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Electroencephalogram (EEG) registration as a direct measure of brain activity has unique

potentials. It is one of the most reliable and predicative indicators when studying human

cognition, evaluating a subject’s health condition, or monitoring their mental state.

Unfortunately, standard signal acquisition procedures limit the usability of EEG devices

and narrow their application outside the lab. Emerging sensor technology allows gel-free

EEG registration and wireless signal transmission. Thus, it enables quick and easy

application of EEG devices by users themselves. Although a main requirement for the

interpretation of an EEG is good signal quality, there is a lack of research on this topic in

relation to new devices. In our work, we compared the signal quality of six very different

EEG devices. On six consecutive days, 24 subjects wore each device for 60 min and

completed tasks and games on the computer. The registered signals were evaluated

in the time and frequency domains. In the time domain, we examined the percentage

of artifact-contaminated EEG segments and the signal-to-noise ratios. In the frequency

domain, we focused on the band power variation in relation to task demands. The

results indicated that the signal quality of a mobile, gel-based EEG system could not

be surpassed by that of a gel-free system. However, some of the mobile dry-electrode

devices offered signals that were almost comparable and were very promising. This study

provided a differentiated view of the signal quality of emerging mobile and gel-free EEG

recording technology and allowed an assessment of the functionality of the new devices.

Hence, it provided a crucial prerequisite for their general application, while simultaneously

supporting their further development.
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1. INTRODUCTION

Electroencephalogram (EEG) registration as a direct measurement of brain activity has unique
potentials. The fact that all physical and mental processes are controlled by our brain suggests that
such information is also reflected in the registered signal. Hence, an EEG is one of the most reliable
and predicative indicators when studying human cognition, evaluating a subject’s health condition,
or monitoring their mental state.

A main requirement for the interpretation of the registered brain activity is good signal quality.
A common way to achieve this is the registration of the EEG in a shielded lab and preparation of
the subject’s skin before the electrodes are placed to reduce the impedance. Unfortunately, these
standard procedures limit the usability of an EEG device and narrow its application outside the
lab. An additional challenge when it comes to real-life applications involves the wired connections
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from the electrode cap to an amplifier and computer. These
severely restrict a subject’s mobility and decrease user acceptance
of the measuring technique.

Over the last few years, research engineers and EEG system
manufacturers have been working on overcoming these issues
and allowing easy and reliable EEG registration outside the
lab. By means of wireless signal transmission, they have
developed mobile devices that allow subjects to move more
freely. Furthermore, emerging sensor technology allows gel-free
EEG registration and enables quick and easy application of EEG
devices by the users themselves. However, the signal quality of
these new devices remains unclear.

There have only been a few articles dealing with this issue.
Among these, there were studies that focused primarily on the
evaluation of mobile vs. non-mobile devices, which neglected the
emerging dry-electrode systems (Forney et al., 2013; Ries et al.,
2014). Other investigations concentrated only on a single dry-
electrode device and considered its general performance (Callan
et al., 2015; Rogers et al., 2016). Finally, there were studies on
one dry-electrode and one gel-based device (Zander et al., 2011;
Johnstone et al., 2012; Duvinage et al., 2013). However, the
majority of the articles described self-developed dry sensors and
compared their signal quality to that of a traditional gel-based
system (Sullivan et al., 2007; Nikulin et al., 2010; Grozea et al.,
2011; Saab et al., 2011; Debener et al., 2012; Guger et al., 2012). An
interesting study that examined more than two devices included
a wireless gel-based device, wireless saline-based device, wired
dry-electrode device, and wired gel-electrode device (Grummett
et al., 2015). To the best of our knowledge, no signal comparison
studies of several wireless dry-electrode systems are available.

In our work, we compared the signal quality of various
mobile and gel-free EEG devices. Hence, our study offers a
differentiated look at nascent EEG recording technology and
enables functionality assessments of the new devices. The
obtained results build a crucial prerequisite for the general
application of the emerging devices outside the lab and
simultaneously support their further development.

2. MATERIALS AND EXPERIMENTS

2.1. EEG Systems
The investigation focused on six mobile EEG devices. They are
illustrated in Figure 1, and their specifications are summarized
in Table 1.

