and Khoo (2012), named RS1
and RS2 respectively, and the other one is a model proposed in
this study, called RS3 and based on the integration of key features
of the first two.

The first analyzed model, RS1 (Fincham and Tehrani, 1983),
is a complex model that adjusts V̇E and the breathing pattern by
minimizing the work of breathing through regulation of fR (see
Equation 9) (Otis et al., 1950). It integrates several peripheral
processes and self-adjust the ventilation and breathing pattern
at the end of each breath from signals captured by humoral and
neurogenic afferent pathways. Simulation of this model, under
exercise stimuli, showed a good adjustment of V̇E and a proper
regulation of arterial gases (PaCO2 and PaO2 ). This was the key
feature that motivated us to use the neural controller of RS1
in RS3.
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The second model analyzed, RS2 (Cheng et al., 2010; Cheng
and Khoo, 2012) is amore comprehensivemodel. It integrates the
interaction between the respiratory and cardiovascular systems
and allows simulating the dynamic of cardiorespiratory control
during wakefulness and sleep. However, unlike RS1, respiratory
control is carried out through a proportional controller that
does not take into account the work of breathing done by
the subject. It adjusts V̇E in function of the brain and arterial
partial pressures of CO2 and O2 and regulates fR and VT

through lines predefined in Duffin et al. (2000). Moreover,
RS2 considers a multiplicative interaction among peripheral
chemoreceptors more than a higher sensitive to hypoxia than
hypercapnia (Blain et al., 2010; Cui et al., 2012; Kumar
and Prabhakar, 2012), such as it is described in RS1 (see
Equations 3, 4). It also does not take into account the control
neural performed by the central controller to changes in the
subject’s metabolic rates during exercise (Williamson, 2010;
Duffin, 2014; Guyton, 2015). Furthermore, it is not clear why
in RS2 both PaO2 and SaO2 were indicated as independent
variables since peripheral chemoreceptors are more sensitive
to PaO2 rather than SaO2 (Kumar and Prabhakar, 2012).
Simulations of this model, using exercise stimuli, did not
show a proper regulation of blood gases for both transient
and steady-state responses. This fact is understandable if it
considers that RS2 is a model designed for sleep-related studies
and not for another kind of stimuli such as exercise. One
of the challenges of this study was to adapt RS2 to simulate
exercise.

The third analyzed model, RS3, was proposed in this study
to take advantages of completeness and versatility of RS2 and
some properties of RS1. This model was proposed integrating key
features of RS1 into RS2. In this sense, the proposed model, RS3,
provided to RS2 the ability to adjust the ventilation in function
of (a) the brain partial pressure of CO2 and the arterial partial
pressure of CO2 and O2 and (b) the tissue metabolic demand.
Unlike RS2, RS3 controller allows describing the highest sensitive
of such chemoreceptors to hypoxia (see second and third terms
of Equations 3, 4). Additionally, this model also supplied to RS2
the capacity to adjust breathing pattern considering an efficiency
criterion based on minimization of work of breathing through
regulation of fR (see Equation 9). These features enable RS3
to accomplish appropriate transient and stationary responses
during exercise. Likewise, the model improvement is not only
related to prediction error. RS3 showed transient responses
faster than RS2 with a better physiological meaning. This was
especially important in the dynamics found for PaCO2 and PaO2

(see Figure 4), which were consistent with results published
in previous studies (Krogh and Lindhard, 1913; Pearce and
Milhorn, 1977; Whipp et al., 1982; Mateika and Duffin, 1995;
Turner et al., 1997;Whipp andWard, 1998; Magosso and Ursino,
2005; Wasserman et al., 2011; Parkes, 2013; Guyton, 2015). On
the other hand, although RS3 is more complex and complete
than RS1, there is not a higher complexity in RS3 respect to
RS2, but there is a substitution of some blocks and equations
(from RS1) that allowed getting the improvements mentioned
above.

Even though RS3 showed a good regulation of ventilation
and blood gases partial pressures and, unlike RS1, it provides
information related to cardiac activity such as heart rate, stroke
volume, and cardiac output, we are still far to reproduce a real
response to this type of stimulus. One of the found handicaps
is related to many theories that have been developed so far
to describe the underlying mechanism to the cardiorespiratory
response during exercise. Particularly, RS3 (like RS1) has a
component in its controller that allows it to simulate exercise
stimulus from metabolic rate ratio (MRR) and, therefore, from
V̇CO2 and V̇O2 (see Equations 3, 6). This feature allowed RS3
to reproduce transient responses similar to those reported
in the literature, especially at the onset of exercise, and
achieve a better performance when experimental data were
used. We are aware that this “exercise component” is a
straightforward approach to simulate this type of control and
additional efforts will be necessary to reproduce detailed changes
in ventilation due to, for example, the central command,
large vessels chemoreceptors and mechanoreceptors located in
exercising muscles. Nonetheless, we consider results obtained
here represent one-step beyond simulation of this kind of
stimulus because they allowed contrasting the models, taking
advantages of their key features, reproducing transient responses
more realistic from a physiological point of view and getting a
better prediction error.

Another handicap is related to published studies include
many variables that influence the subject’s response: mode
exercise (walking, pedaling), posture, initial conditions, state
of the subject (trained, inexperienced, uncomfortable, anxious,
anticipating, distracted, tired, etc.), and metabolic rate (Bell,
2006; Fadel, 2013; Duffin, 2014). On the other hand, due to
the significant individual variation in the ventilatory responses
reported in the literature, a better prediction of real breathing
patterns can be achieved only by fitting procedures (i.e.,
estimation of individual parameters).

Finally, the proposed model RS3 will need a validation in
a sample of healthy controlled subjects in different exercise
conditions to go in deep in the controller mechanism of the
respiratory system during exercise.
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