The EPOC is the only device in our study that works with
saline-based, wet felt sensors. It has two reference electrodes that
are mounted at the parietal sides (P3/P4 locations).

The Jellyfish is also an easy-to-apply device. It consists of a
headband with four dry electrodes and an adhesive reference
electrode at the mastoid. The four electrodes can be applied at
either frontal or parietal sites. The manufacturer recommends
the use of foam-based electrodes for the frontal sites and spring-
loaded electrodes for the parietal sites (Figure 1E). In our study,
we registered the frontal EEG and thus attached foam-based
electrodes to the headband.

The Trilobite device comes from the same manufacturer as
the Jellyfish. It includes three foam-based frontal electrodes and

29 spring-loaded pin electrodes. Additionally, the device has a
ground electrode and reference ear-clip electrode.

The BR8+ device comprises two frontal foam-based electrodes
and six spring-loaded pin electrodes. Ground and reference
electrodes are applied with ear-clips. The ear pads of the device
do not have any technical functionality.

The pin electrodes of g.tec’s g.SAHARA/g.Nautilus device
are mounted on a traditional EEG cap. Adhesive ground and
reference electrodes are applied at the mastoids. The cap of
the device comes in small, medium, and large sizes. We only
employed the medium-size cap in order to reduce the financial
cost.

Finally, we also included a traditional, gel-based but mobile
EEG system, the g.LADYbird/g.Nautilus device by g.tec. It
includes 16 active electrodes and an ear-clip electrode as a
reference. Although the cap size can vary, just as with the
g.SAHARA/g.Nautilus device, we only used the medium-size
cap in our study to reduce the cost. The g.LADYbird/g.Nautilus
device was primarily developed for research and medical use. We
included it to our study as a state-of-the-art reference for EEG
registration in relation to the signal quality.

It was not possible to use the same sample rate for every
device. In order to maintain comparable conditions for the later
evaluation, we attempted to operate the devices with sample
rates that were as similar as possible. Hence, for the Jellyfish
and Trilobite devices, the EEG was registered at 256 Hz, and the
g.SAHARA and g.LADYbird devices used 250 Hz. For both of
the remaining devices, manual adjustment of the sample rate to
250 Hz was not possible. Thus, we had to run the EPOC device
at 128 Hz and the BR8+ device at 1000 Hz. Furthermore, we
applied a digital notch filter at 50 Hz during all of the recordings.
All of the EEG devices utilized wireless signal transmission to a
computer.

2.2. Procedure and Subjects
Our study was conducted in a non-shielded office setting.
Twenty-four subjects (11 females and 13 males, 26–66 years
of age, with a mean age of 42.8) participated in the study.
They tested one device per day for 60 min. During this time,
the participants played computer games and performed one
easy and one more demanding cognitive task for 5 min each.
The 0-back task represented the easy task, where subjects were
instructed to press the mouse button if the letter “X” appeared
on the screen (Kirchner, 1958; Gazzaniga et al., 2013). The stop
signal task was a more demanding inhibition task (Logan, 1994;
Dimoska, 2005). During this task, the subjects were instructed to
press the green mouse button as fast as possible if a horizontal
left arrow was presented on the screen and the red mouse button
if a horizontal right arrow appeared. If a horizontal arrow was
quickly followed by a vertical arrow, they were instructed to
inhibit their response and not press either button. They had to
respond as quickly as possible and remember that their main aim
was to keep the frame around the arrow green. A red framemeant
that they were too slow. Hence, if it was red, they had to speed up
their response while still paying attention to the vertical arrow.

Finally, we conducted two rest measurements, where we
instructed the subjects to sit quietly for a minute, first with their
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FIGURE 1 | Six mobile EEG devices tested in our study.

eyes open and subsequently with their eyes closed. The devices
were selected in random order over the participants and days,
while the sequence of the performed tasks remained constant for
all.

All of the investigations conducted were approved by the
local review board of our institution, and the experiments were
conducted in accordance with the Declaration of Helsinki. All of
the procedures were carried out with the adequate understanding
and written consent of the subjects.

3. METHODS

To evaluate the signal quality, we examined the proportion of
artifacts and signal-to-noise ratio of the devices in the time

domain and considered the signal properties in the frequency
domain.

3.1. Evaluation in Time Domain
Two hypotheses were postulated based on our expectations for
the signal quality in regard to the time domain. In order to test
both hypotheses, we employed EEG data from all of the computer
tasks.

3.1.1. Proportion of Artifacts

Hypothesis 1: The gel-based device has a significantly lower

proportion of artifacts than the gel-free devices.
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TABLE 1 | Technical data of tested EEG devices (n.s.: not specified).

Device EPOC Trilobite Jellyfish BR8+ g.SAHARA g.LADYbird

Electrode type Wet Dry Dry Dry Dry Gel

(saline) (spring, (spring, (spring, (pins) (active)

foam) foam) foam)

No. of channels 14 32 4 8 16 16

Battery life

[hours]

12 10 10 11 10 10

Resolution [bit] 14 24 24 24 24 24

Max. sample

rate [Hz]

128 500 500 1000 500 500

Bandwidth [Hz] 0.2–45 0.23–n.s. 0.23–n.s. 0.12–125 0.1–40 0.1–40

Weight [g] 116 524 95 269 233 165

The evaluation of the EEG in the time domain with regard to
hypothesis 1 was conducted manually. The visual inspection and
discarding of contaminated EEG segments by an expert is a
widely applied and well-accepted method in research and clinical
settings. Therefore, we asked for assistance from a medical
technical assistant (MTA) with specialization in EEG analysis and
years of experience in that field.

The MTA visually inspected the EEGs of each subject from
all of the devices and manually marked artifact segments using a
skill-based state-of-the-art procedure. Thereby, she did not mark
physiological artifacts (e.g., eye blinks, eye movements) because
these were not related to the device properties.

We then computed the percentage of denoted artifacts
compared to the entire recording time for each channel. Finally,
we calculated the means over the channels and subjects for each
device.

3.1.2. Signal-to-Noise Ratio

Hypothesis 2: The gel-based device has a significantly higher signal-

to-noise ratio than the gel-free devices.

We computed the signal-to-noise ratio (SNR) as a standard
method to assess the signal quality. The SNR values were
calculated using the following relation:

SNR = 10 · log10

(

σ
2
x

σ 2
e

)

[dB] (1)

where σ
2
x is the variance of the signal, and σ

2
e is the variance of

the noise. For zero mean signals, as found here, this results in the
following:

SNR = 10 · log10

∑N
(i=1) x

2
i

∑N
(i=1)(si − xi)2

(2)

where N is the number of sample points, xi is the noise reduced
signal at time i, and si is the band-pass filtered signal at time i.

First, we filtered the original raw signals using a Hamming
band-pass filter (order 100) between 1 and 40 Hz and obtained
the filtered signal si. Subsequently, we applied the artifact
subspace reconstruction (ASR) algorithm to calculate the noise-
reduced signal amplitudes xi (Mullen et al., 2013). This algorithm

is particularly suitable for cleaning continuous, non-triggered
data from artifacts. Furthermore, the approach is well established
within the scientific community (e.g., Bulea et al., 2015; Luu
et al., 2017) and recommended for wireless, dry-electrode systems
(Mullen et al., 2015). In the following, we give a brief description
of how the algorithm works.

The algorithm identifies a clean signal segment from the
given EEG and computes its statistics. Next, the ASR runs
with a sliding window over the EEG and conducts a principal
component analysis for each window. It removes high-variance
components with three standard deviations above the mean and
reconstructs their content using a mixing matrix calculated from
the previously identified clean segment. For a more detailed
explanation of the mathematical background and functionality
of the algorithm, we advise the interested reader to consult the
appropriate articles by the developers.

For the residual noise signal in the denominator, we used
the difference between band-pass filtered signal si and the noise-
reduced signal from the ASR algorithm, xi. The signal quality of
the devices could be compared under this assumption. For each
device, the SNR values were computed for all of the electrodes
and subjects.

3.2. Evaluation in Frequency Domain
To evaluate the signal quality in the frequency domain, we
formulated three more hypotheses. We expected that if a device
had good signal quality, we would be able to measure significant
differences in the signal’s frequency band power values for the
various tasks.

Hypothesis 3: For devices with good signal quality, a significant

Berger effect can be obtained between measurements with the eyes

open and those with the eyes closed.

Our third hypothesis was based on the so-called Berger
effect (Berger, 1929). This states that the parietal alpha band
power is supposed to be smaller with the eyes open than closed.
This is also known as the “alpha block.”

For each device, we considered the two rest measurements
with the eyes open and closed. We removed all of the segments
previously marked as artifacts. We subsequently applied a
Hamming band-pass filter for the alpha frequency band (8–
12 Hz) to the artifact-free signals of the parietal electrodes
(Figure 2). The relative band power values were averaged over
the electrodes for the rest measurements with the eyes open and
closed.

Hypothesis 4: For devices with good signal quality, a significant

increase in the frontal theta power can be obtained when comparing

the easy and more demanding cognitive tasks.

The fourth hypothesis was based on the dependency of the
frontal theta band power on the experienced workload. Based on
the results from numerous previous investigations (e.g., Gevins
et al., 1998; Radüntz, 2016), we expected a significant increase
in the frontal theta power when comparing the easy and more
demanding cognitive tasks.
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FIGURE 2 | Accentuated positions constitute EEG devices’ layout. The aggregated electrodes for the frontal theta-band power evaluation are highlighted in red. The

electrodes used for the parietal alpha-band power calculation are highlighted in green.
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To this end, we focused on the EEGs from the 0-back and
stop signal tasks of each device. First, we removed all of the
previously marked artifact segments. We subsequently applied a
Hamming band-pass filter for the theta frequency band (4–8 Hz)
to the artifact-free signals of the frontal electrodes (Figure 2). The
relative band power values were averaged over the electrodes for
both the 0-back and stop signal tasks.

Hypothesis 5: For devices with good signal quality, a significant

decrease in the parietal alpha band power can be obtained when

comparing the easy and more demanding cognitive tasks.

Our last hypothesis was also based on findings regarding the
experienced workload, but now with respect to the parietal alpha
band power, which is expected to significantly decrease when
comparing the easy andmore demanding cognitive tasks (Gevins
et al., 1998; Radüntz, 2016).

For each device, we considered the EEGs from the 0-back
and stop signal tasks. We removed all of the previously marked
artifact segments and applied a Hamming band-pass filter for the
alpha frequency band (8–12 Hz) to the artifact-free signals of
the parietal electrodes (Figure 2). Next, the relative band power
values were averaged over the electrodes for both the 0-back and
stop signal tasks.

4. RESULTS

Digital signal processing was performedwithMATLAB. All of the
statistical calculations were carried out using SPSS. Furthermore,
we provide Supplementary Material with the subjects’ values for
each analysis and system.

4.1. Evaluation in Time Domain
4.1.1. Proportion of Artifacts
To statistically evaluate the proportion of artifacts for the various
devices, we conducted an analysis of variance (ANOVA) with a
repeated measures design. The six devices constituted the levels
used for testing each subject at each level of the within-subject
variable. Bonferroni’s corrected post-hoc tests were conducted to
determine the differences between the levels.

The results are presented in Figure 3. They indicate significant
differences among the devices in relation to their proportions
of artifact-contaminated signal segments [Greenhouse-Geisser:
F(2.72; 62.61), = 15.88, p< 0.001]. The post-hoc tests showed that
the traditional gel-based g.LADYbird device had significantly
fewer artifacts than almost all of the other devices, and that
the BR8+ device had significantly more artifacts than most of
the others. The dry pin-electrode device (g.SAHARA) yielded a
significantly lower artifact proportion than the remaining pin-
electrode devices. However, it had a higher proportion than the
gel-based device. Finally, no significant differences compared to
any other device could be obtained for the EPOC device.

4.1.2. Signal-to-Noise Ratio
Before going into detail about the SNR results, it should be noted
that the ASR algorithm failed when examining the EEGs of four
subjects that were recorded with the Trilobite device. This was

because no segment of the needed length could be found as a
reference for the algorithm, where all of the electrodes’ signals
were concurrently clean. Hence, these four subjects had to be
excluded from the subsequent statistical computations for all the
devices.

For each device, we calculated the median of the SNR values
for each electrode over all the subjects and tasks. At the first
site, we found obvious differences among the devices and noticed
that g.LADYbird and g.SAHARA had the highest SNR values
(Figure 4). In order to statistically evaluate these observations,
we calculated the median of the SNR values over all the channels
for each subject and device.We then conducted a non-parametric
Friedman test of the differences among the six devices.

The results indicated significant differences in the devices’
SNR values (χ2 = 71.34, df = 5, n = 20, p< 0.001). Dunn-
Bonferroni post-hoc tests were conducted to determine the
differences between the devices. The results are presented in
Figure 5. The g.LADYbird device yielded significantly higher
SNR values than the Trilobite (z = −5.409, p< 0.001, r = 1.2),
EPOC (z = −6.339, p< 0.001, r = 1.4), and Jellyfish devices (z
= −5.832, p< 0.001, r = 1.3). The g.SAHARA showed results
that were similar to those of g.LADYbird for these three devices
(Trilobite: z = 4.226, p< 0.001, r = 0.9; EPOC: z = −5.155,
p< 0.001, r = 1.2; Jellyfish: z = −4.648, p< 0.001, r = 1.04).
Furthermore, the BR8+ device showed significantly higher SNR
values than the EPOC (z = 3.803, p< 0.01, r = 0.9) and Jellyfish
devices (z = −3.296, p< 0.05, r = 0.7). All of the obtained
effect sizes for the previously mentioned correlation coefficients
for device pairs could be interpreted as large according to the
guidelines of Cohen (1992).

4.2. Evaluation in Frequency Domain
To evaluate the signal quality in the frequency domain, we
conducted a statistical test for each hypothesis. A separate
statistical inference evaluation was performed for each device
because of the substantial differences between the devices.
These arose from the different numbers of electrodes, different
electrode layouts, different reference electrodes, and different
electrode types. Although those differences did not allow for
a statistical inference analysis among the devices, determining
a separate inferential statistic for each device seemed to be
appropriate to test the hypotheses. The results for the devices
could only be compared descriptively. Furthermore, it should
be mentioned that evaluations of the third and fifth hypotheses
were not possible for the Jellyfish device because of its electrode
configuration.

For the third hypothesis, we considered the parietal alpha
band power values of the rest measurements with the eyes open
and closed. We used the Shapiro-Wilk test to assess whether
the alpha band power values of these two rest measurements
were normally distributed for each device. This was not the
case for the eyes-open parietal alpha band power values of all
the devices (p < 0.05). Similarly, the alpha band power with
the eyes closed was not normally distributed for most of the
devices, with the exception of g.SAHARA and g.LADYbird (p >

0.05). Hence, for comparison purposes, we conducted aWilcoxon
paired difference test for each EEG system. The results are
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FIGURE 3 | Proportion of manually tagged artifacts in EEG averaged over channels and subjects for each device (calculation of analysis of variance with repeated

measures design and Bonferonni-corrected post-hoc tests: ***: p≤0.001; **: 0.001<p≤ 0.01; *: 0.01<p≤0.05; error bars indicate ± one standard deviation).

presented in Figure 6A. They show significant differences in the
alpha frequency band power values between the eyes open and
eyes closed for all of the devices except the Trilobite device (p =
0.19).

We used a similar procedure for the fourth hypothesis.
Hereby, the theta band power values of the 0-back and stop
signal tasks were considered. For all of the devices, the theta band
power of the 0-back task was approximately normally distributed,
whereas that of the stop signal task was not, as assessed by the
Shapiro-Wilk test (Jellyfish and BR8+ with p< 0.05). Hence, a
Wilcoxon test was conducted. Figure 6B shows the results. A
significant increase in the frontal theta band power between the
easy and more demanding tasks could only be obtained for the
Jellyfish and g.LADYbird devices.

Finally, in order to prove our last hypothesis, we examined the
alpha band power values of the two cognitive tasks. The Shapiro-
Wilk test indicated that during the 0-back task, the alpha band
power was not normally distributed for any device (p< 0.05).
During the stop signal task, the alpha band power was normally
distributed for almost all of the devices except the EPOC and
g.LADYbird (p< 0.05). Thus, a Wilcoxon test had to be applied.
The paired difference test between the easy and demanding
tasks yielded significant decreases in the parietal alpha band

power values for the BR8+, g.SAHARA, and g.LADYbird devices
(Figure 6C).

5. DISCUSSION AND CONCLUSION

A visual examination of the signals in the time domain and
statistical analysis of their proportions of artifacts showed that
the gel-based g.LADYbird device had the fewest disturbances,
as postulated by hypothesis 1. Among the gel-free devices, the
g.SAHARA device had the best performance, with only a small
percentage of artifact-contaminated segments. We also want to
remind the reader that no significant differences at all could be
identified for the EPOC device. This was probably due to the high
variance among the subjects and requires a discussion to provide
useful information for the use of this device. It is a fact that the
headset did not provide a good fit for the various head sizes of
the subjects. In these cases, the electrodes did not make good
contact with the skin, and the recorded signals included noise
interference at 23 and 28 Hz. We assumed that in the case of
loose electrode contact, the device caused aliasing artifacts from
the electrical mains. Thus, we contacted the manufacturer for
a detailed explanation. Their technical support stated that “the
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FIGURE 4 | Median SNR values obtained over subjects for each channel.

problem arises because the common mode sense active electrode
and driven right leg passive electrode pair cannot cancel the
ambient noise, either because the headset is not on a human, or

because the connections at the reference locations (behind and
30◦ above the ears, or directly behind each ear) are not making
good contact.” We concluded that the variance in the artifact
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FIGURE 5 | Median SNR values over channels and subjects for each device (calculation of Friedman test of differences and Bonferonni corrected post-hoc tests:

***: p≤0.001; **: 0.001<p≤ 0.01; *: 0.01<p≤0.05; error bars indicate ± one standard deviation).

proportions among the subjects was large because of the difficulty
of adapting the device to the different head sizes. However, the
EPOC device is only manufactured in one size, which leads to
bad outcomes regarding the signal quality.

For our second hypothesis, we used the signal-to-noise ratio
as a criterion to characterize the signal quality of the devices.
For all of the devices, the obtained SNR range was quite low,
from −18 to 9 dB, and within the range found in the literature.
As expected, the SNRs were lower in the frontal areas, which
were contaminated by eye artifacts (Goldenholz et al., 2009;
Mishra and Singla, 2013; Radüntz et al., 2015). The gel-based
g.LADYbird device yielded the best SNR value. A statistical
analysis showed that it was significantly higher than the three
poorest SNRs of the Trilobite, EPOC, and Jellyfish devices.
Among the gel-free devices, we obtained the best SNR value
for g.SAHARA. Similar to the values of the g.LADYbird device,
g.SAHARA’s SNR was significantly higher than the SNR values of
the Trilobite, EPOC, and Jellyfish devices. However, remarkably,
and in contrast to the g.LADYbird device, none of the gel-free
devices could yield SNR values greater than 0 dB (Figure 5). This
indicated that the ratio between the signal and noise was smaller
than one. The noise was superimposed on the signal, which could
prove to be particularly problematic in clinical practice, where
precise measurements are required.

Our first two hypotheses concentrated on evaluating the EEGs
in the time domain. While this evaluation aimed at the first
instance to identify the very obvious differences regarding the
devices’ artifact susceptibility, our evaluation in the frequency
domain went a step further. After removing all of the artifact-
contaminated segments, we wanted to look deeper at the signal
and determine whether it reflected the actual brain activity. For
this, we postulated three additional hypotheses based on the well-
studied behavior of the EEG. If the devices effectively recorded
a brain signal, the Berger effect had to be clearly noticeable.
Furthermore, as task demands became greater, we expected an
increase in the frontal theta frequency band power and a decrease
in the parietal alpha frequency band power.

Significantly, for the gel-based g.LADYbird device, all three
frequency-domain hypotheses were proven to be true. For the
g.SAHARA and BR8+ devices, significant differences could be
obtained regarding the Berger effect and decrease in the parietal
alpha band power during the demanding cognitive task. The
EPOC device yielded significant differences only for the Berger
effect. The Jellyfish device was included only in the examination
of the frontal theta band power behavior. It was the only device
among the gel-free devices that was able to register a significant
increase in the theta band power as task demands increased. Only
one device did not show any significant changes in the signal’s
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FIGURE 6 | Frequency band differences in respect to different conditions

averaged over channels and subjects and considered for each device

separately (calculation of Wilcoxon paired difference test for not-normally

distributed data; ***: p≤ 0.001; **: 0.001<p≤0.01; *: 0.01<p≤ 0.05; error

bars indicate ± one standard deviation). (A) Hypothesis 1: Behavior of parietal

alpha band power during rest measurements with eyes open and eyes closed.

(B) Hypothesis 2: Behavior of frontal theta band power during easy and more

demanding cognitive tasks. (C) Hypothesis 3: Behavior of parietal alpha band

power during easy and more demanding cognitive tasks.

TABLE 2 | Signal quality results of tested EEG devices (***: p≤0.001; **:

0.001<p≤0.01; *: 0.01<p≤0.05).

Device EPOC Trilobite Jellyfish BR8+ g.SAHARA g.LADYbird

Proportion of

artifacts [%]

25.11 41.14 22.36 51.22 16.21 3.19

SNR [dB] −13.66 −11.55 −14.31 −3.78 −0.50 5.09

Berger effect * − *** *** ***

Increase in

frontal theta

** *

Decrease in

parietal alpha

** ** ***

band power in reference to any of our last three hypotheses: the
Trilobite device.

To conclude, all of the devices tested are mobile and
do not limit a subject’s mobility. All of the devices, except
the g.LADYbird device, are easily applicable by the subjects
themselves because of their gel-free electrodes. The signal quality
results yielded by this study are summarized in Table 2. In order
to provide useful information to practical users of EEG devices,
in the following, we indicate which system could be used under
which condition.

Outstanding performances were obtained for the traditional
gel-based but mobile g.LADYbird/g.Nautilus device. None of the
other emerging devices could reach its signal quality. This device
can be recommended for neuroscience research where precise
measurements are required.

The signal quality of the g.SAHARA/g.Nautilus device was
the best among the gel-free devices and could be considered
quite satisfactory. The g.SAHARA/g.Nautilus seems to be a good
solution for conducting field experiments. A potential issue could
be user acceptance because of the not very flattering cap design
and its comfort. A long wearing time for the pin electrodes could
be a major problem. Within the framework of our study, we used
several questionnaires regarding user experience. The obtained
results will be presented in a following paper.

The remaining devices did not meet our requirement of an
appropriate signal quality, although some readers could decide
to use them for mobile applications.

The EPOC and BR8+ devices suffered from a large proportion
of artifacts caused by a poor fit, depending on the subject’s head
size and form. Hence, they can only be recommended for use
if they are guaranteed to perfectly fit the subject’s head, e.g.,
personalized brain-computer applications.

Potential users of the Jellyfish device should be aware that the
device only measures the frontal brain activity. In addition, the
signal of the frontal electrodes is contaminated by a large number
of artifacts. Furthermore, the small number of electrodes does
not facilitate the application of artifact-correction algorithms that
employ ambient information. However, potential applications
suitable for this device could be located in the gaming or bio-
feedback sector.

Finally, the results of the Trilobite device were unsatisfactory.
This was because of the negative evaluations in both the time
domain and frequency domain. A recommendation for the use of
the Trilobite device cannot be given based on the obtained results.
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It has to be mentioned that the EEG equipment market shows
rapid development. During this study, new devices appeared on
the market that could not be tested, e.g., the actiCAP Xpress
Twist/LiveAmp device by BrainProducts. Furthermore, there is
a new highly innovative approach using in-ear EEG technology
(Looney et al., 2012; Goverdovsky et al., 2017).

For triggered data from event-related potentials, Oliveira
et al. (2016) have already proposed metrics for evaluating
new EEG technologies. However, our study design and
the proposed method for evaluating the signal quality
of devices could easily be used in subsequent studies of
new devices and continuous data without triggers. Such
a benchmark would allow for the evaluation of further
emerging EEG technology and the integration of the test
results from new devices into the findings already in existence.
This would make it possible to compare emerging EEG
devices.
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